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Abstract
In the group testing problem, which goes back to the work of Dorfman (1943), we aim to identify a
small set of k ∼ nθ infected individuals out of a population size n, 0 < θ < 1. We avail ourselves
to a test procedure that can test a group of individuals, with the test returning a positive result iff at
least one individual in the group is infected. All tests are conducted in parallel. The aim is to devise
a test design with as few tests as possible so that the infected individuals can be identified with high
probability. We establish an explicit sharp information-theoretic/algorithmic phase transition minf ,
showing that with more than minf tests the infected individuals can be identified in polynomial
time, while this is impossible with fewer tests. In addition, we obtain an optimal two-stage adaptive
group testing scheme. These results resolve problems prominently posed in [Aldridge et al. 2019,
Johnson et al. 2018, Mézard and Toninelli 2011].
Keywords: Group testing, Bayesian inference, information theory, efficient algorithms

1. Introduction

The group testing problem. Various intriguing computational challenges come as inference prob-
lems where we are to learn a hidden ground truth by means of indirect queries. The goal is to get
by with as small a number of queries as possible. The ultimate solution to such a problem should
consist of, first, a positive algorithmic result showing that a certain number of queries suffice to
learn the ground truth efficiently. Second, a matching information-theoretic lower bound showing
that with fewer queries the problem is insoluble, regardless the amount of computational resources
we are willing to throw at it.

Group testing is a prime example of such an inference problem. The problem has been receiving
a great deal of attention recently; Aldridge et al. (2019) provide an up-to-date survey. The task is to
identify within a large population those individuals infected with a rare disease. At our disposal we
have a test procedure capable of not merely testing one individual but an entire group. The test will
come back positive if any one individual in the group is infected and negative otherwise. All tests
are conducted in parallel, i.e., there is one round of testing only. We are free to allocate individuals
to test groups as we please. In particular, we may allocate each individual to an arbitrary number of
groups, with no restriction on the group sizes. Randomisation is allowed. What is the least number
of tests required to infer the set of infected individuals from the test results with high probability?

The two main results of this paper furnish matching algorithmic and information-theoretic
bounds. These results close the considerable gap that the best prior bounds left. To elaborate, a
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key feature of group testing is that the test design is at our discretion, which we exercise by equip-
ping the new inference algorithm with a tailor-made test design. While the best previous algorithms
relied on a test design based on a plain random graph, we instead harness a blend of a geometric and
a random construction. This test design, reminiscent of recent advances in coding theory known as
spatially coupled codes Felstrom and Zigangirov (1999); Kudekar et al. (2011), enables an optimal
combinatorial inference algorithm that is easy to comprehend, implement and run. With respect to
the lower bound, we improve over an argument from Mézard and Toninelli (2011); Aldridge (2019)
based on the FKG inequality by introducing a subtle application of the probabilistic method. Let us
proceed to state the main results formally.

A sharp algorithmic/information-theoretic threshold. Within a population of size n we aim to
identify a set of k ∼ nθ infected individuals for a fixed parameter 0 < θ < 1. Let σ ∈ {0, 1}n
be the vector whose 1-entries mark the infected individuals. Permuting the indices, we may assume
that σ is a random vector of Hamming weight k. Let

minf = minf(n, θ) = max

{
θ

ln2 2
,
1− θ
ln 2

}
nθ lnn. (1.1)

Theorem 1 For any 0 < θ < 1, ε > 0 there exists a randomised test design comprising no more
than (1 + ε)minf tests and a polynomial time algorithm that given the test results outputs σ w.h.p.

Theorem 2 For any 0 < θ < 1, ε > 0 no test design with fewer than (1−ε)minf tests exists so that
given the tests results any algorithm, efficient or not, outputs σ with a non-vanishing probability.

Theorems 1 and 2 show that there occurs an algorithmic/information-theoretic phase transition
at minf . Indeed, if we allow for a number of tests greater than minf , then there exist a test design
and an efficient algorithm that solve the group testing problem w.h.p. By sharp contrast, once
the number of tests drops below minf , identifying the set of infected individuals is information-
theoretically impossible. Theorem 1 significantly improves over the best previous positive results.
Indeed, the best previous efficient algorithm, a greedy algorithm called DD, requires

mDD ∼ max

{
θ

ln2 2
,
1− θ
ln2 2

}
nθ lnn (1.2)

tests Johnson et al. (2018). The DD algorithm comes with the simple random bipartite test design
where every individual independently joins an equal number of test groups, chosen uniform at ran-
dom. While mDD matches the optimal bound minf from Theorem 1 for densities θ ≥ 1/2, the
bounds diverge for θ < 1/2.

Turning to the information-theoretic lower bound, the best prior result derived from the folklore
observation the total number 2m of conceivable tests results must asymptotically exceed the number(
n
k

)
of possible sets of infected individuals to answer correctly w.h.p. Hence, 2m ≥ (1 + o(1))

(
n
k

)
.

