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Abstract

Evolutionary Algorithms (EAs) are stochastic optimization algorithms which have already
shown their efficiency on many application domains. This is achieved mainly due to the
many parameters that can be defined by the user according to the problem at hand.
However, the performance of EAs is very sensitive to the setting of these parameters,
and there are no general guidelines for an efficient setting; as a consequence, EAs are
rarely used by researchers from domains other than computer science. The methods
proposed in this thesis contribute towards alleviating the user from the need of defining
two very sensitive and problem-dependent choices: which variation operators should be
used for the generation of new solutions, and at which rate each operator should be
applied. The paradigm, referred to as Adaptive Operator Selection (AOS), provides the
on-line autonomous control of the operator that should be applied at each instant of the
search, i.e., while solving the problem. In order to do so, one needs to define a Credit
Assignment scheme, which rewards the operators based on the impact of their recent
applications on the current search process, and an Operator Selection mechanism, that
decides which should be the next operator to be applied, based on the empirical quality
estimates built by the rewards received. In this work, we have tackled the Operator
Selection problem as an instance of the Exploration versus Exploitation dilemma: the
best operator needs to be exploited as much as possible, while the others should also
be minimally explored from time to time, as one of them might become the best in a
further moment of the search. We have proposed different Operator Selection techniques
to extend the Multi-Armed Bandit paradigm to the dynamic context of AOS. On the
Credit Assignment side, we have proposed rewarding schemes based on extreme values
and on ranks, in order to promote the use of outlier operators, while providing more
robust operator assessments. The different AOS methods formed by the combinations of
the proposed Operator Selection and Credit Assignment mechanisms have been validated
on a very diverse set of benchmark problems. Based on empirical evidence gathered from
this empirical analysis, the final recommended method, which uses the Rank-based Multi-
Armed Bandit Operator Selection and the Area-Under-Curve Credit Assignment schemes,
has been shown to achieve state-of-the-art performance while also being very robust with
respect to different problems.
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Résumé en Français (extended abstract in French)

Les Algorithmes Évolutionnaires (AEs) sont des algorithmes stochastiques pour
l’optimisation inspirés par le paradigme Darwinien de la “survie du plus adapté”.
L’objectif est d’optimiser une fonction objectif, aussi appelée fonction de fitness,
définie sur l’espace de recherche X. Les éléments de X sont appelés individus, et
un ensemble d’individus est appelé population. L’AE fait évoluer une population
d’individus en une succession d’itération (ou génération) contenant les étapes suiv-
antes : (i) sélection de quelques individus (les parents), favorisant ceux avec une
meilleure valeur de fitness; (ii) application des perturbations stochastiques sur les
parents par le biais d’opérateurs de variation; (iii) évaluation de la valeur de fitness
des enfants (i.e., des nouvelles solutions); et finalement, (iv) sélection de quelques
individus parmi les parents et les enfants pour devenir les parents de la génération
suivante, favorisant ici encore les individus avec une meilleure fitness. Cette boucle
est répétée jusqu’à la découverte d’une solution satisfaisante, ou bien lorsqu’une
autre condition d’arrêt est atteinte (e.g., ressources CPU épuisées).

Les AEs ont déjà démontré leur efficacité sur différents types de problèmes hors
de portée de méthodes standards. Ce succès est dû principalement au fait que les
AEs ne font pas de conjectures fortes sur le problème à optimiser : ils sont capa-
bles de traiter des espaces de recherche mixtes ou peu structurés, et des fonctions-
objectif irrégulières, bruitées, rugueuses, fortement contraintes, etc. Malgré cela,
les AEs sont rarement utilisés par des scientifiques d’autres domaines, car ils ne
peuvent pas encore être considérés comme des outils “prêts à l’emploi”. Il y a
beaucoup de raisons à cela, toutes se réduisant à un manque de support pratique
lorsqu’il faut concevoir un AE pour un problème donné. Même si actuellement
il existe quelques plate-formes logicielles (voir, e.g., EO [Keijzer et al., 2002] et
GUIDE [Collet and Schoenauer, 2003; Da Costa and Schoenauer, 2009]) qui aident
à modéliser les différents types d’approches évolutionnaires, le succès des AEs est
très sensible à la définition des valeurs de leurs paramètres internes, par exemple la
taille de la population, les types d’opérateur de variation et leur taux d’application,
et les types de mécanismes de sélection.

Au début de leur existence, les AEs ont largement bénéficié de l’existence de ces
paramètres, considérés comme une source de flexibilité qui a permis leur application
à une gamme très vaste de domaines. La vision contemporaine reconnâıt, cependant,
que pour atteindre une performance satisfaisante, les paramètres des AEs doivent
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être réglés spécialement pour chaque problème [Eiben et al., 2007]. A cause de cela,
actuellement, le réglage de paramètres est vu comme le “talon d’Achille” des AEs, au
même titre que leur coût de calcul élevé. A partir de ces observations, la recherche
et le développement de méthodes pour automatiser ce réglage est une tendance
actuelle, très active à ce jour, ce dont témoigne la publication récente d’un livre
[Lobo et al., 2007] et les nombreuses références récentes citées dans ce document
[Eiben et al., 1999; Eiben et al., 2007]. Il est intéressant de noter que la recherche
de méthodes pour automatiser le réglage de paramètres est aussi une priorité dans
des domaines avoisinants, comme la Recherche Opérationnelle et la Programmation
par Contraintes; de la même manière, ces domaines utilisent des algorithmes so-
phistiqués, qui requièrent une vaste expertise pour être utilisés au maximum de leur
capacité [Hutter et al., 2006; Stützle, 2009].

Parmi les paramètres qui affectent le plus la performance des AEs, il y a les
choix qui concernent les opérateurs de variation : (i) lesquels parmi les opérateurs
existants doivent être utilisés par l’AE pour la génération de nouvelles solutions, et
(ii) à quel taux chacun des opérateurs choisis doit être appliqué pendant la résolution
du problème. Il existe plusieurs types d’opérateurs, notamment les diverses façons
de faire la mutation et le croisement. Chacun a ses propres caractéristiques, qui les
amènent à affecter différemment le chemin effectué par l’algorithme dans l’espace
de solutions : comment l’algorithme explore (globalement) l’espace de recherche,
et comment il exploite (localement) les régions les plus prometteuses – le dilemme
Exploration versus Exploitation (EvE) (voir [Eiben and Schippers, 1998] pour une
discussion plus approfondie sur ce dilemme dans le contexte des AEs). A cause de
cela, les choix liés aux opérateurs de variation restent des décisions très sensibles et
complexes, comme suit.

En premier lieu, la performance d’un opérateur donné dépend des caractéristiques
du problème considéré. Comme il est très difficile de prédire la performance d’un
opérateur sur un problème inconnu, le choix le plus naturel pour assister l’utilisateur
dans ce sens est l’usage d’une technique de réglage hors-ligne : plusieurs expériences
sont réalisées pour chaque configuration candidate, et le réglage est fait à partir
de statistiques recueillies après ces expériences, e.g., la configuration qui obtient la
meilleure performance en moyenne. Bien qu’étant une approche très coûteuse du
point de vue du calcul, ce type de méthode parvient à trouver le meilleur jeu de
paramètres . . . qui reste statique pendant toute la résolution du problème. Cepen-
dant, il est important de noter aussi que l’efficacité des opérateurs ne dépend pas
que des caractéristiques globales du problème, mais aussi des caractéristiques locales
de la région de l’espace de recherche qui est en train d’être explorée par la popu-
lation. Enfin, leur performance dépend aussi de l’état du processus de recherche,
i.e., si l’on s’approche de l’optimum, s’il y a beaucoup de diversité dans la popu-
lation, etc. Par exemple, en suivant l’intuition sur le dilemme EvE, les opérateurs
plus exploratoires peuvent être plus efficaces dans les premiers pas de la recherche;
autrement, les opérateurs qui font un réglage plus fin des solutions (exploitation)



fonctionnent généralement mieux pendant les dernières étapes du processus.
Ces observations sont confirmées empiriquement par quelques expériences dé-

taillées dans ce manuscrit : dans la plupart des problèmes considérés, il n’y a pas
un opérateur unique qui reste le meilleur pendant toute la durée du processus de
recherche. Basé sur ces résultats, et sur la nature stochastique des AEs, intuitive-
ment, les meilleures configurations statiques trouvées par les méthodes de réglage
hors-ligne ne permettent d’atteindre qu’une performance sous-optimale. Même si
le problème d’optimisation est statique, le problème de sélection de l’opérateur est
toujours dynamique : idéalement, le choix du meilleur opérateur doit être adapté
en continu, pendant la résolution du problème, i.e., en-ligne.

Il existe différentes manières pour faire un réglage dynamique de paramètres en
ligne (ce qui est couramment appelé Contrôle de Paramètres [Eiben et al., 2007]),
notamment les approches dites auto-adaptatives et adaptatives. Les méthodes auto-
adaptatives encodent les paramètres des opérateurs dans l’individu lui-même, et c’est
le processus d’évolution qui est en charge d’optimiser, en même temps, les valeurs
de ces paramètres et la solution pour le problème. Ces méthodes ont l’avantage
d’avoir les paramètres réglés “gratuitement” par l’évolution elle-même, mais l’espace
de recherche du problème d’optimisation est agrégé avec l’espace de recherche des
configurations de paramètres, ce qui augmente considérablement la complexité de
la recherche. De plus, ces méthodes sont intrinsèquement liées à la structure des
AEs. Inversement, les méthodes adaptatives règlent les paramètres basés seulement
sur l’histoire du processus d’optimisation courant, en ne modifiant pas la complexité
originale du problème. Ils sont plus complexes à modéliser, mais comme l’adaptation
est guidée par des mesures génériques sur l’avancement de la recherche, ils peuvent
être facilement adaptés à d’autres types de meta-heuristiques et algorithmes de
recherche, locale ou globale.

Sélection Adaptative d’Opérateurs

En nous basant sur ces arguments, nous avons décidé d’attaquer le problème de
sélection d’opérateurs avec des méthodes de contrôle de paramètre adaptatives,
l’objectif étant de sélectionner en-ligne le meilleur opérateur à chaque étape de
l’algorithme, pendant la résolution du problème. Nous nous référons à ce paradigme
sous la dénomination de Sélection Adaptative d’Opérateurs (SAO). La Figure 1
montre comment les méthodes de SAO peuvent être intégrées dans un AE, ce qui
peut être décrit comme suit.

1. Pour la génération de chaque nouvelle solution (ou après n essais ou généra-
tions), l’AE demande à la SAO quel opérateur parmi ceux qui sont disponibles
doit être appliqué.

2. La SAO donne la réponse guidée par son mécanisme de Sélection d’Opérateurs,
qui sélectionne un opérateur basé sur les performances récentes des opérateurs
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Figure 1: Le schéma général de la Sélection Adaptative d’Opérateurs.

disponibles. Ces performances sont le plus souvent représentées sous la forme
d’estimations empiriques de leurs qualités.

3. L’opérateur choisi est appliqué par l’AE, une nouvelle solution candidate est
générée, ce qui affecte le processus de recherche d’une certaine façon, e.g., en
générant une solution qui est meilleure (ou pas) que ses parents (amélioration
de la fitness), en variant la diversité moyenne de la population, etc.

4. Cette évaluation de l’impact est transformée en un crédit (ou récompense),
selon le mécanisme d’Affectation de Crédit employé.

5. Le crédit ou récompense est utilisé pour mettre à jour les estimations de qualité
(ou performance) empiriques qui sont maintenues pour chaque opérateur, uti-
lisées par le mécanisme de Sélection d’Opérateurs.

6. Cette boucle est utilisée en continu pendant la résolution du problème : elle
peut donc être vue comme une méthode d’apprentissage par renforcement.

Suivant cette description, pour développer une méthode de SAO, il faut définir
deux composants : (i) le schéma pour l’Affectation de Crédit, qui assigne un certain
crédit à l’opérateur, à partir de l’impact de ses applications récentes sur le processus
de recherche courant; et (ii) le mécanisme de Sélection d’Opérateurs, qui sélectionne
le prochain opérateur à appliquer, guidé par la base de connaissance construite et
maintenue par ces évaluations empiriques.

Contributions Principales

Dans cette thèse, différentes propositions ont été faites pour chacun des composants
cités ci-dessus, ainsi que pour leur évaluation empirique. Voici un bref résumé sur
ces contributions, par ordre chronologique.



La Sélection d’Opérateurs a été abordée en tant qu’instance du dilemme Explo-
ration/Exploitation : le meilleur opérateur courant doit être appliqué le plus sou-
vent possible (exploitation), cependant que les autres opérateurs doivent aussi être
appliqués de temps en temps (exploration). L’exploration est nécessaire pour deux
raisons principales : tout d’abord, un opérateur peut être malchanceux à un moment
donné, et à cause de cela recevoir de mauvaises récompenses ; d’autre part, dû à la
dynamique des algorithmes évolutionnaires, i.e., un des opérateurs sous-optimaux
peut éventuellement devenir le meilleur à une étape ultérieure de la résolution du
problème.

Ce dilemme a été intensivement étudié dans le contexte de la Théorie des Jeux,
plus spécifiquement dans le cadre des problèmes dits de “Bandits Manchots” (BM)
[Lai and Robbins, 1985; Auer et al., 2002]. L’utilisation d’algorithmes de BM pour
trouver un compromis optimal entre l’exploration et l’exploitation dans un cadre
d’optimisation a été analysée pour la sélection au sein de portfolios d’algorithmes
différents pour résoudre des problèmes de décision [Gagliolo and Schmidhuber, 2008],
avant d’être étendu au contexte de la SAO dans le travail présenté ici. Notre première
tentative a été d’utiliser directement un algorithme pour BM appelé “Upper Confi-
dence Bound” (UCB) [Auer et al., 2002], qui a été choisi pour fournir des garanties
d’optimalité asymptotique par rapport à la récompense totale cumulée. Cepen-
dant, ces garanties sont conservées seulement dans le cadre de problèmes statiques;
quelques modifications ont donc dues être proposées pour utiliser l’algorithme UCB
d’une façon efficace dans le contexte dynamique de la SAO – c’est là que se concen-
trent la plupart des contributions développées dans cette thèse.

La première proposition, appelée “Dynamic Multi-Armed Bandit” (DMAB),
combine l’algorithme UCB avec le test statistique de Page-Hinkley [Hinkley, 1970],
qui est utilisé pour détecter de changements dans la distribution de récompenses.
Une fois un changement détecté, le processus du BM est totalement réinitialisé, ce
qui permet la découverte rapide du nouveau meilleur opérateur [Da Costa et al., 2008].

