uncategorized

25 February 2020

potential reads, M2 course

 

 

 

 

Achieving the Bayes Error Rate in Synchronization and Block Models by SDP, Robustly

Yingjie FeiYudong Chen

https://arxiv.org/abs/1904.09635

 

Testing for high-dimensional geometry in random graphs

Sébastien Bubeck, Jian Ding, Ronen Eldan, Mikl’os Z. R’acz

https://arxiv.org/pdf/1411.5713.pdf

 

‘On the Limitation of Spectral Methods: From the Gaussian Hidden Clique Problem to Rank One Perturbations of Gaussian Tensors’

Andrea Montanari, Daniel Reichman, and Ofer Zeitouni,

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 3, MARCH 2017

https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7779134

 

‘Information-theoretic thresholds for community detection in sparse networks.’

  1. Banks, C. Moore, J. Neeman, and P. Netrapalli.

In Proceedings of the 29th Conference on Learning Theory, COLT 2016, New York, USA, June 23-26, 2016, pages 383?416, 2016.

http://proceedings.mlr.press/v49/banks16.pdf

 

A strengthening and a multipartite generalization of the Alon-Boppana-Serre Theorem,

B. Mohar, https://arxiv.org/pdf/1002.1084.pdf

 

The eigenvalues and eigenvectors of finite, low rank perturbations of large random matrices

Florent Benaych-Georges (PMA, CMAP), Raj Rao Nadakuditi (EECS)

https://arxiv.org/abs/0910.2120

 

Approximating the cut-norm via Grothendieck’s inequality

Noga Alon and Assaf Naor, https://web.math.princeton.edu/~naor/homepage%20files/cutnorm.pdf

Spectral Techniques applied to sparse random graphs

U. Feige and E. Ofek

Wiley Interscience 2005, https://onlinelibrary.wiley.com/doi/epdf/10.1002/rsa.20089

 

‘Robust reconstruction on trees is determined by the second eigenvalue’.

S. Janson and E. Mossel.

The Annals of Probability, 32(3B):2630?2649, 2004

https://projecteuclid.org/download/pdfview_1/euclid.aop/1091813626

 

‘BROADCASTING ON TREES AND THE ISING MODEL’

William Evans, Claire Kenyon, Yuval Peres and Leonard J. Schulman

The Annals of Applied Probability, 2000, Vol. 10, No. 2, 410–433

https://projecteuclid.org/download/pdf_1/euclid.aoap/1019487349

 

‘THE EIGENVALUES OF RANDOM SYMMETRIC MATRICES’

Z. FÜREDI and J. KoMLóS

Combinatorica 1 (3) (1981) 233-241

https://faculty.math.illinois.edu/~z-furedi/PUBS/furedi_komlos_cca1981_random_eig.pdf