Applying Stirling’s formula, we obtain the lower bound

mad =
1− θ
ln 2

nθ lnn. (1.3)

This bound matches minf for θ ≤ ln(2)/ (1 + ln 2) ≈ 0.41, but the bounds differ for larger θ.
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Figure 1: The best previously known algorithm DD succeeds in the blue but not in the green re-
gion. The new algorithm SPIV additionally succeeds in the green region. The black
line indicates the non-adaptive information-theoretic threshold minf . In the red area even
(multi-stage) adaptive inference is impossible. Finally, the two-stage adaptive group test-
ing algorithm from Theorem 3 additionally succeeds in the yellow region.

Adaptive group testing. In the adaptive variant of the group testing problem, several stages of
testing are allowed. In each stage the test design can take into account the outcomes of the tests
conducted in the previous rounds. Apart from, naturally, minimising the total number of tests, in
adaptive group testing we also aim to minimise the number of test stages Baldassini et al. (2013).
A minimum number of stages is desirable because tests may be time-consuming Chen and Hwang
(2008); Kwang-Ming and Ding-Zhu (2006). The elementary lower bound (1.3) shows that even
adaptive test designs with an unlimited number of stages require at least mad tests. Conversely, the
following theorem shows that actually just two stages suffice to reach the threshold mad.

Theorem 3 For any 0 < θ < 1, ε > 0 there exist a two-stage test design with no more than
(1 + ε)mad tests in total and a polynomial time inference algorithm that outputs σ w.h.p.

Theorem 3 improves over the three-stage test design from Scarlett (2019). The proof of Theorem 3
combines the test design and algorithm from Theorem 1 with ideas from Scarlett (2018).

The question of whether an ‘adaptivity gap’ exists for group testing, i.e., if the number of tests
can be reduced by allowing multiple stages, has been raised prominently Aldridge et al. (2014);
Aldridge (2017); Aldridge et al. (2019); Johnson et al. (2018). Theorems 1–3 answer this question
comprehensively. Namely, for infection densities θ < ln(2)/(1 + ln(2)) ≈ 0.41 the non-adaptive
test design from Theorems 1 matches the adaptive lower boundmad. Thus, in this regime adaptivity
confers no advantage. By contrast, Theorem 2 shows that for θ > ln(2)/(1 + ln(2)) there is
a widening gap between mad and the number of tests required by the optimal non-adaptive test
design. Further, Theorem 3 demonstrates that this gap can be closed by allowing merely two stages
of tests. Figure 1 illustrates the thresholds obtained in Theorems 1–3.

2. Overview: the new algorithm and the new lower bound

We describe the test design and algorithm for Theorem 1 and sketch the key ideas behind the proof
of the information-theoretic lower bound for Theorem 2. We begin by discussing the random design
harnessed in Aldridge et al. (2016); Johnson et al. (2018) to highlight several key concepts.
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2.1. The random bipartite design

A natural first stab at a promising test design seizes upon a simple random bipartite (multi-)graph
model. One vertex class V = {x1, . . . , xn} comprises the individuals. The other class F =
{a1, . . . , am} represents the tests. The edges are induced by having each individual independently
join an equal number ∆ of test, chosen uniformly at random with replacement. For an individual xh
let ∂xh be the set of tests that it joins. Similarly, for a test ai let ∂ai be the set of test participants.

How should we choose ∆ to extract the maximum amount of information? It seems natural to
maximise the entropy of the vector of test results

σ̂ = (σ̂a)a∈F with σ̂a = max
x∈∂a

σx. (2.1)

Naturally, the average test degree equals ∆n/m. Thus, the average number of infected individuals
per test equals ∆k/m. More precisely, since k is much smaller than n, the number of infected
individuals in test ai asymptotically has a Poisson distribution. Hence, choosing ∆ ∼ m ln (2) /k
effects that a test contains Po(ln 2) infected individuals. Thus, about half the tests are positive w.h.p.

Given the test results, how do we best set about inferring the infected individuals? Clearly,
every individual that occurs in a negative test is uninfected. Furthermore, each individual xh that
appears in a positive test ai whose other participants all occur in negative tests must be infected; for
xh being infected is the only possible explanation of ai being positive. Thus, we are left with two
sets of individuals that it may be difficult to diagnose. First, the set V0+ of uninfected x that appear
in positive tests only, i.e., potential false positives. Second, the set V1+ of infected individuals x
that only appear in tests a that contain a second infected individual, i.e., potential false negatives.
Clearly, if m is so small that both sets V0+, V1+ are non-empty w.h.p., then inferring the set of
infected individuals is impossible Coja-Oghlan et al. (2019b). This is because the test results remain
unchanged if we declare any one individual x ∈ V0+ infected and another x ∈ V1+ uninfected.