Concernant l’Affectation de Crédit, la plupart des combinaisons de SAO trouvées
dans la littérature utilisent des statistiques simples basées sur les améliorations de
fitness des solutions. Au lieu d’utiliser la “moyenne” des performances récentes, ou
la valeur atteinte par la toute dernière application de cet opérateur (“instantanée”),
nous avons proposé l’usage de valeurs “extrêmes”, i.e., la récompense que l’opérateur
reçoit est égale au maximum des améliorations de fitness (ou d’autres évaluations
d’impact) obtenues par ses applications récentes. L’hypothèse pour soutenir ce choix
est que les améliorations plus rares mais plus élevées peuvent avoir des conséquences
plus importantes pour le résultat final que les améliorations plus régulières mais plus
modérées.

La combinaison entre l’Affectation de Crédit “extrême” et la Sélection d’O-
pérateurs “DMAB”, appelée technique de SAO Ex-DMAB, s’est montré très effi-
cace, dépassant d’autres approches de base dans plusieurs scénarios de benchmark
différents [Fialho et al., 2008; Fialho et al., 2009a; Maturana et al., 2009a]. Néan-



moins, l’usage direct de valeurs brutes d’amélioration de fitness pour mettre à jour
les préférences de la SAO a rapidement montré ses limites : des problèmes différents
ont des espaces de recherche de caractéristiques très diverses, ce qui affecte l’écart des
récompenses reçues. Par conséquent, pour atteindre une bonne performance, cette
méthode de SAO nécessite un réglage fin de ses propres paramètres pour chaque
nouveau problème. Pour cette raison, nous avons ensuite proposé l’utilisation d’un
simple schéma de normalisation [Fialho et al., 2009b].

Du coté de la Sélection d’Opérateurs, même avec des récompenses normalisées,
l’hyper-paramètre de l’algorithme DMAB contrôlant la détection de changements a
continué à dépendre très fortement du problème, car le mécanisme de réinitialisation
est directement lié à la dynamique de l’espace de recherche du problème. Cela
a été le facteur motivant pour la proposition d’une manière plus douce d’adapter
l’algorithme UCB à l’environnement dynamique de la SAO, ce que nous avons appelé
le “Sliding Multi-Armed Bandit” (SLMAB). SLMAB utilise une fenêtre glissante
pour mettre à jour les estimations empiriques de qualité pour chaque opérateur, en
rejetant les événements trop anciens et en ne gardant que l’information des applica-
tions d’opérateur plus récentes. Par rapport à DMAB, SLMAB n’a pas besoin d’un
“observateur” externe pour contrôler les changements de situation. Grâce à cela,
cette méthode réussit à adapter l’UCB au contexte dynamique sans augmenter le
nombre d’hyper-paramètres.

Avec l’usage de la normalisation, l’effet de la dépendance du problème est lissé,
mais pas éliminé. Cela nous a amené à proposer les deux dernières méthodes pour
l’Affectation de Crédit, complètement basées sur les rangs, le “Area Under Curve”
(AUC) et le “Sum-of-Ranks” (SR) [Fialho et al., 2010c]. En plus du gain de ro-
bustesse atteint par l’utilisation de mesures basés sur le rang, l’usage de rangs sur
les valeurs de fitness (respectivement appelés FAUC et FSR dans ce cas), au lieu de
rangs sur les valeurs d’amélioration de fitness, permet éventuellement de préserver
une propriété d’invariance très importante, l’invariance par rapport à toute transfor-
mation monotone de la fonction-objectif, du fait qu’il n’utilise que des comparaisons
entre solutions, sans tenir compte des valeurs exactes de fitness prises par ces so-
lutions (en anglais, “comparison-based algorithms”). Ces schémas d’Affectation de
Crédit basés sur le rang ont été combinés avec une version simplifiée de l’UCB,
laquelle est appelée le “Rank-based Multi-Armed Bandit” (RMAB).

En outre, pendant la phase de développement de ces combinaisons de SAO, nous
avons aussi proposé plusieurs scénarios artificiels pour leur analyse empirique. Les
scénarios Boolean et Outlier [Da Costa et al., 2008], inspirés par le scénario Uniform
[Thierens, 2005], ont été introduits pour évaluer les schémas de SAO dans de situa-
tions incluant 5 opérateurs artificiels avec de distributions de récompense différentes.
Par ailleurs, une autre famille de scénarios artificiels, appelée “Two-Values” (TV)
benchmark, a été proposée [Fialho et al., 2010a] pour simuler différentes situations
par rapport à la moyenne et à la variance des récompenses données par deux
opérateurs artificiels.



Analyse Empirique

La dernière contribution de cette thèse consiste en une comparaison empirique
très complète des méthodes proposées. Leur performance a été analysée dans
plusieurs scénarios de benchmark, avec de caractéristiques et niveaux de complexité
différents, ce qui a rendu possible l’analyse de différents aspects comportementaux
des méthodes de SAO, qui vont être rapidement décrits ci-dessous.

Les expériences sur les scénarios artificiels déjà cités ont permis d’analyser, par
exemple, l’efficacité des méthodes de SAO pour s’adapter à de situations complè-
tement différentes, dans divers contextes en ce qui concerne la distribution et le
niveau d’informativité des récompenses reçues. De plus, quelques vrais problèmes
d’optimisation, des problèmes test très connus dans la communauté d’AEs, ont été
utilisés : “OneMax”, “Long K-Path” et “Royal Road”. Ces derniers représentent les
premières expériences pour les méthodes de SAO dans un contexte plus réaliste que
celui de scénarios artificiels, en choisissant parmi plusieurs opérateurs de mutation et
croisement au sein d’un vrai Algorithme Génétique (AG), appliqué à des problèmes
simples, mais avec des caractéristiques très diverses. Par ailleurs, de résultats ont
aussi été obtenus dans le contexte d’une classe de problèmes combinatoires diffi-
ciles, les problèmes de satisfiabilité booléenne (SAT). Dans ce scénario, seule la
méthode DMAB a été analysée, en combinaison avec un schéma d’Affectation de
Crédit particulier proposé par des collègues de l’Université d’Angers, le Compass
[Maturana and Saubion, 2008a]. Le Compass prend en compte les variations de fit-
ness et diversité pour récompenser l’opérateur. Finalement, ces méthodes ont été
aussi analysées dans le contexte d’un ensemble très complet de fonctions continues
mono-objectifs, cette fois-ci en choisissant parmi différentes stratégies de mutation de
l’algorithme Evolution Différentielle (DE, Differential Evolution). L’hétérogénéité
de cet ensemble de tests a aussi rendu possible l’analyse de la robustesse et de la
sensibilité des méthodes de SAO par rapport à leurs hyper-paramètres.

En effet, avant toute expérience, les hyper-paramètres des méthodes de SAO ont
été réglés par le biais de F-Race [Birattari et al., 2002], une technique de réglage
hors-ligne, afin de ne comparer que leurs meilleures performances. Étant donné un
sous-ensemble d’opérateurs, les méthodes proposées ont été comparées entre elles,
et avec d’autres approches utilisées comme référence :

1. Seul : le même AE, mais sans SAO, en utilisant seulement un opérateur (pour
chaque opérateur considéré) ;

2. Statique : le même AE, sans SAO, mais avec le taux d’application de chaque
opérateur réglé a priori par l’algorithme F-Race [Birattari et al., 2002] ;

3. Uniforme : le choix näıf, i.e., la sélection uniforme entre les opérateurs dispo-
nibles ;

4. Optimal : le choix optimal, i.e., la sélection du meilleur opérateur pour chaque
moment de la recherche, disponible seulement pour quelques scénarios ;



5. Et la méthode SAO état de l’art, Adaptive Pursuit (AP) [Thierens, 2007].

Même dans les cas des scénarios artificiels et booléens, dans lesquels les paramè-
tres des méthodes ont été réglés pour chaque problème, les différentes combinaisons
basées sur les rangs (RMAB + AUC/SR/FAUC/FSR) se sont montrées capables de
suivre de près la performance de la meilleure SAO dans la plupart des problèmes.
Et, plus le scénario devenait hétérogène, i.e., plus la quantité de problèmes différents
résolus en utilisant le même réglage de paramètres était grand, et plus la différence
de performance entre les méthodes basées sur les rangs et les autres est devenue
importante, comme on peut le voir sur les résultats obtenus dans le scénario mettant
en jeu DE avec des fonctions continues, où RMAB est clairement le grand vainqueur.

Conclusions et Discussion

Pour résumer tous ces résultats empiriques, au moment où ce manuscrit est écrit,
la technique de SAO constituée par le RMAB pour la Sélection d’Opérateurs, et
l’AUC pour l’Affectation de Crédit, est la combinaison recommandée pour la mise
en oeuvre du paradigme de SAO. Cette méthode atteint une performance égale, ou
très proche, de celle des meilleures méthodes classiques connues, tout en étant très
robuste par rapport à ses hyper-paramètres, comme l’ont confirmées les expériences
réalisées [Fialho et al., 2010c; Fialho et al., 2010b].

Il est important de noter que la réalisation du réglage hors-line avant chaque com-
paraison empirique a été motivée par l’intention de comparer les différents méthodes
de SAO à leur meilleur niveau. Car de fait, idéalement, à chaque fois qu’un nouveau
problème doit être abordé, aucun réglage hors-ligne ne devrait être nécessaire – et
c’est pour cela que tant d’effort a été fait pour tenter d’augmenter la robustesse des
méthodes proposées. Dans le cas de la méthode de SAO recommandée, la même
configuration pour les hyper-paramètres (C.5W50) s’est révélée la meilleure dans
des conditions expérimentales très différentes, dans le contexte des fonctions con-
tinues, et des valeurs avoisinantes (étant donné l’ensemble de valeurs essayées) ont
été trouvées pour les problèmes OneMax et Royal Road (C.1W100) et pour la plu-
part des problèmes artificiels (C ∈ {.1, .5, 1}, W ∈ {50, 100}). Ceci dit, l’utilisation
du réglage hors-ligne reste une étape optionnelle, car des performances acceptables
peuvent être atteintes par la méthode de SAO recommandée une fois ses hyper-
paramètres configurés avec de valeurs proches des configurations citées. Et même si
l’utilisateur opte pour l’utilisation du réglage hors-ligne, la méthode de SAO recom-
mandée n’a que deux hyper-paramètres, tandis que dans l’option standard (l’AE sans
SAO) il faut choisir les opérateurs, puis définir le taux d’application pour chaque
opérateur (i.e., le nombre de paramètres qui doivent être réglés est un multiple du
nombre d’opérateurs considérés), en se rappelant que ce dernier réglage reste sta-
tique pendant toute la durée du processus de recherche, ce qui dans la plupart des
cas ne peut pas être optimal.



Maintenant que nous disposons d’une méthode de SAO efficace et robuste, il faut
l’étendre en prenant en compte d’autres types de complexité. Les prochaines étapes
pour ce travail de recherche seront, naturellement, son extension pour atteindre
une meilleure efficacité sur des problèmes fortement multi-modaux, problèmes pour
lesquels il faut probablement également prendre en compte l’évolution de la diversité
dans la récompense des opérateurs. De même, dans les extensions au contexte
multi-objectif qui sont envisagées, il faudra imaginer une récompense qui prendra
en compte à la fois la convergence vers le front de Pareto et la diversité des solutions
non-dominées.
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Chapter 1

Introduction

1.1 Context/Motivation

EAs are stochastic optimization algorithms remotely inspired by the Darwinian “survival
of the fittest” paradigm. Let the goal be to optimize some objective function, referred to as
fitness function, defined on search space X; elements of X are called individuals, and a set
of individuals is termed a population. EAs evolve a population of individuals by iteratively
(i) selecting some individuals (the parents), favoring those with better fitness; (ii) applying
stochastic perturbations on the parents using some variation operators, thus generating
offspring; (iii) evaluating the offspring (i.e., computing their fitness values); and finally,
(iv) selecting some individuals among the parents and the offspring to become the next
parents, again favoring fitter individuals. This cycle is iterated until a satisfactory solution
is found, or another stopping condition is attained. A more comprehensive description is
presented in Chapter 2.

EAs have already shown to be efficient optimization methods on many different
types of problems beyond the reach of standard methods: see, e.g., all applications de-
scribed in [Yu et al., 2008], and the very diverse works that are presented every year
in the “Real-World Applications” track1 of the ACM Genetic and Evolutionary Com-
putation Conference (GECCO). This success is achieved specially because EAs do not
make any strong assumption about the problem to be solved: they are able to han-
dle structured and mixed search spaces, irregular, noisy, rugged, or highly constrained
objective functions, etc. But, despite this, EAs are rarely used outside the circle of
knowledgeable practitioners. They still miss reaching the status of off-the-shelf tools.
There are several reasons for this, all boiling down to a lack of practical support when
it comes to actually design an EA for a given application. On a conceptual level, de-
spite Michalewicz’ seminal book [Michalewicz, 1996] and the two more recent books by
[Eiben and Smith, 2003] and [De Jong, 2006], the terminology used by many authors still
reflect the evolutionary trend they historically belong to. On a practical level, while some
software packages provide a unifying framework for the various evolutionary approaches
(see, e.g., the EO [Keijzer et al., 2002] and the GUIDE [Collet and Schoenauer, 2003;

1RWA track on GECCO’10: http://sigevo.org/gecco-2010/organizers-tracks.html#rwa
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Da Costa and Schoenauer, 2009] initiatives), the success of EAs is still very sensitive to the
setting of quite a few parameters. Examples are the population size, the types of variation
operators and respective application rates, and the types of selection mechanisms.

In early days, Evolutionary Computation (EC) actually benefited from those numerous
parameters, considering them as a source of flexibility that enabled the application of EAs
to the mentioned wide spectrum of applications. The contemporary view of EAs, however,
acknowledges that specific problems require specific setups for satisfactory performance
[Eiben et al., 2007]: when it comes to solving a given problem, parameter setting is viewed
as the Achilles’ heel of EAs, on par with their high computational cost. From these
observations, a current trend in EC is to focus on the definition of more autonomous solving
processes, which aim at enabling the basic user to benefit from a more efficient and easy-to-
use algorithmic framework. Parameter setting in EAs appears thus as a major issue that
has deserved much attention during recent years [Eiben et al., 1999; Eiben et al., 2007].
Research on this topic is still very active nowadays, as witnessed by a complete edited book
that has been recently published [Lobo et al., 2007], and by the numerous recent references
cited in this document. The current state-of-the-art of research in parameter setting of
EAs is summarized in Chapter 3. Interestingly, the search for algorithmic technologies
enabling the (naive) end-user to benefit from good performances through autonomous
parameter setting is also considered as a priority in neighboring fields, such as operation
research or constraint programming [Hutter et al., 2006; Stützle, 2009]; in the same way as
in EC, these fields involve sophisticated solver platforms, requiring an extensive expertise
in order to be used to their fullest extent.

