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Emergence of small sub-graphs in Erd®s-Rényi random graphs

Consider a G(n, p) random graph. The aim of the exercise is to determine for what regime of p
as a function of n speci�c sub-graphs appear in G(n, p). We focus speci�cally on the presence of
triangles, i.e. unordered sets (i, j, k) of vertices such that all three edges (i, j), (j, k), (k, i) occur
in the graph.

1.1 Use the �rst moment method to show that with high probability, there are no triangles in
G(n, p) when np = o(1).

1.2 Use the second moment method to show that with high probability, there is at least one
triangle in G(n, p) when np = ω(1).

1.3 Fix some constant λ > 0. Use Poisson approximation and the Stein-Chen method to
determine as a function of λ the limiting probability as n→∞ that there is at least one triangle
in G(n, λ/n).

1.4 Can you extend this analysis to the emergence of K-cliques, i.e. complete sub-graphs on
K vertices, for some �xed K ≥ 3?

A spectral approach to jointly rate workers and jobs in crowd-

sourcing platforms

A crowdsourcing platform has n workers, and m = αn jobs need to be performed by the platform
(α ∈]0, 1[ is �xed, and n large). Each job j consists of tagging a corresponding object by −1
or 1. Assume that item j ∈ [m] has a �true tag� yj ∈ {−1, 1}, while worker i ∈ [n] has a
�reliability factor� pi ∈ [0, 1], so that when tagging an object it will give the correct tag with
probability pi and the wrong one with probability 1 − pi. The tags produced by workers are
assumed independent across workers and jobs.

We consider the following assignment strategy: for each (worker,object) pair (i, j) ∈ [n]× [m],
with probability d/n worker i is asked to treat job j.

2.1 Let Cij ∈ {−1, 1} be the tag provided by worker i on job j if it did treat job j, and Cij = 0
otherwise. Express the expectation of matrix C as a function of the pi and yj .
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2.2 Show how to transform the data matrix C into an (n+m)× (n+m) symmetric matrix A
whose expectation has rank at most 2, and whose entries are independent up to symmetry.

2.3 Describe the eigenstructure of matrix Ā = E(A) as a function of vectors Y := {yj}j∈[m],
P := {2pi − 1}i∈[n].

2.4 We now assume that the vector P has an L2 norm of β
√
n for some �xed β > 0. Using the

�rst bound on the spectral radius of a noise matrix given in the analysis of the Stochastic Block
Model, relate the eigenstructures of A and Ā when d = nδ for some �xed δ ∈]0, 1[. Argue using
the sharper result of Feige and Ofek that the relation between the spectral structures still holds
when d >>

√
log(n).

2.5 Let {(2ri − 1)i∈[n], (zj)j∈[m]} be the leading eigenvector of A associated with a positive
eigenvalue, normalised so that the L2 norm of (zj)j∈[m] equals

√
m. Deduce that there exists a

sign σ ∈ {−1, 1} such that:

∑
i∈[n]

(
||y||
||P ||

σ(2pi − 1)− (2ri − 1)

)2

= o(n),
∑
j∈[m]

(σyj − zj)2 = o(m).

2.6 Further assume that for some randomly chosen job j0, we have obtained its true tag yj0 by
other means. Let

ŷj = yj0sign(zj0)sign(zj), j ∈ [m].

Show that with high probability we have∑
j∈[m]

1ŷj 6=yj = o(m).

2.7 Show that the estimates p̂i de�ned as

(2p̂i − 1) = yj0sign(zj0)(2ri − 1)
λn

md
,

where λ is the leading eigenvalue of A, are such that
∑
i∈[n](p̂i − pi)2 = o(n).
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