But once m exceeds minf , the set V1+ of false potential negatives is empty w.h.p. In effect,
even though the set V0+ of potential false positives may still be non-empty, the set of infected
individuals can be inferred by computing the assignment σ ∈ {0, 1}V of minimum Hamming weight
that ‘explains’ the test results Coja-Oghlan et al. (2019b). The problem of finding this σ can be
expressed as a minimum hypergraph vertex cover problem. Thus, while the problem could be solved
in exponential time, even on the random hypergraph no polynomial time vertex cover algorithm is
known. Indeed, the problem is similar in flavour to the notorious planted clique problem (Alon
et al. (1998)). In summary, the algorithmic challenge in group testing is to discriminate between the
potential false positives V0+ and actual infected individuals.

Finally, matters improve once the number m of tests exceeds the bound mDD from (1.2). Then
the set V0+ of potential false positives is much smaller than the set of infected individuals w.h.p.
Therefore, the expansion properties of the random graph allow to identify the infected individuals.
Indeed, Johnson et al. (2018) show that a simple greedy algorithm known as DD (for ‘Definitive
Defectives’) succeeds. In its first step DD marks all individuals that appear in negative tests as
uninfected. Then it labels as infected every individual that appear in a positive tests whose other
individuals have all been marked uninfected by the first step. All remaining individuals are marked
uninfected. No better algorithm was known previously.
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Figure 2: The spatially coupled test design with n = 36, ` = 9, s = 3. The individuals in the seed
groups V [1] ∪ · · · ∪ V [s] (blue) are equipped with additional test F [0] (blue rectangles).
The black rectangles represent the tests F [1] ∪ · · · ∪ F [`].

2.2. The new test design

To better discriminate between potential false positives and actual infected individuals we devise a
new test design with a superimposed geometric structure. Specifically, we divide both the individu-
als and the tests into ` = dln1/2 ne compartments of equal size. The compartments are arranged in
a ring and each individual joins an equal number of random tests in the s = dln lnne = o(`) subse-
quent compartments along the ring. To get the algorithm started, we equip the first s compartments
of individuals with additional tests so that they can be easily diagnosed via a greedy strategy. Then
the algorithm will work its way along the ring, diagnosing one compartment after the other guided
by the information gathered on the previous compartments. The construction of the test design is
inspired by the recently discovered spatially coupled linear codes Felstrom and Zigangirov (1999);
Kudekar et al. (2011, 2013).

To make this idea precise partition the set V = {x1, . . . , xn} of individuals into pairwise disjoint
subsets V [1], . . . , V [`] of size |V [j]| ∼ n/` each. With these compartments we associate sets
F [1], . . . , F [`] of tests of equal sizes |F [i]| = m/`, where we let ε = ln−1/3 n and where

m = (1 + ε)max

{
θ

ln2 2
,
1− θ
ln 2

}
k ln(n) +O(`) (2.2)

is an integer divisible by `. Additionally, we introduce a set F [0] of 2ms/` extra tests to facilitate
the algorithm for diagnosing the first s compartments. Thus, the total number of tests comes to

|F [0]|+
∑̀
i=1

|F [i]| = (1 + 2s/`)m ∼ minf .

For notational convenience we define V [`+ i] = V [i] and F [`+ i] = F [i] for i = 1, . . . , s. The test
groups are composed as follows. Let ∆ = m ln(2)/k + O(s) be an integer divisible by s For i =
1, . . . , ` and j = 1, . . . , s every individual x ∈ V [i] joins∆/s tests in the set F [i+j−1]. These tests
are chosen uniformly at random with replacement. All choices are mutually independent. Thus, the
individuals in compartment V [i] take part in the next s compartments F [i], . . . , F [i+ s− 1] of tests
along the ring. Additionally, each individual from the seed V [1]∪· · ·∪V [s] joins 2∆ independently
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chosen random tests from F [0], drawn uniformly with replacement. Figure 2 illustrates the test
design. We think of this random test design, denoted by G, as a random bipartite (multi-)graph
with vertex classes V = {x1, . . . , xn} and F = F [0] ∪ F [1] ∪ · · · ∪ F [`]. The set of neighbours
of a vertex v of G is denoted by ∂v. Moreover, σ̂ = (σ̂a)a∈F [0]∪···∪F [`] signifies the vector of test
results as defined in (2.1).

2.3. The Spatial Inference Vertex Cover (‘SPIV’) algorithm

We aim to infer the vector σ from the test results σ̂ and, of course, the test designG. The algorithm
for Theorem 1 proceeds in three phases.