Some of the user choices that most affect the performance of EAs concern the varia-
tion operators: which operators should be used for the generation of new solutions, and
at which rate should be applied each of the chosen operators. These choices affect the
way in which the algorithm (globally) explores the search space, and how it (locally) ex-
ploits the most promising regions – the so-called Exploration versus Exploitation (EvE)
dilemma (we refer the reader to [Eiben and Schippers, 1998] for a comprehensive overview
devoted to the EvE balance in EAs). The setting of these parameters is usually done by
following the user’s intuition, or by using an off-line tuning procedure aimed at identi-
fying the best operator for the problem at hand. Besides being computationally expen-
sive, off-line tuning, however, generally delivers sub-optimal performance. Intuitively, the
EA should proceed from a global (early) exploration of the landscape to a more focused
exploitation-like behavior, as already empirically and theoretically demonstrated (see, e.g.,
[Eiben et al., 2007] and references therein). Thus, its parameter values should be varied
accordingly, while solving the problem (i.e., on-line): more exploratory operators should
be preferred in the earlier stages of the search, and more priority should be given to the
fine-tuning/exploitation operators when approaching the optimum.

One of the approaches for controlling on-line the application of the variation operators
is the so-called Adaptive Operator Selection (AOS). This is the context of the contribu-
tions proposed in this work, which will be summarized in the following. A more detailed
presentation will be done, respectively, in Chapters 4 and 5.

4



1.2 Main Contributions

1.2 Main Contributions

In essence, the goal of AOS is to select on the fly the best operator at each stage of
the search, i.e., the operator that is currently maximizing some measure of quality, usu-
ally, though not exclusively [Maturana et al., 2009a], reflecting the fitness improvement
brought by its application. AOS requires two tasks to be solved, the Operator Selection
and the Credit Assignment. These tasks will be explained in the following, together with
the contributions proposed in this thesis to address each of them.

1.2.1 Operator Selection

The first task, Operator Selection, defines how the next operator to be applied should be
selected, based on its known empirical quality. Indeed, it might be seen as yet another
level of the EvE dilemma. While an operator that has performed well in the recent past
should certainly be used again (exploitation), other operators that did not perform so
well should also be tried (exploration). The rationale for exploration is rooted, firstly,
in the stochastic nature of the evolutionary process (some seemingly poorly performing
operators might just have been unlucky); and secondly, on its dynamics: the quality of
an operator depends on the region of the fitness landscape being explored by the current
population, i.e., good operators might become poor as evolution goes on, and vice-versa.
These changes in operator qualities are empirically confirmed in most of the benchmarking
scenarios tackled in the experimental section of this manuscript.

Notably, the EvE trade-off has been intensively studied in the context of Game The-
ory, in the so-called Multi-Armed Bandit (MAB) framework [Lai and Robbins, 1985]. The
Upper Confidence Bound (UCB) [Auer et al., 2002] is a MAB algorithm that provides
asymptotic optimality guarantees with respect to the total cumulative reward in a sta-
tionary context. However, as previously mentioned, the AOS context is dynamic. The
main contribution of this thesis, in summary, lies in the proposal and analysis of schemes
to solve the AOS problem based on the UCB algorithm; we have proposed different ex-
tensions to it, in order to enable it to efficiently cope with the dynamics of evolution and
with the very different characteristics of the problems to be tackled.

Starting from the original UCB algorithm (referred to as the original or standard MAB
algorithm in the following, for the sake of convenience), presented in Section 5.3.1, our
first proposal to extend it to the dynamic context of AOS was the Dynamic Multi-Armed
Bandit (DMAB) algorithm [Da Costa et al., 2008]. It proceeds by coupling the original
MAB technique with a statistical change-point test, the Page-Hinkley test [Hinkley, 1970]:
upon the detection of a change in the operator quality distribution, the MAB process is
restarted from scratch.

Although showing to be very efficient, the DMAB required the tuning of a very
sensitive and problem-dependent hyper-parameter, the threshold value for the change-
detection test. This led to the proposal of a smoother way to account for dynamic envi-
ronments in the MAB framework, referred to as Sliding Multi-Armed Bandit (SLMAB)
[Fialho et al., 2010a]. It uses a sliding time window to gracefully update the operator qual-
ity estimates, discarding ancient events while preserving the information from the recent
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events. Contrasting with DMAB, the SLMAB does not call upon an external monitoring
of the evolution process, involving only 1 hyper-parameter, while DMAB has two.

The latest proposal concerning the Operator Selection part is what we refer to as Rank-
based Multi-Armed Bandit (RMAB), in which the evaluations provided by a rank-based
Credit Assignment scheme (that is part of the contributions that will be presented in the
following sub-section) are used directly in the place of the UCB empirical estimation. In
this way, as the rewarding of one operator affects the ranks, and consequently the quality
assessments, of all the other operators, this technique is already dynamic by definition,
while being very robust with respect to its hyper-parameters.

1.2.2 Credit Assignment

All the previously mentioned bandit-based Operator Selection methods (and other existing
approaches for the same purpose) select the operator to be applied next based on some
assessment of their respective qualities. Defining how to estimate their quality based
on the impact brought by their most recent applications is what we refer to as Credit
Assignment, the second task to be defined for an AOS algorithm.

The most common way of assigning credit is to account for the fitness improvements
brought by the operators applications. The use of the instantaneous value, i.e., the latest
fitness improvement achieved by the operator, is known to be an unstable measure, due to
the stochastic nature of operators (one operator might have been unlucky on its latest trial,
although being a very good option in the longer term). To alleviate such effect, the average
of the latest rewards is more commonly used; however, by using such kind of assessment,
operators that regularly achieve very small improvements are preferred over operators
that get rare but highly beneficial improvements. Motivated by other complex systems
(e.g., rogue waves, financial market, etc), and also by another empirical analysis within
EAs [Whitacre et al., 2006], in this thesis we support that the latter operator should be
preferred in the place of the former. This can be achieved by the use of Extreme values, i.e.,
the maximum reward recently received by the operator [Fialho et al., 2008]. Better results
have been achieved when compared to the usual Instantaneous and Average schemes.

Nevertheless, with the use of the raw values of the fitness improvements, the AOS
schemes implementing these Credit Assignment mechanisms need to have their behav-
ior (which is controlled by a couple of hyper-parameters) tuned for each new prob-
lem. This effect was partially diminished with the use of a simple normalization
scheme [Fialho et al., 2009b]. In order to have a controller robust to many differ-
ent situations, two Credit Assignment schemes based on ranks were lately proposed,
namely, the Area-Under-Curve (AUC) and the Sum-of-Ranks (SR) [Fialho et al., 2010c;
Fialho et al., 2010b]. Besides being rank-based, both of them, when considering the fitness
values instead of the fitness improvements for the ranking, are completely comparison-
based, i.e., invariant with respect to monotonous transformations over the original fitness
function. In this way, this very important property, which is guaranteed by construction
in most of the recent EAs2, is maintained when employing these AOS mechanisms.

2See, e.g., an extensive mathematical analysis of the advantages of comparison-based randomized
heuristics, presented in [Gelly et al., 2007]; and the Covariance Matrix Adaptation - ES (CMA-ES)
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1.2.3 Empirical Validation

The different combinations of these proposals to Operator Selection and Credit Assign-
ment gave origin to novel AOS methods. A last contribution of this thesis concerns their
empirical validation. In order to do so, some artificial scenarios were proposed, which
enable a detailed analysis of the behavior of each AOS method with respect to different
situations.

The proposed AOS combinations have been compared among each other and with
other baseline techniques on many different scenarios, as presented in Chapter 6: they were
tried (i) on the proposed artificially generated scenarios, (ii) on some boolean benchmark
problems, (iii) on a comprehensive set of single-objective continuous problems, and (iv) on
a set of Boolean Satisfiability (SAT) instances. In the latter case, an aggregation of fitness
and diversity, named Compass, was used for as Credit Assignment [Maturana et al., 2009a;
Maturana et al., 2010a], considering the fact that in multi-modal problems some diversity
should always be maintained in order to avoid premature convergence.

The Rank-based Multi-Armed Bandit techniques have shown to be very efficient, while
being also very robust to the many different situations in which they were assessed. After
all the empirical evidences gathered, they are thus the recommended choices, if one wants
to implement AOS within a given algorithm/problem.

It is also important to note that the AOS paradigm is not exclusive to the EC frame-
work. Indeed, any stochastic/local search algorithm that has different options for the
exploration of the search space might profit from the proposed methods. Besides, the
same paradigm can be directly used at the hyper-heuristics level, i.e., selecting between
different heuristics, instead of selecting between different variations of a given heuristic.

1.3 Organization

The remainder of this thesis manuscript is organized as follows. In the first part, a review
of the context of this work will be done, starting with a more comprehensive presentation
of EAs in Chapter 2, in which more focus will be given to the EA variants used in the
experimental section, namely, Genetic Algorithms and Differential Evolution. Then, an
overview of the background concerning the research area of parameter setting in EAs
and other meta-heuristics will be presented in Chapter 3. In Chapter 4, a more detailed
description and bibliographic review of the issues arising in Adaptive Operator Selection
will be presented.

In the second part, the contributions of this thesis work will be presented. Chapter 5
will present and describe in detail the proposed AOS techniques. Chapter 6 will describe
and analyze the extensive empirical evaluation done on some very diverse scenarios. Fi-
nally, Chapter 7 concludes this thesis, summarizing the contributions, and pointing out
possible directions for further work.

[Hansen and Ostermeier, 2001], a comparison-based state-of-the-art adaptive method for Evolution Strate-
gies (ESs), that is also invariant with respect to rotations of the search space

7





Part II

Background Review





Chapter 2

Evolutionary Algorithms

Contents

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Modus Operandi . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Problem-dependent Components . . . . . . . . . . . . . . . . . . 14

2.3.2 Representation-specific Components . . . . . . . . . . . . . . . . 16

2.3.3 General Components . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Popular EA Variants . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1 Evolution Strategies . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.2 Evolutionary Programming . . . . . . . . . . . . . . . . . . . . . 22

2.4.3 Genetic Programming . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.4 Genetic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4.5 Differential Evolution . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Application Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

11



Chapter 2. Evolutionary Algorithms

In this Chapter, we present an overview of EAs, depicting their
general behavior and parameters. Besides, some popular EA vari-
ants are described, and some examples of application domains are
presented.

2.1 Introduction

An important source of inspiration for the development of computational methods to
automate problem solving is the “intelligent” way in which biological processes solve com-
plex problems found in nature. Some popular examples of these approaches, referred
to as bio-inspired methods, are Neural Networks [Arbib, 2002], which are based on the
structure of the biological brain; Fuzzy Logic [Klir and Yuan, 1995], which is inspired on
the human way of reasoning; Swarm Intelligence algorithms, which are inspired by liv-
ing examples of collective social behavior, e.g., the Particle Swarm Optimization (PSO)
[Eberhart et al., 2001] and the Ant Colony Optimization (ACO) [Dorigo et al., 1996]

methods; and finally, Evolutionary Algorithms (EAs), which are global optimization meth-
ods that mimic the Darwinian “survival of the fittest” paradigm in order to solve opti-
mization and search problems.

Since the seminal works on EAs (we refer the reader to the edited book [Fogel, 1998]

for a compilation of them), many variants have been independently developed around
the world, originally for different domains of application, with the main difference be-
ing the representation and the variation operators used. Historically speaking, the pi-
oneer methods were Genetic Algorithms (GAs) [Holland, 1975; Goldberg, 1989], Evo-
lution Strategies (ESs) [Rechenberg, 1972; Schwefel, 1981], Evolutionary Programming
(EP) [Fogel et al., 1966; Fogel, 1995] and, more recently, Genetic Programming (GP)
[Koza, 1992; Koza, 1994]. Research has been very active on GAs, ES and GP, but EP
has been gradually disappearing from the literature, as it can be considered a special case
of ES. Besides, other popular techniques have more recently been created, such as the
Differential Evolution (DE) [Storn and Price, 1997; Price et al., 2005], and the already
mentioned PSO [Eberhart et al., 2001] and ACO [Dorigo et al., 1996] methods. Except
for the latter two, which do not follow the evolution paradigm, each of the mentioned
techniques will be separately described in Section 2.4, with a more extensive presentation
being done for the methods used in the experimental section of this manuscript, namely
GAs and DE. The contemporary view on EAs, however, is that, given their continuous
development and frequent hybridizations, it is becoming more and more difficult to differ
between the historically relevant techniques. This justifies the recent proposal of a “unified
view” for EA methods [De Jong, 2006]. Indeed, they all share the same modus operandi,
as described in Section 2.2.

EAs have already demonstrated their efficiency on a wide range of optimization prob-
lems beyond the reach of standard methods, such as problems involving structured and
mixed search spaces, irregular, noisy, rugged or highly constrained fitness functions, etc.
A few examples will be surveyed in Section 2.5. This flexibility is mainly due to the fact
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that EAs are general meta-heuristics that can be specialized for each problem by means
of several parameters. The main parameters will be introduced in Section 2.3.

2.2 Modus Operandi

The different variants of EAs follow the same general outlines, depicted in Figure 2.1. They
differ only in a few technical details, as explained in Section 2.4. Generally speaking, the
modus operandi of the EAs can be described as follows.

Figure 2.1: General cycle of Evolutionary Algorithms.

1. A list (population) of candidate solutions (individuals) is initialized, usually repre-
senting a random sampling of the search space.

2. Each individual is then evaluated, according to the fitness function, which defines
the problem objective: the higher the degree of achievement of a given candidate
solution with respect to the problem at hand, the “fitter” it is.

3. If none of the stopping criteria are satisfied (e.g., optimal solution found, or total
computational budget spent), go on to the next steps.

4. The first Darwinian natural selection-based process takes place. Individuals are
selected as parents to reproduce, usually based on the fitness evaluation, as in nature:
stronger/fitter individuals, i.e., better candidate solutions, have higher chances of
being selected for reproduction.

5. These selected individuals are then subject to blind variations (blind in the sense that
no information about the problem or the consequences of the variation are consid-
ered), by the application of stochastic operators, namely crossover (recombination)
and mutation operators, generating offspring.
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6. The newly generated offspring are then evaluated, according to the same fitness
function, which defines the problem.

7. Then comes the second Darwinian process, the replacement or survival selection,
that defines which individuals, from both the parental population and the newly
generated offspring population, will survive to the next iteration (generation) of the
algorithm.

