Joint acquisition of neuroimaging and genetic data on large cohorts of subjects is a new approach used to assess and understand the variability that exists between individuals, and that has remained poorly understood so far. As both neuroimaging- and genetic-domain observations represent a huge amount of variables (of the order of 106), performing statistically rigorous analyses on such amounts of data represents a computational challenge that cannot be addressed with conventional computational techniques. On one hand, sophisticated regression techniques need to be used in order to perform sensitive analysis on these large datasets; on the other hand, the cost entailed by parameter optimization and statistical validation procedures (e.g. permutation tests). However, the computational framework can easily by run in parallel.
In this project, researchers of the Parietal and KerData INRIA teams will jointly address address this computational problem using cloud computing techniques on Microsoft Azure cloud computing environment. The two teams bring their complementary expertise: KERDATA (Rennes) in the area of scalable cloud data management and PARIETAL (Saclay) in the field of neuroimaging and genetics data analysis. The Map-Reduce programming model has recently arisen as a very effective approach to develop high-performance applications over very large distributed systems such as grids and now clouds. KerData has recently proposed a set of algorithms for data management, combining versioning with decentralized metadata management to support scalable, efficient, fine-grain access to massive, distributed Binary Large OBjects (BLOBs) under heavy concurrency. The project investigates the benefits of integrating BlobSeer with Microsoft Azure storage services and aims to evaluate the impact of using BlobSeer on Azure with large-scale application experiments such as the genetics-neuroimaging data comparisons addressed by Parietal.
This project will thus bring together researchers from algorithmic and statistical analysis domain on the one hand, and researchers involved on the organization of data management in intensive computation on the other hand, to work on the Microsoft Azure platform in order to unveil the relationships between genes and brain characteristics.
2017
Communication dans un congrès
2016
Communication dans un congrès
2015
Communication dans un congrès
Poster
2012
Communication dans un congrès