Phase 1: the seed. The plan of attack is for the algorithm to work its way along the ring, diagnos-
ing one compartment after the other aided by what has been learned about the preceding compart-
ments. Of course, we need to start somewhere. This is what the tests F [0] comprising individuals
from the seed compartments V [1], . . . , V [s] are for. Thus, in its first phase the SPIV algorithm
simply applies the DD algorithm of Aldridge et al. (2014) to identify the infected individuals among
V [1], . . . , V [s] from the tests F [0]. The vector τ signifies the algorithm’s current estimate of σ.

Input: G, σ̂, k, ε > 0
Output: estimate of σ
Initialise τx = 0 for all individuals x Let (τx)x∈V [1]∪···∪V [s] ∈ {0, 1}V [1]∪···∪V [s] be the result of
applying DD to the tests F [0]
Algorithm 1: SPIV, phase 1

Crucially, we only apply the DD algorithm to the seed V [1]∪· · ·∪V [s] with merely ns/` = o(n).
Therefore, the number of dedicated seed tests F [0], while exceeding the number of tests required by
DD, is negligible by comparison to m. The following proposition, which follows from the analysis
of DD from Johnson et al. (2018), summarises where we stand at the end of phase 1. Its proof can
be found in Section 4.5 of the full version of this paper Coja-Oghlan et al. (2019a).

Proposition 4 W.h.p. the output of DD satisfies τx = σx for all x ∈ V [1] ∪ · · · ∪ V [s].

Phase 2, first attempt: enter the ring. This is the main phase of the algorithm. Thanks to
Proposition 4 we may assume that the seed has been diagnosed correctly. Now, the grand strategy
is to diagnose one compartment after the other, based on what the algorithm learned previously.
Hence, assume that we managed to diagnose compartments 1, . . . , i correctly. How do we proceed
to compartment i+ 1? For a start, we can safely mark as uninfected all individuals in V [i+ 1] that
appear in a negative test. Unfortunately, this will still leave us with n1−max{(1−θ) ln 2,θ}+o(1) � k
undiagnosed individuals w.h.p. Thus, only a small fraction of the as yet undiagnosed individuals in
V [i+ 1] are actually infected. Hence, we need to discriminate between the set

V0+[i+ 1] = {x ∈ V [i+ 1] : σx = 0 and σ̂a = 1 for all a ∈ ∂x}

of ‘potential false positives’, i.e., uninfected individuals that fail to appear in any negative test, and
the set V1[i+ 1] of actual infected individuals in compartment i+ 1.

The key observation is that we can tell these sets apart by counting currently ‘unexplained’
positive tests. To be precise, for an individual x ∈ V [i+ 1] and 1 ≤ j ≤ s let W x,j be the number
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of tests in compartment F [i + j − 1] that contain x but that do not contain an infected individual
from the preceding compartments V [1] ∪ · · · ∪ V [i]. In formulas,

W x,j = |{a ∈ ∂x ∩ F [i+ j − 1] : ∂a ∩ (V1[1] ∪ · · · ∪ V1[i]) = ∅}| . (2.3)

Crucially, the mean ofW x,j depends on whether x is infected or a potential false positive.
Infected individuals (x ∈ V1[i+1]): consider a test a ∈ ∂x∩F [i+ j], j = 1, . . . , s. Because

the tests that individuals join are chosen independently, conditioning on x being infected does not
skew the distribution of the individuals from the prior compartments V [i+ j− s+1], . . . , V [i] that
appear in a. Furthermore, we chose ∆,m so that for each of these compartments V [h] the expected
number of infected individuals that join a has mean (ln 2)/s. Indeed, because the individuals choose
their tests independently, |V1[h] ∩ ∂a| is asymptotically Poisson. Consequently,

P [V1[h] ∩ ∂a = ∅] ∼ exp(−(ln 2)/s) = 2−1/s. (2.4)

Since, finally, the events {V1[h] ∩ ∂a = ∅}h=i+j−s+1,...,i are mutually independent and x joins a
total of ∆/s tests a ∈ F [i+ j], (2.4) implies

E [W x,j ] ∼ 2−(s−j)/s∆/s = 2j/s−1∆/s. (2.5)

Potential false positives (x ∈ V0+[i+1]): Similarly as above, for any individual x ∈ V [i+1]
and any a ∈ ∂x ∩ F [i+ j] the unconditional number of infected individuals in a is asymptotically
Po(ln 2). But given x ∈ V0+[i + 1] we know that a is positive. Thus, ∂a \ {x} contains at least
one infected individual. In effect, the number of positives in a turns into a conditional Poisson
Po≥1(ln 2). Consequently, for test a not to include any infected individual from one of the known
compartments V [h], h = i+ j− s+1, . . . , i, every infected individual in test a must stem from the
j yet undiagnosed compartments, an event that occurs with probability (1+ o(1))j/s. Summing up
the conditional Poisson and recalling that x appears in ∆/s tests a ∈ F [j], we thus obtain

E [W x,j ] ∼
∆

s

∑
t≥1

P [Po≥1(ln 2) = t] (j/s)t = (2j/s − 1)∆/s. (2.6)

Since 2j/s−1 > 2j/s − 1 for j = 1, . . . , s− 1, the mean (2.5) always exceeds (2.6). Therefore,
we consider the sumW x =

∑s−1
j=1W x,j , whose mean comes to

E[W x] ∼ ∆ ·

{
1/(2 ln 2) if x ∈ V1[i+ 1],

(1− ln 2)/ ln 2 if x ∈ V0+[i+ 1].