8. From this evolved population, a new generation can start, going back to Step 3.

From this general cycle, it can be seen that the evolution itself happens mainly due to
two opposing forces. On one hand, there is the application of mutation and recombination
operators, which introduce random variation in the population, consequently performing
an exploration of the solutions search space; intuitively, their sole application would lead to
a random search. On the other hand, as in the inspiring theory, better candidate solutions
(i.e., fitter individuals) have higher chances to be used in the generation of new (hopefully
also fitter) solutions, and to survive for the next generations. These Darwinian procedures
are the responsible for giving a search direction, leading to the most promising regions of
the search space. This process of blind variation + natural selection is then iterated until
an optimal solution arises, or another stopping criterion is attained.

Besides being bio-inspired, EAs are thus stochastic algorithms that work by
following a kind of generate-and-test (also known as trial-and-error) approach
[Eiben and Schoenauer, 2002], in the same spirit as many other meta-heuristics, such as
Simulated Annealing [Laarhoven and Aarts, 1987]. While describing the general cycle,
several structures and procedures were mentioned; they will be described into more detail
in the following.

2.3 Components

EAs have mainly three kinds of components: some are related to the problem to be
solved (Section 2.3.1), others depend on the representation being used (Section 2.3.2),
while others are totally general (Section 2.3.3). Each of these groups will now be briefly
described in turn.

2.3.1 Problem-dependent Components

The components that need to be defined according to the optimization problem can be
described as follows.

Evaluation/Fitness Function

The evaluation or fitness function plays the role of the environment in the Darwinian
natural selection-like procedures, assigning a score to each individual according to its
degree of “achievement” with respect to the optimization problem at hand. The fitness
function is thus the core of the algorithm, which needs to be very carefully designed, as it
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is often the only source of information about the problem that is available to the algorithm
[Eiben and Schoenauer, 2002].

Although EAs are said to be robust with respect to very different situations (e.g.,
irregular, noisy, and highly rugged fitness landscapes), a minimal level of continuity and/or
regularity needs to be provided to guide the search towards the most promising regions of
the search space; otherwise it tends to act as a random search, with no direction to follow.
In some cases, however, the definition of the fitness function itself is a very complex task;
a recent paradigm, referred to as Interactive Evolutionary Computation (IEC), address
this issue by “outsourcing” the fitness evaluation to humans, as in [Quiroz et al., 2007] for
example. In the neighboring local search community, such paradigm is commonly referred
to as “Human Guided Search” [Anderson et al., 2000].

The fitness evaluation of a candidate solution is undoubtedly the most computationally
expensive step of the EA cycle, and its computational cost affects other user choices, mainly
the size of the population and the number of offspring created at each generation, as each
generated offspring will require a fitness evaluation. In case the fitness evaluation cost
becomes prohibitive for evolution to take place (usually many generations, consequently
fitness evaluations, are needed), some approximations between the fitness values found in
the neighborhood of the candidate solution under assessment might also be used, as in
[Martikainen and Ovaska, 2006]. Besides, in some application fields, the evaluation might
also be very noisy, thus requiring the averaging of several independent assessments in order
to have a reliable measure of quality.

In cases where there is more than one objective to be optimized, referred to as multi-
objective in the literature, special fitness assessments need to be used to take into account
all the objectives. The most popular criterion for this is the Pareto optimality (see, e.g.,
[Deb, 2001; Mueller-Gritschneder et al., 2009]).

Representation

From the structural point of view, in order to solve a given problem, the main issue
that needs to be defined is how the candidate solutions are going to be represented.
The solutions themselves, referred to as phenotypes, might be very complex structures;
but their corresponding low-level representation, the genotypes, which are the structures
manipulated by the algorithm, are usually much simpler. As in the inspiring theory,
genotypes are constituted by genes, which store the values of the candidate solution for
each variable of the problem at hand. The most common representation or encoding
schemes can be listed as follows.

• Binary encoding: Vectors of binary values, or bit-strings, are commonly employed
to represent problem solutions that have only two possible values for each variable.
For example, in the SAT problem [Cook, 1971], which consists in assigning values
to binary variables in order to satisfy a Boolean formula, each gene represents the
boolean state of each variable of the problem [Lardeux et al., 2006].

• Permutation encoding: Vectors of integers are usually used for sequencing prob-
lems. The classical application example is the well-known Traveling Salesman Prob-
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lem (TSP), in which there is a set of cities that need to be visited by a sales-
man, and the objective is to find the order of cities that minimizes the distance to
be traveled. In this case, each city is assigned an integer number, and the order
of these numbers defines the sequence in which the salesman will visit the cities
[Merz and Freisleben, 1997].

• Real-value encoding: For some problems, the direct use of real values is preferred,
as for example, to optimize the weights of a neural network. In this case, each gene
of a candidate solution represents the value of each of the corresponding weights of
the neural network [Obradovic and Srikumar, 2000].

• Tree encoding: It is used mainly to evolve programs or regular expressions, with
every solution being encoded as a tree of objects, such as functions or commands of
a given programming language. For example, given a set of input and output data
samples, it can be used to find a function that maximizes the mapping between them
[Koza et al., 2003].

The permutation and the binary encoding schemes are historically used by GAs to solve
combinatorial problems, as confirmed by the given examples. The real-value encoding is
usually employed by ES and DE on continuous optimization problems; while the tree
representation scheme is often used within GP to automatically generate or optimize
programs. More details about each of the mentioned EAs will be given in Section 2.4.

2.3.2 Representation-specific Components

Some of the components of an EA, namely the initialization procedure and the variation
operators, are representation-dependent, i.e., they need to be defined according to the
chosen representation model. This is in fact one of the reasons why EAs are successfully
applied to so many different domains of application (see Section 2.5 for a few examples):
given an appropriate initialization procedure and variation operators, any kind of search
space can be tackled [Eiben and Schoenauer, 2002]. Such representation-specific compo-
nents will be briefly described in the following.

Initialization

According to the representation being used, the initial population is usually created after
a random sampling of the search space. A uniform sampling is commonly used when
the search space is finite and its bounds are known, e.g., in the binary, permutation and
tree-based representations. For the real-value representation, the uniform sampling can be
used for the initialization if the search space bounds are provided, a Gaussian distribution
being used otherwise.

Furthermore, in case some prior knowledge is available, it might be used in the initial-
ization process, e.g., by directly including a known good solution. But, on one hand, such
manipulated initialization might result into a wrong bias to the search process, what is
clearly much worst than having no bias at all [Eiben and Schoenauer, 2002]. On the other
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hand, this extra effort is usually not very well paid-off as, when starting from a random
population, the same EA would typically need just very few generations to achieve the
same level of solution quality [Eiben and Smith, 2003].

Variation Operators

Mutation operators are asexual variation operators, i.e., a single parent individual is con-
sidered to generate an offspring. These operators are responsible for introducing non-
existing (or re-introducing missing) characteristics into the population, thus augmenting
the so-called genetic diversity. A complementary view for their purpose is that of fine-
tuning: individuals might improve their respective qualities after suffering slight variations
(e.g., mutation of a single gene). Traditional mutation operators for each of the four pop-
ular representations mentioned in Section 2.3.1 can be listed as follows.

• For bit-strings, the bit-flip mutation operator flips each bit with probability 1/ℓ by
default (although a different probability can be employed), ℓ being the length of the
bit-string. Another popular mutation operator is the x-bit operator, which flips x
randomly chosen bits each time it is applied.

• For real-valued vectors, the most common mutation operator is the addition of a
random value to each vector component or gene. It is mainly used within ES, with
the random value being usually extracted from a normal distribution with zero mean
and a pre-defined standard deviation (also referred to as the mutation step-size). In
the case of DE, several mutation strategies exist, using the differences between two
or more vectors (individuals) in different ways for perturbing the vector population.

• For permutation and tree encoding schemes, a popular mutation operator is the
order changing: two genes are randomly selected and have their values exchanged.
In the case of trees, not just the values of the chosen nodes, but also both sub-trees
(or branches) attached to them, are usually switched. A simpler alternative is the
exchange of the value found in the chosen gene or node by another value randomly
chosen from the finite search space.

Crossover or recombination operators are sexual variation operators: parts of the ge-
netic material of two or more different parent individuals are recombined somehow, cre-
ating one or more new offspring. Their use is justified by the building blocks assumption:
supposedly, the good fitness scores of the parents are related to some portions of their
genetic material; with strictly positive probability, the good portions (building blocks) of
both parents are recombined, consequently creating a fitter individual. Accordingly, the
most common crossover operator for all the representations is the x-point crossover, which
divides each parent individual into x building blocks, forming the offspring by different
recombinations of these portions. A more exploratory variant is the uniform crossover,
which uniformly selects which genes are taken from each parent to constitute the new
offspring. In the same way than for the mutation operators, there are other ways of doing
so as well, according to the representation being used, as follows.
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• In the case of real-valued vectors, arithmetical operations might be done between
the genes of both parents.

• For tree-like representations, different branches of the parents trees can be ex-
changed.

It is important to note that the effect of the crossover operators on the search process
is automatically adapted, by construction, according to how converged the population is:
while there is a good level of diversity, it helps into exploring the search space; the less
diversity there is, the more exploitation-like will be its behavior, up to the total inefficiency
as, differently from the mutation counterparts, it can not introduce any novelty into the
population.

The standard mutation and crossover operators are pure stochastic transformations
that receive as input one or more (parent) individuals, and generate as output one or more
new (offspring) individuals, not using any feedback about the impact of their application
on the search; due to this, their application is usually referred to as a blind variation. Then,
it is usually up to the replacement selection mechanism to accept or not the generated
offspring, and consequently guide the search process. Differently from that, in some well-
known application domains, the available information about the problem might be used
into the design of specialized or “intelligent” operators. For example, the flipping of a
bit might be prevented by the fact that it is known (by simulating the outcome of its
flipping) to be already set to a good value, as done in the SAT domain (see, e.g., the
GASAT [Lardeux et al., 2006]); or by intelligently choosing which building blocks should
be exchanged, as in most of the specialized crossover operators for the TSP problem (see,
e.g., [Chan et al., 2005]). By using trial-and-error and feedback from the search in order
to decide its move, what is being done by these operators is in fact what is usually referred
to as “local search”. In other cases, existing meta-heuristics are also used as inspiration
for local search variation operators within EAs, as in [Branke et al., 2003], which proposes
the use of crossover operators based on the Ant Colony Optimization algorithm for the
same TSP problem. EAs that employ local search techniques as variation operators are
commonly called as Memetic Algorithms (MA) [Krasnogor, 2002].

2.3.3 General Components

Agreeing with the “unified view” of EAs proposed in [De Jong, 2006], some components
are general, not being affected by the kind of representation used. These components can
be listed as follows.

• the size of the parent population m;

• the size of the offspring population n;

• the procedure for selecting parents pselect;

• the procedure for producing offspring prod;

• the procedure for selecting survivors sselect;
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• and the stopping criterion cstop.

Each of these representation-independent components will be briefly described in the
following.

Parent and Offspring Population Sizes

The parent population size m defines the level of parallel search done by the EA, as it
contains the starting points for the new solutions explored in the search space at each
generation [De Jong, 2007], while the offspring population size n determines the number
of trials done by the algorithm at each generation.

Their definition is mainly related to (i) how rugged the fitness landscape is thought to
be, as a bigger population will enable a better parallel exploration of multiple peaks; and
to (ii) the available computational budget, as at each generation it is required to evaluate
the fitness of all newly generated individuals, which is by far the most expensive step of
the evolutionary cycle, as previously discussed.

Parental or Reproduction Selection

One of the Darwinian representation-independent steps that “guide” the evolution engine,
the parental selection pselect, as its name says, is the procedure responsible for selecting
which of the individuals will be chosen for reproduction.

A very simple and popular parental selection method is the proportional one: for each
individual, the probability of being selected is proportional to its fitness score, and the
selection is performed by a roulette wheel-like method over these probabilities. In some
application domains, however, an individual might have a fitness value that is orders of
magnitude higher than the others. By using the proportional method in such a case, this
super-individual will very probably be always selected for reproduction, thus quickly taking
over the entire population, consequently leading to (possibly) premature convergence.
Oppositely, in case the fitnesses of the individuals have similar values, similar selection
probabilities will be assigned to each of them; consequently, there will not be enough
selection pressure to guide the search towards the most promising regions.

To avoid such kind of problem related to fitness ranges, other methods widely used
nowadays are: (i) the rank-based selection, in which the selection probability of an individ-
ual is proportional to the ranking of its fitness value with respect to the other individuals
in the population; (ii) the tournament selection, in which T individuals are uniformly
chosen from the population, and the best between these T individuals is selected, with
T ∈ [2,m], m being the parent population size; and a different variant, the (iii) stochastic
tournament selection, in which 2 individuals are randomly chosen, and the best between
them is selected with user-defined probability t ∈ [0.5, 1].

Survival or Replacement Selection

The other representation-independent procedure that enforces the simulation of the Dar-
winian natural selection process is the survival selection, sselect. It defines how the pop-
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ulation of the next generation will be constituted, based on the current parental and
offspring populations, i.e., which individuals of both populations are going to survive for
the next generation.

Broadly speaking, there are two categories of replacement methods: (i) individuals
from both populations are considered, thus disputing between each other for survival, as
the number of available “places” in the next generation is limited (the main population size
m); or (ii) just the offspring population is considered, and the best m out of n individuals
are maintained for the next generation. The former is referred to as the “plus” strategy
in the Evolution Strategies (ESs) context, and is elitist by default, as the best individuals
out of both populations are maintained. The latter is called as the “comma” strategy;
if the risk of possibly losing the best solution found can not be assumed, elitism should
be externally added in this case (remembering that the maintenance of the best in the
population will always create a bias in that direction, what might be good, or not).

In case both parent and offspring populations have the same size (m = n) and a
comma-like survival selection is used, the EA is said to be generational, i.e., the entire
population is replaced after each generation. When m > n and n = 1, with a plus-like
survival selection, the algorithm is referred to as being steady-state, behaving in a much
greedier way.

Termination Condition

The termination condition for EAs is commonly related to the available budget, e.g.,
elapsed time, number of generations or fitness evaluations. However, part of this budget
is usually wasted somehow, as follows. As soon as the population converges, i.e., most
of the individuals are very similar (no much diversity can be found into the population),
the search becomes very inefficient, with the best solution being improved just by a lucky
move (random sampling = Monte Carlo).

A more intelligent stopping criterion relies on the convergence measure: as soon as it
is detected, the search can be stopped, possibly restarting from a new random initial pop-
ulation in order to provide more opportunities for the algorithm to find a better solution
within the same available computational budget. There are several ways to account for
population convergence, the simplest one is the number of generations since the last time
a better solution was found (stagnation). A more complex mechanism that can be found
in the GA literature is the “bit-wise average convergence measure” [Goldberg et al., 1995],
which estimates, for each gene, the percentage of individuals presenting the same value,
with the final measure being the average of the values found on all genes; convergence is
detected when this average exceeds some user-defined threshold.

