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Community detection in networks

Networks with community structures arise in many applications

Collaboration network: 118 scientists [Girvan-Newman ’02]

Task: Find underlying communities based on the network topology

Applications: Friend or movie recommendation in online social
networks
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Stochastic block model (Planted partition model)

n = 40, K = 10, r = 3
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This paper focuses on r = 1: a single community

q

qp

q

One cluster of size K plus n − K outliers
Connectivity p within cluster and q otherwise
Also known as Planted Dense Subgraph model
p = 1, q = γ corresponds to Planted Clique
model



Planted clique hardness hypothesis

H0 : Bern(γ) vs H1 : Bern(1)
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[Alon et al. ’98] [Dekel et al. ’10] [Deshpande-Montanari ’13]...
Intermediate regime: log n� K �

√
n, γ = Θ(1)

detection is possible but believed to have high computational
complexity: [Alon et al. ’11] [Feldman et al. ’13]...

many (worst-case) hardness results assuming Planted Clique
hardness with γ = 1

2
detecting sparse principal component [Berthet-Rigollet ’13]
detecting sparse submatrix [Ma-Wu ’13]
cryptography [Applebaum et al. ’10]: γ = 2− log0.99 n
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Main result: Hardness for detecting a single cluster

Assuming Planted Clique hardness for any constant γ > 0
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Detecting a single cluster in the red regime is at least as hard as
detecting a clique of size K = o(

√
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Corollary: Hardness for recovering a single cluster

Can show: Hardness of detection implies hardness or recovery, so:
Assuming Planted Clique hardness for any constant γ > 0
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Proof requires a polynomial time reduction

An×n ÃN×N
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h : A 7→ Ã is agnostic to the clique and can be computed in P-time
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Given an integer `, two probability distributions P,Q on {0,1, . . . , `2}
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Split each node
into ` new nodes

N = n`,K = k`

`

`

0 Q7→
Assign edges with
distributions P,Q

1 P7→

H0 : Bern(γ)

H1 : Bern(1) (in-clique)

(1− γ)Q + γP

P (in-cluster)

How to choose P,Q?
Matching H0: (1− γ)Q + γP = Binom(`2,q)
Matching H1 approximately: P ≈ Binom(`2,p) in total variation distance
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Please see paper for more information and references

Thanks!
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