Providing the algorithm made no mistake diagnosing the first i compartments, it can easily calculate
W x for every x ∈ V [i+1] because the summandsW x,j depend on the test results and the infected
individuals in V [1] ∪ · · · ∪ V [i] only. Thus, we could use the W x to sieve out the potential false
positives so long as no (or very few) x ∈ V0+[i + 1] reach a value W x as high as ∆/(2 ln 2), the
mean for infected individuals.

Hence, we need to analyse the upper tail of W x for x ∈ V0+[i + 1]. This large deviations
analysis, though delicate, can be carried out precisely. But unfortunately the tail of W x is too
heavy. Even though for any specific x ∈ V0+[i+1] it is unlikely thatW x ≥ ∆/(2 ln 2), the outliers
still exceed the number k of infected individuals w.h.p. Thus, it’s back to the drawing board.
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Phase 2, second attempt: optimal weights. The random variable W x simply counts ‘unex-
plained’ positive tests that do not feature an infected individual from the known compartments
V [1], . . . , V [i]. But not all of these tests reveal the same amount of information about x. For in-
stance, we should really be paying more attention to ‘early’ unexplained tests a ∈ F [i+ 1] than to
‘late’ tests b ∈ F [i + s]. Indeed, we already diagnosed s − 1 out of the s compartments of indi-
viduals from which the participants of test a are drawn. Now, if x ∈ V0+[i + 1] is a potential false
positive, then a contains at least one infected individual, which thus belongs to V [1] ∪ · · · ∪ V [i]
with probability (s − 1)/s. Hence, a large number of unexplained tests a ∈ F [i + 1] are quite a
strong indication against x being a potential false positive. By contrast, only about a 1/s fraction of
the individuals in a later test b ∈ F [i+ s] belong to the already recovered classes V [1]∪ · · · ∪ V [i].
Such a positive test being ‘unexplained’ therefore does not have a very strong bearing on the status
of x at all. Consequently, it seems promising to replaceW x by a weighted sum

W ?
x =

s−1∑
j=1

wjW x,j (2.7)

with suitably chosen weights w1, . . . , ws−1 ≥ 0. To choose w1, . . . , ws−1 optimally we investigate
the tails of weighted sums of the form (2.7). From (2.5) we readily obtain the conditional mean of
W ?

x given x is infected:

E [W ?
x | x ∈ V1[i+ 1]] =

∆

s

s−1∑
j=1

2j/s−1wj . (2.8)

Hence, we need to choose w1, . . . , ws−1 such that given x ∈ V0+[i + 1] the probability of W ?
x

growing as large as (2.8) is minimised. A moderately intricate analysis reveals the large deviations
rate function of W ?

x given x ∈ V0+[i + 1]. We can therefore express this probability for given
weights w1, . . . , ws in terms of a convex optimisation problem I(w1, . . . , ws−1):

1

∆
lnP

W ?
x ≥

∆

s

s−1∑
j=1

2j/s−1wj | x ∈ V0+

 ∼ −I(w1, . . . , ws−1), where

I(w1, . . . , ws−1) = min
0≤zj≤1

s−1∑
j=1

zj ln
zj

2j/s − 1
+ (1− zj) ln

1− zj
2− 2j/s

s.t.
s−1∑
j=1

wj(zj − 2j/s−1) = 0.

Thus, we need to maximise the objective function I(w1, . . . , ws−1) on w1, . . . , ws−1. A delicate
optimisation involving Lagrange multipliers leads to the optimal weights

wj = ln
(1− 2ε)2j/s−1(2− 2j/s)

(1− (1− 2ε)2j/s−1)(2j/s − 1)
∼ − ln

(
1− 2−j/s

)
(2.9)

The following lemma shows that with this optimal choice of weights the scores W ?
x do indeed

discriminate between the potential false positives and the infected individuals. The proof can be
found in Section 4.8 of the full version Coja-Oghlan et al. (2019a).