General Representation of Special Cases

After the definition of these general/representation-independent components, it becomes
possible to easily describe EAs well-known to the community, and also to create new
variations [De Jong, 2007]. Besides facilitating the human comprehension, this general
description is also beneficial in practice, when implemented into existing toolkits, as in

20



2.4 Popular EA Variants

the Evolving Objects (EO) library [Keijzer et al., 2002], or in the more recent GUIDE
[Da Costa and Schoenauer, 2009].

For example, a canonical GA could be described as follows:

• m = n;

• pselect = probabilistic, fitness-proportional (although tournament is more popular
nowadays);

• prod = crossover and mutation;

• sselect = deterministic, offspring only (equivalent to the “comma” or “generational”
replacement).

Another well-known EA, the standard (µ + λ)− ES, corresponds to:

• m = µ;

• n = λ;

• pselect = uniform;

• prod = mutation;

• sselect = deterministic truncation (“plus” replacement method).

2.4 Popular EA Variants

Several EA variants exist, the most popular ones will be briefly described in the fol-
lowing, namely, Evolution Strategies (ESs), Evolutionary Programming (EP), Genetic
Programming (GP), Genetic Algorithms (GAs) and Differential Evolution (DE). A more
detailed description will be done for the latter two, as they are the EAs used in the ex-
perimental section of this manuscript. For the sake of correctness, the “historical” view of
the techniques will be used in their description; however, as already discussed, given the
frequent hybridizations and exchanges between the areas, nowadays it is becoming more
and more difficult to differ between them, a “unified view” of EAs being recommended
[De Jong, 2006].

2.4.1 Evolution Strategies

Evolution Strategies (ESs) [Rechenberg, 1972; Schwefel, 1981] are very popular EAs. They
are mostly applied to numerical (continuous) optimization problems, thus using real-valued
vectors to represent the solutions.

The common alternatives for the crossover are the exchange or the linear recombina-
tion of components, although historically no crossover is used. Differently, mutation is
always applied, being usually a Gaussian noise with zero mean and user-defined standard
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deviation (also referred to as mutation step-size). Both comma and plus selection strate-
gies are considered, as well as different sizes for the parental and offspring populations,
according to the characteristics of the problem.

It is worth noting that the state-of-the-art continuous optimizer to date is the Covari-
ance Matrix Adaptation - ES (CMA-ES) [Hansen and Ostermeier, 2001], an ES with a
very efficient dynamic control of the mutation step-size, shape and direction. The CMA
and other schemes for automatically adapting the mutation step-size will be briefly dis-
cussed in Section 3.3.4.

2.4.2 Evolutionary Programming

Evolutionary Programming (EP) was originally applied to the evolution of finite state
automata for machine learning problems [Fogel et al., 1966], with representation and vari-
ation operators being specially designed to this kind of search space. More recently, how-
ever, it was adapted to also tackle numerical optimization problems [Fogel, 1995], with just
few details differing it from the ESs, e.g., stochastic instead of deterministic replacement.
Given the higher popularity of ESs, EP is rarely mentioned in the recent literature; most
authors consider it nowadays as a special case of ES.

2.4.3 Genetic Programming

Genetic Programming (GP) [Koza, 1992; Koza, 1994] is known as the EA variant to be
used when evolving programs and logical expressions, using trees with varying sizes to
represent them. Some Lisp-like languages that naturally embody tree structures are fre-
quently used within GP; although other functional languages can also be adapted somehow
to do so.

The evolution engine is very similar to GAs (which will be presented in Section 2.4.4),
except for the crossover and mutation operators, which are specially designed in order
to be able to cope with the tree representation. As the individuals do not have a fixed
size, a very common problem in GP is the so called bloat, the uncontrolled growth of an
individual, with a comprehensive body of literature being dedicated to its control (see,
e.g., [Luke and Panait, 2006]).

2.4.4 Genetic Algorithms

Genetic Algorithms (GAs) [Holland, 1975; Goldberg, 1989] are by far the most popular
methods. Traditionally, they are used to address combinatorial problems, using the very
general bit-string representation. Other representations can also be employed to facilitate
the translation from phenotype to genotype, consequently making easier the manipulation
of the candidate solutions. For example, for sequencing problems such as the Traveling
Salesman Problem (TSP), the permutation-based representation is used, in which each
gene i corresponds to the object considered as being in the ith position. A very general
representation of a GA in the form of a pseudo-algorithm is shown in Algorithm 2.1.

Each new offspring is usually generated as follows. Firstly, the parents are selected
according to the parental selection method used, e.g., the tournament selection method.
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Algorithm 2.1: General pseudo-algorithm for a Genetic Algorithm

1: Generate the initial population
2: Evaluate the fitness of all individuals
3: while the stopping condition is not satisfied do
4: for i = 1 to n do
5: parent1 = ParentalSelection(parentPop)
6: if rndreal[0, 1) < pc then
7: repeat
8: parent2 = ParentalSelection(parentPop)
9: until parent2 != parent1

10: offspringPop[i] = Crossover(parent1, parent2)
11: else
12: offspringPop[i] = Copy(parent1)
13: end if
14: if rndreal[0, 1) < pm then
15: offspringPop[i] = Mutation(offspringPop[i])
16: end if
17: end for
18: Evaluate the fitness of all the generated offspring
19: parentPop = SurvivalSelection(parentPop, offspringPop)
20: end while

A crossover operator is then applied with probability pc over the two selected parent
individuals; the most common crossover operators in this case are the x-point and the
uniform ones. The resulting offspring (a copy of one of the parents in case crossover is
not applied) is then subject to a mutation operator, e.g., a bit-flip or a x-bit mutation,
with probability pm. Finally, for the survival selection, usually a generational procedure
is used, i.e., the entire parental population is replaced by the newly generated offspring
population; another popular method for survival selection in GAs is the steady-state one:
each time an offspring is generated, it instantaneously replaces one of the individuals of
the parental population according to a given criterion, such as fitness or age.

From this description, it can be seen that GAs are very general methods, with too
many degrees of freedom with respect to their parameter choices. We refer the reader to
[Whitley, 1994; Mitchell, 1998] for a more comprehensive introduction and an extensive
theoretical analysis of GAs as known in the early days.

2.4.5 Differential Evolution

Differential Evolution (DE) [Storn and Price, 1997; Price et al., 2005] is a more recent
method proposed for global numerical optimization. As in ES, the solutions are repre-
sented by vectors of real-values. The pseudo-code of the standard DE algorithm is shown
in Algorithm 2.2, where d is the number of decision variables (also referred to as the di-
mension of the problem). Following the terminology commonly used for this technique,
NP refers to the population size, F is the mutation scaling factor, CR is the crossover
rate, xi,j is the j-th variable of the solution xi, and ui is the offspring generated after xi.
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Algorithm 2.2: The Differential Evolution algorithm with DE/rand/1/bin strategy

1: Generate the initial population
2: Evaluate the fitness for each individual
3: while the stopping condition is not satisfied do
4: for i = 1 to NP do
5: Select uniform randomly r1 6= r2 6= r3 6= i
6: jrand = rndint(1, d)
7: for j = 1 to d do
8: if rndrealj [0, 1) < CR or j is equal to jrand then
9: ui,j = xr1,j + F ·

(
xr2,j − xr3,j

)

10: else
11: ui,j = xi,j

12: end if
13: end for
14: end for
15: for i = 1 to NP do
16: Evaluate the offspring ui

17: if f(ui) is better than or equal to f(xi) then
18: Replace xi with ui

19: end if
20: end for
21: end while

Although achieving very good performance on a wide range of problems (see, e.g., all
the successful applications listed in [Price et al., 2005]), it is a very simple algorithm To
start with, there is no parental selection: each individual in the population is used to
generate one offspring; and there is only one (deterministic) method for survival selection:
each offspring is compared only with its parent, replacing the parent in case it has a better
fitness, sometimes the age of the parent also being considered as a penalty factor.

The generation of an offspring is done by means of mutation and crossover operators.
But, differently from the historical convention used in EAs, the mutation takes into account
the genetic material of two or more individuals, doing some form of sum of weighted (by
the scaling factor F ) differences between their components (genes); while the crossover
considers only the parent and the intermediary solution generated after the application of
the mutation operator, usually referred to as the mutant vector.

Many reproduction schemes have been proposed in the literature, using different mu-
tation and/or crossover operators [Price et al., 2005; Storn and Price, 2008]. In order to
distinguish among these schemes, the notation “DE/a/b/c” is commonly used, where “a”
specifies the base vector to be mutated; “b” is the number of difference vectors used by
the mutation strategy; and “c” denotes the crossover scheme, binomial or exponential.
As an example, in Algorithm 2.2, the reproduction scheme used is the “DE/rand/1/bin”
[Price et al., 2005] (see lines 8-12), i.e., the classical “DE/rand/1” mutation strategy, with
the binomial crossover.

Other well-known mutation strategies can be listed as follows:
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1. “DE/best/1”: vi = xbest + F ·
(
xr2
− xr3

)

2. “DE/best/2”: vi = xbest + F ·
(
xr2
− xr3

)
+ F ·

(
xr4
− xr5

)

3. “DE/rand/2”: vi = xr1
+ F ·

(
xr2
− xr3

)
+ F ·

(
xr4
− xr5

)

4. “DE/current-to-best/1”1 : vi = xi + F ·
(
xbest − xi

)
+ F ·

(
xr2
− xr3

)

where xi is the current individual or parent, xbest represents the best individual in the
current generation, and xr1

, . . . ,xr5
are different individuals randomly chosen from the

current population.
Concerning the crossover operators, the binomial crossover is similar to the uniform

crossover used in GAs: for each variable of the problem, the offspring receives with proba-
bility CR the value of the mutant vector, of the parent vector otherwise. The exponential
crossover is similar to some extent to the GA two-point crossover: components from the
parent vector are used up to the first crossover point, randomly selected from {1, . . . , d};
then L consecutive components, counted in a circular manner, are copied from the mutant
vector, L being a user-defined parameter; and the rest is taken again from the parent
vector [Zaharie, 2009]. Although the exponential crossover was used in the seminal DE
publication [Storn and Price, 1995], the binomial crossover is much more frequently used
nowadays, being said to be “never worse than exponential” [Storn and Price, 2008].

From this description, it becomes clear that one of the main advantages provided by
DE is its simplicity when compared to other EAs. In addition to the scheme to be used
for reproduction, only three parameters are left to be defined by the user: the population
size NP , the mutation scaling factor F and the crossover rate CR.

2.5 Application Areas

EAs have been successfully applied to many different application fields, as extensively
presented in a recent book completely dedicated to this topic [Yu et al., 2008]. Besides
the different “flavors” of optimization, which are by far their most important areas of
application, EAs have also been used as a “source of creativity” in many other areas.
Some of these very diverse application examples can be briefly described as follows.

Combinatorial problems have attracted the attention of EC researchers since the
early days of the field, as many important real-world problems can be modeled in this way,
what makes it a very profitable area. For example, EAs have been used for diverse schedul-
ing problems, such as crew and train scheduling [Semet and Schoenauer, 2006], task plan-
ning [Bibai et al., 2010], etc. Most of its success, however, comes from its hybridization
with local search and Operational Research (OR) heuristics, as exemplified in the prob-
lems of TSP [Merz and Freisleben, 1997], university time-tabling [Abdullah et al., 2007]

and graph-coloring [Porumbel et al., 2010].
In continuous optimization problems, EAs have also greatly shown their value. Spe-

cially after the advent of the state-of-the-art, almost parameter-less, CMA-ES technique

1“DE/current-to-best” is also referred to as “DE/target-to-best/” or “DE/local-to-
best/” [Price et al., 2005; Das et al., 2009].
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[Hansen and Ostermeier, 2001], many researchers have been applying it on their very own
problems. A very comprehensive and up-to-date list of applications of CMA-ES to con-
tinuous optimization problems can be found in [Hansen, 2009b], incredibly counting up to
120 references as of nowadays: very diverse application fields have already been tackled,
such as the optimization of gas turbine combustors [Hansen et al., 2009c], or the search
for the best craniofacial super-imposition for forensic identification [Ibanez et al., 2009]

Another domain of increasing attention, specially since the beginning of this decade, is
that of multi-objective optimization. By the use of special fitness evaluation and selec-
tion methods [Deb, 2001], EAs are known to efficiently find the best set of solutions that
satisfies all the objectives under consideration, the so-called Pareto front. An interesting
application example in this context is that of [Singh, 2006], in which EAs are used to
optimize several criteria for the automatic estimation of seismic velocity, a measure used
for the possible discovery of petrol in the underground.

Needless to say, the abilities of (i) handling mixed search spaces, and (ii) having
solutions with variable-length (specially true for GP), enable the use of EAs on prob-
lems out of reach of standard methods. Besides, as in this way there is no constraint
in terms of representation of the solutions, a much more comprehensive (and unbiased)
exploration of huge search spaces can be done, possibly leading to the discovery of so-
lutions that could never be imagined by biological intelligence. In this context, several
examples of results automatically achieved by EAs that are competitive (and often better)
than human performance are presented (and awarded) every year in the so called Humies
competition [Koza, 2010], sometimes even resulting in patentable products, as presented
in [Koza et al., 2000].

For the same reason, EAs have shown interesting results in terms of creativity in
the art and design domains [Bentley and Corne, 2002; Romero and Machado, 2007], with
examples ranging from architecture up to music automatically generated by evolution. In
such kind of applications, in which the evaluation of the solutions is “subjective” somehow,
a human-in-the-loop is often used to make the role of the fitness function, the so-called In-
teractive Evolutionary Computation (IEC). In [Quiroz et al., 2007], for example, the IEC
paradigm is used for the optimization of user interfaces. One of the main problems of this
approach is that of “fatigue”: differently from computers, humans do get tired; different
proposals have been done in order to reduce such effect, as in [Kamalian et al., 2005].

