MAP554 – Networks: PC 6

November 16, 2016

Threshold for giant component in the stochastic block model

For fixed K > 0 let a_1, \ldots, a_K be positive numbers such that $\sum_{k=1}^{K} a_k = 1$ and let $B = (b_{ij})_{1 \le i,j \le K}$ be a symmetric matrix with strictly positive entries. Consider the stochastic block model, that is a random graph G on node set [n] (which we will let go to infinity), partitioned into K blocks, where block $k \in [K]$ consists of $a_k n$ nodes. For two nodes i, j from respective blocks k, ℓ , edge (i, j) is present with probability $b_{k\ell}/n$, independently of the presence of other edges.

Let $C^{(1)}$ denote the size of the largest connected component of G, and ρ the spectral radius of matrix $(a_i b_{ij})_{1 \le i,j \le K}$. Our aim in this problem is to establish the following:

$$\rho < 1 \Rightarrow \exists A > 0 \text{ such that } \lim_{n \to \infty} \mathbb{P}(C^{(1)} > A \log(n)) = 0.$$
(1)

We consider the following process for enumerating the connected component of G containing an arbitrary node from some block $k_0 \in [K]$. At each step one deactivates all nodes active at the previous step, and activates all neighbors of these previously active nodes that have not yet been activated.

1.1 Let $Z_{\ell}(t)$ denote the number of type ℓ nodes that are active at step t. Show that conditionally on $\mathcal{F}(t-1) := \{Z_k(s)\}_{k \in [K], s < t}$, one has

$$Z_{\ell}(t) \le \sum_{k=1}^{K} \sum_{s=1}^{Z_{k}(t-1)} X_{k,\ell}(s,t),$$
(2)

for some random variables $X_{k,\ell}(s,t)$ that are independent from $\mathcal{F}(t-1)$, mutually independent, and where $X_{k,\ell}(s,t)$ follows a Binomial distribution with parameters $(a_{\ell}n, b_{k\ell}/n)$.

1.2 Deduce for all $\theta_{\ell} > 0, \ \ell = 1, \dots, K$ the inequality

$$\mathbb{E}\left[e^{\sum_{\ell=1}^{K}\theta_{\ell}Z_{\ell}(t)}|\mathcal{F}(t-1)\right] \leq e^{\sum_{k,\ell=1}^{K}\left(e^{\theta_{\ell}}-1\right)a_{\ell}b_{k\ell}Z_{k}(t-1)}.$$
(3)

1.3 Show that under the hypothesis $\rho < 1$, there exists $\theta > 0$ and $B < +\infty$ such that

$$\mathbb{E}\left[e^{\theta\sum_{k=1}^{K}\sum_{t\geq 0}Z_{k}(t)}\right] \leq B < \infty.$$
(4)

Hint: one can consider a vector $\{x_\ell\}$ with strictly positive coordinates such that for all $k \in [K]$, $\sum_{\ell} x_\ell a_\ell b_{k\ell} = \rho x_k$, and then use (3) with $\theta_\ell = \epsilon x_\ell$ for $\epsilon > 0$ small enough.

1.4 Deduce the announced result (1).

Randomized content search and adaptive content replication

Consider a system consisting of n servers, collectively in charge of storing m content items. For each item $i \in [m]$, n_i servers hold a copy of it. We assume that, when a request for content item i is put on the system, the following randomized search takes place. Servers are checked in an i.i.d. uniformly distributed fashion until a copy of content i is found.

2.1 Determine the distribution of the number of servers contacted before a copy of i is found and its average.

2.2 Assume that the total number of content copies that can be stored in the system is Cn for some constant C, so that necessarily $\sum_{i \in [m]} n_i \leq Cn$. Let π_i be the probability that a new content request is for item $i \in [m]$.

Relaxing the constraint that $n_i \in \mathbb{N}$ to $n_i \in \mathbb{R}_+$, determine the optimal replication numbers n_i^* which minimize the average search time per requested item as a function of C and $\{\pi_j\}_{j \in [m]}$.

2.3 Assume that there is on average one request per time unit, and after each request, if it is for content *i* and it took T_i steps to find a server holding a copy of it, then T_i new copies of content *i* are distributed across servers. Assume further that each content copy is suppressed within time interval [t, t + dt] with probability λdt , independently of everything else.

Heuristically establish a differential equation for the number of copies $n_i(t)$ of content *i* at time *t*.

2.4 Determine the stationary points of the previous differential equation and relate them to the allocations n_{i} previously identified. Prove convergence of the ODE's solution to these stationary points.

The above content replication scheme has been proposed by Cohen and Schenker in the context of peer-to-peer systems. There, successive servers are visited by performing a random walk along a graph connecting them; the new T_i replicas are then placed at the T_i servers visited before finding a replica for content *i*. This approach is therefore referred to as path replication.