Lemma 5 With the weights (2.9) we have

E

 ∑
x∈V0+[i+1]

1

W ?
x ≥ (1− 2ε)

∆

s

s−1∑
j=1

2j/s−1wj


 ≤ kn−Ω(1).
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Together with (2.8) and Markov’s inequality, Lemma 5 shows that if we regard x ∈ V [i+1] infected
iffW ?

x ≥ (1− ε/2)∆, then we misclassify no more than kn−Ω(1) = o(k) individuals w.h.p.
Lemma 5 leaves us with two loose ends. First, calculating the scores W ?

x involves the correct
infection status σx of the individuals x ∈ V [1] ∪ · · · ∪ V [i] from the previous compartments.
Naturally, while executing the algorithm we need to replace σx by the algorithm’s estimate τx.
Thus, the algorithm works with the approximate scores

W ?
x (τ) =

s−1∑
j=1

wj |{a ∈ ∂x ∩ F [i+ j − 1] : ∀y ∈ ∂a : τy = 0}| . (2.10)

To be precise, phase 2 of SPIV reads

for i = s+ 1, . . . , ` do
for x ∈ V [i] do

if ∃a ∈ ∂x : σ̂a = 0 then τx = 0 // classify as healthy;
else if W ?

x (τ) < (1− ε)∆s
∑s−1

j=1 2
j/s−1wj then τx = 0 // tentative healthy;

else τx = 1 // tentative infected;
end

end
Algorithm 2: SPIV, phase 2.

The second issue is that phase 2 of SPIV is not going to classify all individuals correctly. Hence,
there is risk of errors amplifying as we move from compartment to compartment. Fortunately, it
turns out that errors proliferate only moderately. In effect, the second phase of SPIV will merely
misclassify kn−Ω(1) = o(k) individuals. The following proposition whose proof can be found in
Section 4.9 of the full version Coja-Oghlan et al. (2019a) summarises the analysis of phase 2.

Proposition 6 W.h.p. the assignment τ after phases 1 and 2 satisfies
∑

x∈V 1 {τx 6= σx} ≤ kn−Ω(1).

Phase 3: clean-up. How do we correct the errors incurred during phase 2? A key insight is that
w.h.p. every infected individual has at least Ω(∆) positive tests ‘to itself’, i.e., they do not feature a
second infected individual. Phase 3 exploits this observation by simply thresholding the number Ux
of tests where x is the unique supposedly infected individual. Thanks to the expansion properties
of the graph G, each iteration of the thresholding procedure reduces the number of misclassified
individuals by at least a factor of three. In effect, after lnn iterations all individuals will be classified
correctly w.h.p. Of course, by Proposition 4 we do not need to reconsider the individuals in the seed
V [1]∪· · ·∪V [s]. Details can be found in Section 4.10 of the full version Coja-Oghlan et al. (2019a).

Proposition 7 W.h.p. for all i we have
∑

x∈V 1{τ (i+1)
x 6= σx} ≤ 1

3

∑
x∈V 1{τ (i)x 6= σx}.

Proof of Theorem 1. The theorem is an immediate consequence of Propositions 4, 6 and 7. �

2.4. The information-theoretic lower bound

The proof of Theorem 2 begins with an elementary (and well known) but crucial observation. Sup-
pose that any G is a test design with a set V (G) of n individuals and a set F (G) of tests. As before
let σ be the random {0, 1}-vector with precisely k ones that indicates which individuals are infected

9
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Let τ (1) = τ
for i = 1, . . . , dlnne do

For all x ∈ V [s+1]∪· · ·∪V [`] calculate Ux(τ (i)) =
∑

a∈∂x:σ̂a=1

1
{
∀y ∈ ∂a \ {x} : τ (i)y = 0

}
Let τ (i+1)

x =

{
τ
(i)
x if x ∈ V [1] ∪ · · · ∪ V [s],

1
{
Ux
(
τ (i)
)
> ln1/4 n

}
otherwise

end
return τ (dlnne)

Algorithm 3: SPIV, phase 3.

and let σ̂ be the vector of test results. Further, let Sk(G, σ̂) be the set of all vectors σ ∈ {0, 1}V (G)

of Hamming weight k that render the same test results σ̂, i.e., for every test a ∈ F (G) we have
maxx∈∂Ga σx = maxx∈∂Ga σx. Then Bayes’ rule immediately yields the following.

Fact 8 The posterior of σ given σ̂ is the uniform distribution on Sk(G, σ̂).

Consequently, for any test design the information-theoretically optimal (albeit not generally effi-
cient) inference algorithm is to simply output a uniform sample from Sk(G, σ̂). Hence, σ can be
inferred correctly w.h.p. from σ̂ iff |Sk(G, σ̂)| = 1 w.h.p. Thus, in order to prove an information-
theoretic lower bound it suffices to prove that P [|Sk(G, σ̂)| > 1] = Ω(1) for all test designs G. To
prove Theorem 2 we proceed in two steps. First, we establish a lower bound for θ close to one.