Lastly, an application domain that is inevitably becoming more and more relevant
nowadays is that of sustainable development, where EAs have also shown both their ex-
ploration and optimization efficiencies. As combinatorial examples, we can mention the
optimization of strategies for pollution prevention [Tan, 2007] and the efficient planning
of solid waste management [Yeomans et al., 2003]. It has also been used in the design
of “green” buildings, optimizing all the multiple objectives in mixed search spaces that
such a project might contain, e.g., the reduction of energy and water consumption, as well
as waste and landfill generation [Pitman and King, 2009]. Another example in the same
context is the optimization of the topology and parameters of the electronic components
that constitute a Heating, Ventilating and Air-Conditioning system in order to achieve
better energy efficiency [Angelov et al., 2003].
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2.6 Discussion

As reviewed in the previous Section, EAs are very general and robust methods, outper-
forming other approaches and achieving interesting results on very different application
domains. It is always unfair, however, to compare their performance with sophisticated
problem-tailored methods on the problems to which the latter were specified to: the
strength of such special methods is always related to the exploration of problem-specific
knowledge, while EAs are general search methods that treat the problem as a black-box
function, using the fitness function as the sole source of information. Consequently, the
problem-tailored methods, as their name says, perform very well just on their very own
problems, while EAs are able to achieve reasonable performance in a much wider range of
problems, what might be preferred depending on the situation.

Anyway, given the mentioned characteristics of EAs, the general recommendations for
their use can be summarized into the following cases, based in [Eiben, 2002]:

• The search space is very big: in such a case, the brute-force approach becomes
prohibitive, consequently turning a (directed) randomized search into a good alter-
native.

• The search space is mixed, i.e., the variables of the problem have different types
(integer and real for example): as discussed in Section 2.3.2, EAs do not have any
restriction with respect to the representation of the candidate solutions, whenever
corresponding variation operators and initialization procedure are provided.

• The variables of the problem interact with each other in a complex non-linear way,
resulting in an objective function of same nature: it is unusual to have specific
sophisticated methods for such cases, as extracting some knowledge from the gradient
of the search is not a trivial task, while possibly leading to a highly multi-modal
fitness landscape (what links to the following item).

• The search space is multi-modal, i.e., with many local optima: the population-based
approach employed by EAs enable the exploration in parallel of several promising
regions, consequently augmenting the probability of discovering the global optimum;
while standard local search methods would tend to get prematurely trapped into
local optima. However, whenever a higher (possibly local) optimum is found, the
selection pressure will bias the entire population towards it; to avoid this undesired
convergence, the maintenance of some diversity into the population needs to be
enforced somehow (see, e.g., the niching methods [Horn, 1997]).

• The optimization problem is dynamic, changing over time: the evolution process
follows the direction being currently given by the fitness function, no matter if it is
static or dynamic, automatically adapting to eventual changes in a transparent way.

• The evaluations are noisy: the evolution is not guided by the evaluation of a single
point, but rather by the “trend” gathered from the evaluation of the many points
considered in the current population, significantly reducing the noise effect. Besides,
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in such cases, several re-evaluations might also be performed until a higher confidence
is achieved – indeed, this is a quite common approach, not exclusive to EAs.

It is worth noting, however, that the use of EAs and other stochastic meta-heuristics
does not guarantee to find the truly optimal solution for the problem at hand. Accordingly,
the fact that more computational time possibly means the discovery of better solutions
explains why one of the main drawbacks for the use of EAs is their high computational
cost. But, whatever the available budget, a solution as good as possible is always avail-
able at the end; such important property is commonly referred to as anytime behavior
[Eiben and Smith, 2003].

Another drawback that prevents their broader use is that of parameter setting: the
performance of an EA is directly related to how efficiently it explores the search space,
while also being able to exploit the most promising regions. The so-called Exploration ver-
sus Exploitation (EvE) balance is controlled by several parameters, that usually need to
be defined by the user according to the problem or class of problems at hand. A more com-
prehensive discussion on parameter setting will be presented in Chapter 3, while Chapter
4 will focus on the parameter setting sub-problem that is addressed by the contributions
proposed in this thesis, the Adaptive Operator Selection.
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In this Chapter, we present a survey about parameter setting in EAs.
The possible influence of the setting of some parameters in the EA
performance is discussed, together with some proposals for their au-
tomatic setting found in the literature. A well-known classification
of methods for parameter setting in EAs is also described.

3.1 Introduction

In order to efficiently apply an EA to a given problem, there are several parameters
that need to be defined by the user, as surveyed in Chapter 2. In the early days of
research in the area, such parameters were seen as an advantage for the EAs, enabling
their “personalization” according to the characteristics of the problem at hand.

The optimal values for these parameters were usually defined by intuition, based
on rules-of-thumb well known to the community. At the same time, it was be-
lieved that researchers would be able to find problem-independent (or universal) “win-
ner” settings, i.e., parameters values that would provide efficient performance to the
EAs, independently of the application field. In the context of GAs, two very pop-
ular (although very different) “universal settings”, published in [Grefenstette, 1986;
De Jong and Spears, 1990], are compared in Table 3.1.

[De Jong and Spears, 1990] [Grefenstette, 1986]

Population size 50 30
Number of generations 1000 not specified
Crossover type (typically) 2-point (typically) 2-point
Crossover rate 0.6 0.9
Mutation types bit-flip bit-flip
Mutation rate 0.001 0.01

Table 3.1: Two examples of static sets of parameters for GAs

However, many further works were published in the following, presenting very dif-
ferent settings for particular problems, consequently putting into question the sci-
entific relevance of the mentioned works. The No Free Lunch (NFL) theorem
[Wolpert and Macready, 1997] put an end to this quest for an universal setting, by stating
that, roughly, there is no “best algorithm” that solves all problems better than any other.
This might be seen as the unique very well-accepted contribution brought by the establish-
ment of the NFL theorem; indeed, it is hardly considered in practice, and several extensions
and contradictions have been published since then (see, e.g., [Auger and Teytaud, 2010;
Christensen and Oppacher, 2001; Whitley and Watson, 2005]).

Accordingly, the contemporary view of EAs acknowledges that specific (some-
times classes of) problems require specific setups for satisfactory performance
[Eiben et al., 2007]. This is the main reason to the fact that EAs are very rarely used
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outside the “evolutionary research labs”. Although being tempted by the several empir-
ical demonstrations of the efficiency of EAs on many difficult problems out of reach of
other optimization methods, scientists from other domains very often fail in getting in-
teresting results, mainly because of the lack of general methods for tuning at least some
of the involved parameters, and also because they are not, and do not want to become,
“Evolutionary Engineers”.

From these observations, parameter setting in EAs appears actually as a major issue
that has deserved much attention during recent years [Eiben et al., 1999], and research is
still very active nowadays, as witnessed by a complete edited book that has been recently
published [Lobo et al., 2007], and by the numerous recent references cited in this docu-
ment. These contributions, proposed to automate or guide somehow the definition of the
parameter values, intend to make the EAs to Cross the Chasm [Moore, 1991], enabling
the whole scientific community to benefit from their use without their main burden, that
of parameter setting.

The following of this Chapter summarizes the research in the field of parameter setting
within EAs. Firstly, an overview of the influence of some of the main parameters on the
performance of the EAs, and some examples of what has already been done to automate
their setting, are presented in Section 3.2. Then, in Section 3.3, a well-accepted classifica-
tion of the different ways of doing parameter setting within EAs is described. The Chapter
is concluded in Section 3.4, with some further discussions about parameter setting in EAs.

3.2 Parameters Influence and Possible Settings

Although having been conceived for different purposes and presenting different behavior,
the EAs have some common structures and parameters that are independent from the
representation being used, as presented in Section 2.3.3. Since the parameter setting
techniques presented in the following of this document are not meant to work with only one
kind of EA, we will briefly discuss here about the influence of these common representation-
independent parameters on the search process.

All these parameters affect somehow the Exploration versus Exploitation (EvE) bal-
ance: intuitively, as discussed throughout the text, the EA should explore the search space
in the early stages of evolution, gradually migrating to a more focused exploitation of the
promising regions. The objective of this Section is not to describe these parameters, as it
was already done in Section 2.3.3, but rather to extend a bit on their influence on the EvE
balance, and consequently on the performance of EAs, based on [De Jong, 2007]. Besides,
some possibilities of parameter setting are also presented, including a brief bibliographic
review for each of them.

3.2.1 Parent and Offspring Population Sizes

A small parent population size m does not enable a good exploration of the (usually very
big) search space, possibly converging prematurely to a local optimum; while a bigger m
provides a higher probability of finding a global optimum, as multiple peaks might be
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Chapter 3. Parameter Setting in EAs

simultaneously explored. Having a bigger population, however, might slow down the con-
vergence by the fact that more evaluations are needed at each generation. A compromise
between both needs to be found.

Following the EvE balance intuition, ideally, the population should be big in the be-
ginning, enabling a better exploration of the search space, with its size decreasing (thus
focusing on the most promising regions) as the search goes on. However, the dynamic
adaptation of the population size was found to be a difficult task [De Jong, 2007], due
to several interacting factors, such as selection pressure [Eiben et al., 2006], noisy fitness
landscapes [Goldberg et al., 1992], the fact that generations overlap (“plus” replacement)
or not (“comma”/generational replacement) [Schwefel, 1995], etc [Arabas et al., 1994;
Smith, 1993; Eiben et al., 2004; Bäck et al., 2000].

Still from the EvE balance point-of-view, the parent population represents which re-
gions of the search space are being currently explored, while the ratio between its size
m and the offspring population size n defines the amount of exploration done by it at
each generation. The ideas and methods proposed for the adaptation of the parent pop-
ulation size are also valid for the size of the offspring population; we refer the reader
to [Jansen et al., 2005] for a comprehensive analysis and some specific proposals for the
dynamic adaptation of this parameter.

3.2.2 Selection Procedures

As for the other parameters, the migration from exploration to exploitation is also related
to the level of selection pressure that is exerted, i.e., less selection results into more explo-
ration, and vice-versa. In the case of the standard tournament selection, for example, as
described in Section 2.3.3, the smaller the tournament size T (i.e., the less individuals are
chosen to participate in the tournament), the more random the selection is; oppositely, the
higher is T , the higher is the chance of considering the best individuals, consequently the
more elitist is the selection process. Along the same lines, the probability t of selecting the
best individual between the two chosen individuals in the stochastic tournament selection
can range from a totally random selection (t = 0.5) to a completely elitist strategy (t = 1).

However, the control of such selection pressure is not ruled simply by the setting of
these parameters. Indeed, it is defined by the combined effects of both parent and replace-
ment selection procedures, not mentioning other interacting effects, such as the population
size [Eiben et al., 2006]. This complexity might be the reason why so few references can be
found on the dynamic adaptation of the selection pressure. In [Herrera and Lozano, 1998],
a fuzzy model is used to automatically control the tournament size, based on the geno-
typic and phenotypic diversity measures; more recent works propose [Eiben et al., 2006]

and better empirically validate [Vajda et al., 2008] a hybrid self-adaptive tournament size,
which achieves much better results than the fuzzy model. It is referred to as hybrid by the
fact that the parameter control is done by a combination of self-adaptation and feedback-
based or adaptive control (see Section 3.3.2 for a brief overview of the different ways of
doing parameter control). After the proof-of-principle presented on these latter references,
the use of parameter control for selection methods has shown to be a viable path to be
further explored towards more efficient and easier-to-tune EAs [Vajda et al., 2008].
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3.2.3 Offspring Production

In the procedure for offspring production, prod, the variation operators need to be defined
according to the representation being used, in order to be able to generate feasible solu-
tions. The application of these operators directly impact the EvE balance, consequently
affecting the effects provided by all the previously mentioned parameters [De Jong, 2007],
as follows: while the selection pressure tends to reduce the population diversity, varia-
tion operators are responsible for counter-balancing this effect by, as their name says,
introducing variation into the population. The quantity of novelty to be possibly intro-
duced, however, depends on the population size and on the level of diversity in the current
population.

Such correlation between the parameters makes it very complex to decide which oper-
ators should be included in the EA algorithmic framework for a given problem, and how
to set their sub-parameters. In addition to this possible correlation, there is the stochas-
tic nature of the underlying algorithm. These issues make it very difficult to predict a
priori how a given operator (with a given configuration) will behave during the search
process. Besides, different operators (or different configurations of the same operator)
might perform differently at different stages of the search, according to the characteristics
of the region of the fitness landscape currently being explored by the population. See, for
instance, how the performance of each operator varies on the simple OneMax problem,
presented in Section 6.4.2.

An alternative is to take this decision out of the user’s burden by automatically adapt-
ing the internal parameters of a given operator. In the context of ESs, for example, the
variance of the Gaussian mutation operator has been automatically adapted since the early
days, starting with the “1/5th success rule” [Schwefel, 1975], until the advent of the very
popular and current state-of-the-art CMA-ES [Hansen and Ostermeier, 2001]. This latter
is, indeed, the most (and almost unique) successful case of a parameter control technique
within EAs to date, after more than 30 years of research in the area [De Jong, 2007].

Another plausible approach is to maintain a collection of operators, and to dynam-
ically select the ones that are affecting the search process in a more beneficial way
[De Jong, 2007]. The selection of which operator among the several available opera-
tors should be used, what we here refer to as Adaptive Operator Selection (AOS), is
representation-independent. Accordingly, the AOS methods proposed in this thesis can
be applied to any of the existing or newly proposed EAs1 – as a representative set, in
Chapter 6 we show their use within GAs and DE. Following the EvE intuition, ideally,
the dynamic selection of operators should promote the use of the more exploratory opera-
tors in the beginning, preferring the less disruptive ones (exploitation) in the later stages
of the search. An extensive bibliographic review on this, which is the central topic of this
thesis, will be presented in Chapter 4.

1Indeed, the proposed AOS techniques can also be extended to other local search heuristics, but this
discussion is out of the scope of the current Section.
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3.2.4 Stopping Criterion

The stopping conditions do not directly affect the EvE balance, although possibly affecting
the setting of other parameters. This is a clear example of a representation-independent
component that could be defined in a more autonomous way, although depending on a
representation-based criterion, the population diversity. Anyway, works proposing the
dynamic adaptation of this parameter were not found in the literature. Fixed strategies
are commonly used, being defined after an expensive off-line tuning phase (see Section
3.3.2) or, more frequently, via intuition and/or based on the budget constraints.

3.2.5 Representation

One of the main choices is very probably how to represent (and consequently manipulate)
the candidate solutions of a given problem. Although greatly affecting the performance
of EAs, the representation is very often defined a priori, guided by a large body of liter-
ature [De Jong, 2007]. Such definition is often static, with very few works considering its
dynamic adaptation during the search process.

The effects of the adaptation of the representation can be said to be two-fold. On
the one hand, it can be used to improve the effectiveness of operators, by adapting the
representation according to the characteristics of the operator. For instance, in the Messy-
GAs [Goldberg et al., 1991], the position of the genes on the chromosome are constantly
modified while solving the problem, in order to maintain the 1-point crossover operator
at a good level of performance throughout the search process. On the other hand, it can
also be used to bring (or contribute into maintaining) invariance properties to the EAs, as
in the recent Adaptive Encoding approach [Hansen, 2008]. Based on the CMA-ES, this
method provides to any continuous search algorithm the invariance property with respect
to rotation over a given problem function.