Proposition 9 For any η > 0 there exists θ0 = θ0(η) < 1 such that for all θ ∈ (θ0, 1) uniformly
for all test designs G with |F (G)| ≤ (1− η)minf(n, θ) tests we have |Sk(G, σ̂)| = nΩ(1) w.h.p.

The somewhat subtle proof of Proposition 9 whose details are included in Section 3.2 of the full
version Coja-Oghlan et al. (2019a) relies on two ingredients. First, we notice that there is no point
in G having very big tests a ∈ F (G) that contain more than, say, n1−θ ln(n) individuals. This is
because w.h.p. all such tests are positive; they could therefore simply be replaced by constants. As a
consequence, double counting shows that very few individuals occur in, say, more than ln3 n tests.
Thus, the bipartite graph representation of G is relatively sparse, the sparser the closer θ approaches
one. Second, we adapt an argument from Aldridge’s proof Aldridge (2019) of the information-
theoretic lower bound for k = Θ(n). That proof does not extend directly to the sublinear scaling
k = nθ as the argument only shows that the event |Sk(G, σ̂)| > 1 occurs with a probability that
tends to zero. However, one key step of the proof based on the FKG inequality can be used to show
that there exists an individual y that is either a potential false positive or a potential false negative
with a small but not extremely small probability. In formulas,

P [y ∈ V0+(G, σ̂)] ≥ (1 + o(1)) exp
(
− ln2(2)|F (G)|/k

)
, (2.11)

P [y ∈ V1+(G, σ̂)] ≥ (1 + o(1))nθ−1 exp
(
− ln2(2)|F (G)|/k

)
. (2.12)

Unlike in the case that Aldridge considered, the probabilities on the r.h.s. tend to zero. How-
ever, because the graph G is quite sparse, we can construct a relatively big set Y of at least
n1−4(1−θ)variables y for which the bounds (2.11)–(2.12) hold such that the events {y ∈ V1+(G, σ̂)}y∈Y
are only weakly correlated, and similarly for {y ∈ V0+(G, σ̂)}y∈Y . This enables us to conclude that

10
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both |V0+(G, σ̂)|, |V1+(G, σ̂)| = nΩ(1) w.h.p., provided that θ is sufficiently close to one. Finally,
as we saw in Section 2.1 already, if |V0+(G, σ̂)| , |V1+(G, σ̂)| = nΩ(1), then |Sk(G, σ̂)| = nΩ(1).

The second step towards Theorem 2 is a reduction from larger to smaller values of θ. Due to the
elementary lower bound (1.3) we may confine ourselves to θ > ln(2)/(1 + ln 2).

Proposition 10 Let η > 0 and ln(2)/(1 + ln(2)) < θ < θ′ < 1. If there exists a test design
G with |F (G)| ≤ (1 − 2η)minf(n, θ) tests such that |Sk(G, σ̂)| = t for t ∈ N w.h.p., then there
exists a test design G′ with n′ ∼ nθ/θ′ individuals and |F (G′)| ≤ (1−η)minf(n

′, θ′) tests such that
|Sk(G, σ̂)| = t w.h.p.

The idea behind the proof of Proposition 10 is to add to the n′ ∼ nθ/θ
′
= o(n) individuals for G′

another n−n′ uninfected dummies, thereby bringing the infection density down from θ′ to θ. Then
the test design G can be applied to identify the infected individuals, and the dummies can just be
disregarded. The proof can be found in Section 3.3 of the full version Coja-Oghlan et al. (2019a).
Proof of Theorem 2. Assume that for a θ > ln(2)/(1 + ln(2)) a test design G with (1 −
2η)minf(n, θ) tests and |Sk(G, σ̂)| = 1 w.h.p. exists. Then Proposition 10 shows that for θ′ ar-
bitrarily close to one for infinitely many n′ a successful test design with (1 − η)minf(n

′, θ′) tests
exists, in contradiction to Proposition 9. Moreover, Proposition 9 evinces that there are infinitely
many indistinguishable configurations, which by Proposition 10 and the generalized pigeonhole
principle also exist for all ln(2)/(1 + ln(2)) < θ < 1. Thus, choosing a configuration uniformly at
random will not return the correct configuration w.h.p. �

2.5. Optimal adaptive group testing

We finally come to the proof of Theorem 3. To obtain the optimal two-stage algorithm we combine
the first two phases of the SPIV algorithm with an idea from Scarlett (2018). Specifically, the test
design for the first stage is identical to the one from Section 2.2 with m in (2.2) replaced by

m = (1 + ε)
1− θ
ln 2

k ln(n) +O(`).

We continue to let τ signify the result of phases 1 and 2 of SPIV. Going over the analysis of the first
two phases with the value ofm above, we obtain a bound on the number of misclassified individuals.

Lemma 11 For any θ ∈ (0, 1) we have
∑

x∈V 1 {τx 6= σx} ≤ kn−Ω(1).

We prove Lemma 11 in Section 4.9 of the full version Coja-Oghlan et al. (2019a). Scarlett
(2018) observed that a single-stage group testing scheme that correctly diagnoses all but o(k) indi-
viduals with (1 + o(1))mad tests can be turned into a two-stage design with (1 + o(1))mad tests in
total that diagnoses all individuals correctly w.h.p. What he was missing at the time was such an op-
timal single-stage test design (and algorithm). We combine Scarlett’s construction with Lemma 11
to obtain Theorem 3. Specifically, in the second stage we test all individuals x that SPIV diag-
nosed as infected separately. Lemma 11 implies that the total number of tests required comes to
(1 + o(1))k = o(mad). Additionally, we set up a new group testing instance with individuals
V0(τ) = {x ∈ V : τx = 0} and m0(τ) ∼ (1 + ε)k tests. Specifically, the test design for this
instance is simply the purely random test design from Section 2.1. Because Lemma 11 implies that
the number of infected indivduals in V0(τ) is bounded by kn−Ω(1) w.h.p., the number m0(τ) of
tests suffices to ensure that the DD algorithm will correctly diagnose all individuals in V0(τ) w.h.p.
Thus, the second stage requires a total of (1 + o(1))k = o(mad) tests to output σ w.h.p.
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3. Discussion

Group Testing. The group testing problem was first raised in Dorfman (1943), where Dorfman
proposed a two-stage adaptive test design. In a first round disjoint groups of equal size are tested. All
members of negative test groups are uninfected. Then, in the second round the members of positive
test groups would be tested individually. Of course, this test design is far from optimal. The first
multi-round test design that meets the adaptive information-theoretic bound mad was proposed in
Allemann (2013), building upon Hwang (1972). Scarlett (2019) improved this result by proposing a
three-stage test design. Finally, Theorem 3 achieves the optimal result, namely a non-adaptive (i.e.,
single stage) algorithm for θ < ln(2)/(1+ ln(2)) and a two-stage algorithm for larger θ. Regarding
non-adaptive group testing, Aldridge proved that in the case k = Θ(n) where a constant fraction of
individuals are infected, the design that tests each individual separately is information-theoretically
optimal Aldridge et al. (2019). As a consequence, recent research has focused on the sub-linear
case k ∼ nθ for θ ∈ (θ, 1) e.g., Aldridge et al. (2016); Aldridge (2017); Coja-Oghlan et al. (2019b);
Mézard et al. (2008); Scarlett and Cevher (2016), which this paper also considers. This scaling
is practically relevant because Heap’s law in epidemiology predicts that certain infections spread
sublinearly in the total population size Benz et al. (2008). The best previous test design was the
plain random bipartite one as described in Section 2.1. Several inference algorithms were proposed
for this test design, with the simple DD algorithm achieving the best previously known algorithmic
bound Aldridge et al. (2014); Chan et al. (2011); Mézard and Toninelli (2011) showed that a specific
class of algorithms to which DD belongs is not able of reach the universal information-theoretic
lower bound in two stages, let alone non-adaptive group testing.

Spatial coupling. The new test design for the SPIV algorithm is inspired by recent advances in
coding theory known as spatially coupled low-density parity check codes Felstrom and Zigangirov
(1999); Kudekar et al. (2011, 2013). The Tanner graphs (or parity check matrices) upon which
such codes are based exhibit a spatial structure similar to our test design, with the bits of the code
word partitioned into compartments arranged along a line segment. The Tanner graph is a random
graph with a bounded average degree. Spatially coupled LDPC codes are known to asymptotically
achieve capacity on binary memoryless channels Kumar et al. (2014). These codes come with an
efficient decoding algorithm based on the Belief Propagation message passing scheme. The idea
of spatial coupling has been extended to a few other inference problems, with compressed sensing
possibly being the best known example Donoho (2006); Donoho et al. (2013); Krzakala et al. (2012);
Kudekar and Pfister (2010). The inference algorithm in this case is based an approximate version of
Belief Propagation known as Approximate Message Passing. The algorithm, which runs on a dense
graph, meets the information-theoretic bound for compressed sensing.

Outlook. By comparison to prior versions of spatial coupling, a novelty here is that we obtain a
simple combinatorial inference algorithm based merely on computing the weighted sum (2.7). This
weighted sum incorporates a natural random variable that discriminates between positives and false
positives and the analysis is based on a subtle but conceptually transparent large deviations analysis.

This technique of blending combinatorial ideas with the application of spatial coupling promises
to be an exciting route for future research. Potential applications include the noisy versions of group
testing, the quantitative group testing problem or the coin weighing problem Alaoui et al. (2019).
Above and beyond these immediate extensions, it would be most interesting to see if the strategy
behind SPIV extends to other inference problems that aim at learning sparse data.
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