3.3 Classification of Parameter Setting Techniques

Very different parameter setting methods have already shown their usefulness in the liter-
ature by automatically setting representation-independent and also algorithm-specific pa-
rameters of EAs. A classification of these techniques, proposed in [Eiben et al., 1999], and
later revised in [Eiben et al., 2007], is very well-accepted by the community, as acknowl-
edged by the number of citations it received. Since it is used to classify the methods pro-
posed in this work, it will be reminded in the following, for the sake of self-containedness.

It categorizes the parameter setting methods according to four aspects, listed as follows:
(i) Which parameter is changed? (ii) How the changes are made? (iii) Which evidences
guide the changes? (iv) And which is the scope of the change? The two former aspects
are general, while the two latter regard only the on-line parameter control methods. Each
of these aspects will be briefly discussed in the following.
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3.3 Classification of Parameter Setting Techniques

3.3.1 Which parameter is changed?

The first criterion adopted for the classification concerns which component or parameter
of the EA is being changed. Although there is no standard list of parameters, we consider
here the parameters described in Section 3.2.

As already mentioned, each of the listed parameters might also have some sub-
parameters, e.g., the number of bits to be flipped by the bit-flip mutation operator, the
tournament size for the tournament selection, etc. These sub-parameters are neglected
here; the objective of this classification is rather to be able to easily locate, within the
standard EA loop, which steps are affected (hopefully improved) by the proposed changes.

The Adaptive Operator Selection techniques proposed in this work provide to the user
an autonomous control of the use of the available variation operators. This can be seen as
an adaptation of their application rates (despite the fact that the proposed bandit-based
techniques, presented in Chapter 5, do not rely on probabilities for the operator selection).

3.3.2 How the changes are made?

The changes in the parameter values can be made, mainly, in two different ways, as
illustrated in Figure 3.1: before the main run of the algorithm on the given problem,
referred to as off-line or external parameter tuning; or during the run, while solving the
problem, referred to as on-line or internal parameter control. A brief description about
each of them will be presented in the following.

Figure 3.1: Classification of parameter setting methods, from [Eiben et al., 1999].

Off-line or External Parameter Tuning

Methods that perform off-line or external tuning determine a priori the appropriate pa-
rameter values, based on the results of several runs of the given algorithm. The algorithm
to be tuned is usually considered as a black box, with the tuning method guiding the
exploration of the search space of the parameter values. Off-line tuning methods can
be further sub-divided into two main classes: pure statistical methods, and optimization
methods, which treat the parameter tuning as an optimization problem itself.
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Starting with the statistical methods, the most basic (and computationally expensive)
way of doing so lies in the execution of a complete Design of Experiments (DoE) process,
which is also referred to as a full factorial design, or even as a brute-force approach:
the range of possible values for the parameter under consideration are discretized into m
candidate configurations, each of them is independently assessed n times, and the best
configuration is extracted according to some ANOVA-like statistical test over this m× n
performance data. In practice, it becomes very computationally expensive to tune even
just a few parameters. For instance, by considering only 4 parameters, each parameter
with 5 possible values, it will already lead to 54 = 625 candidate configurations to try out
(not considering possible cross-influences between parameters).

The Racing techniques [Birattari et al., 2002; Yuan and Gallagher, 2004] do basically
the same, but in a much less time-consuming way, as follows. As in DoE, the parameter
values are also discretized into m candidate configurations. But, as soon as a candidate
configuration is statistically found to be significantly worse than the current best config-
uration (after some runs, depending on the variance of the achieved results), there is no
need to keep further assessing it; this configuration is thus eliminated from the tuning
process. In this way, the computational resources are more efficiently used, focusing just
on the most promising candidate configurations, consequently leading to lower variance
performance estimates for them. The use of this approach results into important time
savings, as illustrated in Figure 3.2. The x-axis Θ represents the number of remaining
candidate configurations, and the y-axis “i” shows the number of evaluations or “racing
laps” done for each of them; the amount of computation needed for both, the F-Race
[Birattari et al., 2002] and the brute-force approaches, are represented by the areas of
their respective surfaces.

Figure 3.2: A visual representation comparing the amount of computation needed by
the brute-force approach (dashed rectangle) and the F-Race method (shadowed area),
reproduced from [Birattari et al., 2002].

A prominent example of Racing techniques is the F-Race [Birattari et al., 2002], which
uses the “Friedman’s two-way analysis of variance by ranks” as statistical test to eliminate
candidate configurations. This is the method used to tune all the hyper-parameters of the
proposed and baseline AOS techniques for the empirical comparisons that will be presented
in Chapter 6.

Although saving a significant amount of computational budget, the use of the F-Race
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technique can become computationally prohibitive whenever there is a large number of
parameters and a wide range of possible values for each parameter, as some initial runs
need to be done for each candidate configuration before the first elimination round. A
simple alternative proposed to this problem is the use of a sampling of the whole set of
configurations [Balaprakash et al., 2007]. In case a priori knowledge about the configura-
tion search space is available, it can be used to define the probabilities of sampling each
configuration; however, as this is usually not the case (and remembering that a priori
information might also include a wrong bias in the search), the authors propose the use
of a completely random sampling of the configurations. The resulting method is referred
to as Random Sampling Design F-Race (RSD/F-Race) [Balaprakash et al., 2007].

A different kind of approach for the parameter tuning problem, as previously men-
tioned, is to consider it as an optimization problem on its own: by varying the pa-
rameter values, the objective might be to optimize some measure such as the perfor-
mance of the algorithm over a given problem or class of problems, or its robustness
with respect to several problems, etc. Based on this, it becomes straightforward to
think about the use of optimization methods for this task, thus at a higher level of
abstraction, commonly referred to as the “meta” or “hyper” level. EAs themselves
have already been used to do so, defining the so-called Meta-EAs [Clune et al., 2005;
Yuan and Gallagher, 2007]. The problem in this case lies in how to define the parameters
of the EA in the meta-level.

The ParamILS [Hutter et al., 2009] method uses an iterated local search algorithm to
explore the neighborhood of the best parameter values found so far, using some random
perturbations and restarting the search from time to time (according to a user-defined
probability) to enforce a better coverage of the search space. Its very general idea, com-
bined with an adaptive limit of the time spent for evaluating individual configurations,
enables it to be used on very different situations. Indeed, it was already shown to efficiently
tune algorithms with up to 1037 possible configurations [Hutter et al., 2009].

Along the same lines, another popular optimization method used to off-line tuning,
the Sequential Parameter Optimization (SPO) [Bartz-Beielstein et al., 2005], combines
modern statistical approaches for deterministic algorithms, as the Design and Analysis
of Computer Experiments (DACE), with classical regression techniques, in order to tune
stochastic algorithms such as EAs. The set of candidate configurations being assessed is
constantly refined during the tuning procedure, what is done by means of Gaussian pro-
cesses, with some configurations being eliminated and new ones being inserted in the pool
according to the current model of the parameter space. At a higher level of abstraction,
rather than simply a tuning method, SPO can be seen as a methodology for the empir-
ical analysis of stochastic optimization algorithms, providing to the experimenter a very
well-defined twelve-step procedure.

Another model-based optimization method applied to parameter tuning is the Iterated
F-Race (I/F-Race) [Balaprakash et al., 2007; Birattari et al., 2009], which is yet another
improved variant of the F-Race. Starting from the initial set of possible parameter values
for each parameter (as done in the original F-Race), at each iteration, some efficient
configurations are used to update a probabilistic model about the configurations search
space. This model is then used to generate new candidates, consequently biasing the search
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towards the most promising parameter configurations. The I/F-Race is more complex, but
much more efficient than the RSD/F-Race approach.

A very different approach is implemented by the Relevance Estimation and Value Cal-
ibration (REVAC) method [Nannen and Eiben, 2007]. It uses Shannon and differential
entropy in order to find parameters with higher impact on the performance of the algo-
rithm, while also estimating the utility of their possible values. Thus, besides tuning the
parameters of the algorithm, it provides to the user a high-level information about their
relevance, which can in turn be used in order to better allocate the resources for their
calibration, e.g., by providing more resources for the tuning of the most important or
sensitive parameters.

All these methods have already proved their efficiency and usefulness in different ways
in the literature. An advantage provided by them is that, as they use only generic per-
formance measures, they are not limited to EAs, being possibly applied to many other
stochastic algorithms, while being also very easily combined. In [Smit and Eiben, 2009],
for instance, an extensive empirical comparison between different pure and hybrid off-line
tuning methods is presented, including meta-EAs, REVAC, SPO and Racing. However,
given the stochastic nature of EAs, each performance assessment corresponds in fact to
the average of a few evolutionary runs, and this makes the off-line tuning a very expen-
sive procedure. Furthermore, static settings are usually provided by these methods (the
parameter value is fixed along the run), whereas the optimal setting likely depends on the
local landscape being explored by the population (see, e.g., [Eiben et al., 2007, p.21] and
references therein).

On-line or Internal Parameter Control

Internal parameter control methods work directly on the values of the parameters while
solving the problem, i.e., on-line. Such kind of mechanisms for modifying parameters
during an algorithm execution were invented early in EC history, and most of them are
still being investigated nowadays. Indeed, there are at least two strong arguments to
support the idea of changing the parameters during an EA run:

• As evolution proceeds, more information about the algorithm behavior within the
current fitness landscape is known, so it should be possible to take advantage of
it. This applies to global (e.g., knowing how rugged is the landscape) and to local
properties (e.g., knowing whether a solution has been improved lately or not).

• As the algorithm proceeds from a global (early) exploration of the landscape to a
more focused, exploitation-like behavior, the parameters should be adjusted to take
care of this new reality. This is quite obvious, and it has been empirically and
theoretically demonstrated that different values of parameters might be optimal at
different stages of the search process (see [Eiben et al., 2007] and references therein).

The different approaches that have been proposed to internally adapt the parameters
can be gathered into three categories, depending on the type of information used for the
adjustment of the parameters values, as presented in Figure 3.1. Each category will be
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briefly reminded in the following, including some examples in the context of adaptation
of variation operators.

Deterministic parameter control methods implement a set of deterministic rules with-
out any feedback from the search. This is, in general, hard to achieve, because of a simple
reason: they rely heavily on knowing beforehand how long the EA will take to achieve a
given target solution with the running algorithm, what can not be easily predicted. But
even if it were, the way to balance exploration and exploitation can hardly be guessed.
This situation is worsened by two facts: first, given the stochastic nature of EAs, there
is usually a big variance between different runs on the very same problem; and second,
these methods often require additional parameters that are used to tune the deterministic
parameter itself (starting with the total number of generations the algorithm will run),
and even though these parameters can be considered second-order, their influence is never-
theless critical. Given these difficulties, these methods were mainly used in the early days
of research in the area, as in [Hesser and Männer, 1990], in which a theoretically optimal
schedule was proposed to deterministically adapt the mutation application rate, based on
the elapsed number of generations.

Since our knowledge about the way the search should behave is always limited, it is
sometimes possible, and advantageous, to let evolution itself tune some of the parame-
ters. This kind of parameter control approach, referred to as Self-Adaptive, adjusts
parameters “for free”, i.e., without any direct specification of the user. In other words,
individuals in the population might contain “regulatory genes” that control some of the
parameters, e.g., the mutation and recombination rates; and these regulatory genes would
be subject to the same evolutionary processes as the rest of the genome [De Jong, 2007].
During quite some time in the 90s, self-adaptation was considered as the royal road to
success in EC. First of all, the idea that the parameters are adapted for free is very
appealing, and the parallel with self-regulated genes is another suggestive argument. On
the practical side, as self-adaptive methods require little knowledge about the problem
and, what is probably more important, about the way the search should proceed, it some-
times remains as the only way to go when nothing is actually known about the problem
at hand. As an early example, in [Bäck, 1992], the representation of each individual is
extended by 20 additional bits, which are used to encode its own self-adapted mutation
rate, a real value between 0 and 0.5. In [Spears, 1995], a single bit is used to represent
which of two crossover operators (uniform or 2-points) should be applied, resulting in a
much better performance than the one achieved by the static use of a single operator. A
very recent and comprehensive review of the current state of research on self-adaptation
methods, with special hints for its use within combinatorial problems, can be found in
[Smith, 2008]; another review, more focused on continuous optimization, can be found in
[Kramer, 2010]. Although having shown to be an efficient approach in many different sit-
uations, the main drawback is that the algorithm needs to explore, in parallel, the search
space of the variables of the problem and also the search space of the parameter values,
what potentially increases the complexity of the search.
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Then, it becomes clear that whenever some decisions can be made to help the search
following an efficient path, this should be done. Adaptive or Feedback-based methods
follow this rationale, being the most successful approaches nowadays in on-line parame-
ter control. These methods are based on the monitoring of particular properties of the
search/optimization process, and use changes in these properties as an input signal to mod-
ify the parameter values. The most prominent example of adaptive methods, and one of
the main successful stories of automatic parameter control within EAs, is that of CMA-ES
[Hansen and Ostermeier, 2001]. In this method, information about the gradient and about
the trajectory of the search are used to automatically adapt the step-size and the shape
of the ES mutation operator. Lots of achievements have been reported also by the Opera-
tional Research and Local Search communities, in which the adaptive methods are referred
to as “Reactive Search”; a recent survey on this can be found in [Battiti et al., 2008]. The
main contributions of this work, the Adaptive Operator Selection (AOS) methods proposed
in Chapter 5, are included in this latter category.

3.3.3 Which evidences guide the changes?

When using adaptive parameter control techniques, the parameter values are adapted
based on the monitoring of some measures of the progress of the search. A further criterion
commonly used to classify these techniques is the kind of evidences which are used to
guide the changes done while solving the problem [Smith, 1998]. Using as example the
AOS techniques, this feedback from the search progress can be provided in two different
ways.

The most common Credit Assignment scheme for AOS considers the real values of
the fitness improvements achieved by the application of each operator. Starting from the
common Instantaneous and Average values, up to the use of Extreme values supported
by us (see Section 5.2.2), all of them reward the operator (and consequently guide the
changes in the operators preferences) based on raw values, which are absolute evidences.

Differently, the Credit Assignment schemes that use ranks over the raw values of the
fitness improvements (see Section 5.2.4) control the choice of operators based on the rank-
ing of the same fitness improvements. Thus, it is not the magnitude of the improvement
brought by the application of the operator that matters, but rather how good it is with
respect to the others, what is referred to as relative evidence.

3.3.4 Which is the scope of the change?

Yet another aspect used to classify parameter control techniques lies in the scope of the
adaptation being done. According to [Angeline, 1995], the adaptation might happen at
the level of the population, the individual, or the component. This factor is not only
related to the parameter control method itself, but also to the parameter that is being
adapted, as acknowledged in [Eiben et al., 2007].

At the population level there are the methods that adapt global parameters, i.e., pa-
rameters affecting the whole population. A very early example of adaptive method at
the population level is the so-called “1/5th success rule” [Schwefel, 1975]: if the applica-
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tions of the mutation operator succeed in generating offsprings that are fitter than their
respective parents in more than 1/5 of the trials, the mutation step-size should be in-
creased by an user-defined fixed ratio, decreased otherwise. The recent state-of-the-art
CMA-ES [Hansen and Ostermeier, 2001], which adapts the step-size and the “shape” (de-
fined by a Hessian matrix) of the mutation operator based on the results of its latest
applications, is another example of an adaptive method affecting the whole population.
The AOS techniques presented in this thesis also act at the population level, adapting
the operators application rates that are globally used for the generation of every new
candidate solution. Rather than adapting somehow the operators application step, in
[Eiben and van Hemert, 1999], the SAW method is proposed to globally adapt the fitness
function for constraint satisfaction problems. This is done by dynamically changing the
weight of each gene (representing a constraint) on the fitness function, with the harder
constraints affecting more highly the fitness evaluation, consequently resulting in a higher
reward for the creation of individuals that succeed in satisfying them.

The methods at the individual level control parameters that locally affect each individ-
ual. As an example, the self-adaptive methods that encode the (GAs) operator application
rates [Spears, 1995] or the (ESs) mutation step-size [Beyer, 1995], within the genotype of
each individual, affect only the candidate solution to which they are attached to. A recent
example of adaptive method that affects each solution individually is the Multi-Objective
(MO) CMA-ES [Igel et al., 2007]: briefly, the same adaptation implemented by the origi-
nal CMA-ES is used to adapt the mutation operator carried by each individual, whenever
its application is successful, i.e., whenever it succeeds in generating a fitter offspring.

At the lowest level of abstraction considered here, there are also methods that adapt
parameters within an individual, but at the so-called component level. Exemplifying,
in [Schwefel, 1995], a self-adaptive ES was proposed, in which each element of the real-
valued vector representation has a variance parameter attached to it; thus, each gene of
the individual is mutated according to its own self-adapted variance parameter.

The hyper level could also be considered here, as recommended in [Maturana, 2009],
aggregating the recent methods that control the usage of several heuristics in dif-
ferent ways. This kind of approach is commonly referred to as hyper-heuristics
[Burke et al., 2010].

3.4 Discussion

As discussed throughout this Chapter, the performance of the EAs is directly related to
how the Exploration versus Exploitation (EvE) balance is addressed by the algorithm: if
too much exploration is done, the search will very probably take too long to achieve the
optimum; while if too much exploitation is done, the search is very likely to prematurely
converge to a local optimum. To achieve an acceptable performance, a compromise be-
tween both terms needs to be found, what is controlled by some of the EA parameters, as
described in Section 3.2.

After the No Free Lunch theorem [Wolpert and Macready, 1997], it is acknowledged
that there is no algorithm that performs best over all optimization problems. Considering
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two instances of the same EA with different parameter settings as two different algorithms,
it states thus that there is no winner universal parameter setting, i.e., specific problems
require specific parameter settings. These findings lead to a kind of dilemma: in order
to manually setup the parameters of the EA according to the problem at hand, the user
would need to analyze and understand the characteristics of the problem; while one of the
main reasons for the use of EAs and other meta-heuristics is, indeed, the lack of knowledge
about the problem. Avoiding such dilemma, by automating the task of parameter setting,
is thus one of the main motivations for research on this topic.

After the analysis of the influence of the parameters in the performance of EAs, how-
ever, it can be said that almost all of them affect the EvE balance somehow, with one
parameter counter-balancing or intensifying the effects of the other. This interaction makes
more complex the task of automatic parameter setting, being one of the main reasons why
just very few works try to address more than one parameter at the same time.

Parameter setting in EAs can be done mainly in two different ways, as described in
Section 3.3. Off-line parameter tuning methods consider the EA as a black-box, using only
the performance of the algorithm (usually averaged over several runs given its stochastic
nature) in order to choose the best set of parameters, which are usually “statically” used
during the whole search process; while, intuitively, the EvE balance of the algorithm
should be continuously modified while solving the problem, gradually switching between
exploration and exploitation according to the progress of the search. This on-line dynamic
adaptation is what is provided by the so-called parameter control methods, category in
which the contributions proposed in this work are included. It is important to note that,
even in the case of static problems, they are dynamic from the point of view of operator
selection. Needless to say, an even higher payoff might be achieved in the cases in which the
problem itself is dynamic, with its fitness landscape changing over time [De Jong, 2007].

The methods proposed for the automatic parameter setting, however, present their
own parameters that also need to be defined by the user, referred to as hyper-parameters
in the following of this text. Although it might seem not so interesting to replace some
parameters by others, the hyper-parameters are at a higher level of abstraction, being
thus (hopefully) more easily “understood” by the user and less sensitive than the original
EA parameters with respect to their tuning. For example, in the case of the Adaptive
Operator Selection techniques proposed in this work, described in Chapter 5, two or three
hyper-parameters (depending on the method) need to be configured; while in the original
EA framework the user would need to define a very complex and problem-specific scheduler
in order to have the same kind of adaptive behavior. These hyper-parameters can then
be tuned by off-line tuning methods, as done for the experimental comparison presented
in Chapter 6; or extra layers of parameter control could be added, what is always worth
whenever the assumptions about the easier comprehension and smaller sensitivity of the
higher-level parameters with respect to the lower-level ones are held.

Although not being part of the scope of this thesis, another viable path for the param-
eter setting in EAs would be to try to build a knowledge base correlating somehow the
parameters of the problem instances solved (the so-called problem descriptors) with the
respective parameters used by the algorithm to achieve good performance. In this way,
after logging data from a “sufficient” amount of instances and parameters, whenever a new
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instance that needs to be solved is recognized as part of a certain class of problems, the
parameter values that were already optimized to a previously seen instance of the same
class can be re-used, thus no need of further tuning it. Such kind of approach has been
successfully applied in the domain of SAT problems (see, e.g.,[Hutter and Hamadi, 2005]).
To the best of our knowledge, however, there does not exist yet a well-established set of
descriptors for the kind of instances commonly tackled by EAs, being thus a possible path
for further research.
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Chapter 4. Adaptive Operator Selection

In this Chapter, we focus on the parameter setting problem addressed
by our contributions, referred to as Adaptive Operator Selection
(AOS). The components needed to do AOS, namely, the Opera-
tor Selection and the Credit Assignment, are described, and some
examples found in the literature are surveyed.

4.1 Introduction

In order to efficiently apply an EA to a given problem, there are commonly two design
choices that need to be taken by the user concerning variation operators: (i) which of
the existing operators should be used by the evolutionary scheme for the generation of
new solutions, and (ii) at which rate each of the chosen operators should be applied. As
discussed in Section 2.3.2, there are different kinds of operators for each representation
scheme, namely mutation and crossover operators (not mentioning the problem-specific
and/or the local search operators). Each one of them has its own characteristics, affecting
the Exploration versus Exploitation (EvE) balance of the search process in its own manner,
as also briefly discussed in Section 3.2.3. This scenario makes these operator-related choices
very sensitive and complex, as follows.

First of all, the performance of a given operator usually depends on the characteristics
of the problem being solved. Since it is very difficult to foresee how well a given operator
will perform on the problem at hand, the natural choice in this sense would be to use an
off-line tuning technique, such as the ones surveyed in Section 3.3.2, in order to find out
which operator(s) should be used and how. Although being computationally expensive,
these off-line methods usually succeed in providing to the user the best static strategy,
consisting of one or a few operators that are applied at fixed rates during the whole search
process.

The performance of the operators, however, does not solely depend on the global
characteristics of the problem, but also on the local characteristics of the region of the
search space that is being currently explored by the population, which can be more adapted
or not to the characteristics of the operator. Finally, their performance also depends on the
state of the search process, i.e., if it is approaching or not the optimum, how diverse the
population is, etc. For example, following the very basic intuition of the EvE balance, more
exploratory operators might achieve better performance in the early stages of the search,
while more exploitation-like/fine-tuning operators might bring better improvements to the
search when it is getting closer to the optimum. These issues are empirically confirmed
by the results that will be depicted in Chapter 6: in most of the problems tackled, there
is no single operator that is the best during all the search process. Based on this and
on the stochastic nature of the underlying algorithms, the static strategies provided by
off-line tuning methods tend to perform sub-optimally. Even if the search problem being
tackled is static, the operator selection problem is dynamic; so, ideally, the choice of the
best operator to be applied should be continuously adapted while solving the problem,
i.e., in an on-line fashion.
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On-line parameter setting methods are commonly referred to as Parameter Control
[Eiben et al., 2007]. There are different ways of dynamically doing so, namely, in a self-
adaptive or in an adaptive manner, as reviewed in Section 3.3.2. Self-adaptive methods
have the advantage of tuning the parameters “for free”, by the evolution itself, adapting
the best operator according to the region being “locally” explored by each individual
solution; however, besides augmenting the overall complexity of the problem to be solved
by aggregating the solutions search space with the parameters search space, these methods
are intrinsically linked to the EA structure. Oppositely, adaptive methods might be more
complex to implement, while presenting a few hyper-parameters that also need to be tuned;
but they consider the problem search space as it is. Since the adaptation of the parameters
is usually guided by general assessments of search progress, the adaptive methods can be
easily extended to other meta-heuristics and/or stochastic local search algorithms.

4.2 Adaptive Operator Selection

Based on all the above arguments, we have decided to tackle the operator selection problem
with adaptive parameter control methods, thus aiming at the on-line selection of the
best operator, i.e., while solving the problem. We refer to such paradigm as Adaptive
Operator Selection (AOS). Figure 4.1 depicts a high-level view of how AOS methods can
be integrated within an EA, which can be read in a general way as follows.

Figure 4.1: The Adaptive Operator Selection general scheme.

1. For the generation of each new trial solution (or after n trials or generations), the
EA asks the AOS which of the available operators should be applied.

2. The AOS returns the operator to be used, according to its Operator Selection

mechanism, which selects one operator based on the recent performance of all oper-
ators, usually represented by an estimate of their empirical qualities.

3. The selected operator is applied by the EA, a new solution is generated, consequently
impacting somehow the search, e.g., generating an offspring better than its parent
(fitness improvement), varying the mean diversity of the population, etc.
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4. This impact assessment is transformed into a credit (also referred to as reward),
according to the implemented Credit Assignment scheme.

5. This credit or reward is then used to update the empirical quality (or performance)
estimates kept for each operator by the Operator Selection scheme, which will be
used the next time it needs to select one of the operators.

6. This loop happens continuously while solving the problem, in an on-the-fly reinforce-
ment learning fashion.

As can be seen from this description, designing an AOS method requires the definition
of two components: (i) the Credit Assignment scheme, that assigns credit to an operator
based on the impact brought by its recent application on the current search/optimization
process; and (ii) the Operator Selection mechanism, which selects the next operator to be
applied, based on the knowledge built by the stream of these empirical assessments. In
the following, these components will be separately discussed, and some existing methods
will be surveyed.

4.3 Credit Assignment

Several Credit Assignment mechanisms have been proposed in the literature, following
Davis’ seminal paper [Davis, 1989]. They differ mainly in three aspects: (i) how the
impact of the operator application should be measured; (ii) how to assign credit based on
these impact assessments; and (iii) to which operator(s) the credit should be assigned to.
Each one of these aspects will be briefly detailed and exemplified, respectively, in Sections
4.3.1 to 4.3.3.

Finally, although the most common impact measure is the fitness improvement, di-
versity becomes important as well when tackling multi-modal problems. The Compass
[Maturana and Saubion, 2008a], which is a method to aggregate both measures, is used
in our experimental section, within a GA applied to SAT problems (see Section 6.5). For
the sake of self-containedness, this method will be described in Section 4.3.4.

4.3.1 How to measure the Impact?

In order to measure the impact of the application of an operator on the search pro-
cess, most approaches consider the improvement achieved by the fitness of the gen-
erated offspring with respect to a reference value. This reference might be a lo-
cal value (e.g., the fitness of its parents [Tuson and Ross, 1998; Wong et al., 2003;
Ho et al., 1999]), or a global/population-based value (such as the fitness of the current best
individual [Davis, 1989; Lobo and Goldberg, 1997], or the median or some other quantile
fitness [Julstrom, 1995; Julstrom, 1997]). In [Barbosa and Sá, 2000], an aggregation of
both local fitness improvement and global improvement (with respect to the 90% quantile
of the current fitness distribution) is used to assess the productivity of the operators.

Instead of directly using the raw values of the fitness improvements to assess the
impact, other approaches measure a relative value. For instance, in [Giger et al., 2007],
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the improvement of the offspring with respect to the parent is divided by the gap between
its fitness and the fitness of the current best operator (in the case of minimization; the
inverse otherwise).

Other authors consider a much simpler version of impact measure: the fact that the
operator application was successful or not. A successful application means that the gener-
ated offspring has a better fitness than its reference value. In [Niehaus and Banzhaf, 2001],
the success over the parents is considered; while in [Luchian and Gheorghies, 2003], the
success over the best, the success over the parents, plateau walks (same fitness than its
parents) and worsenings (fitness lower than its parents), are all aggregated in order to
accurately characterize the impact of an operator application. Although not being explic-
itly mentioned, in [Julstrom, 1995; Julstrom, 1997] only the measure of success is used,
resulting in a 1 whenever an improved offspring is generated, 0 otherwise.

Different measures, such as the rank of the offspring within the current population, or
the age of the solution in number of generations (in this case the adaptation happening
every n generations) can also be found in [Whitacre et al., 2006]. In most approaches,
when there is no improvement, the offspring is simply discarded or, most commonly, the
operator application is evaluated as having a null impact. This latter choice is the one
employed by all AOS techniques developed in this work, unless stated otherwise.

In the case of multi-modal optimization, another relevant impact measure concerns the
population diversity; a minimal level of diversity should be enforced in order to avoid pre-
mature convergence. To measure diversity, the Hamming or the Euclidean distances are
commonly used. In [Giger et al., 2007], the relative fitness improvements and the mean
Euclidean distance are independently used, depending on the needs of the search with re-
spect to exploitation or exploration. Along the same lines, [Maturana and Saubion, 2008a]

proposed an impact measure called Compass, defined as a weighted sum of fitness improve-
ment and mean diversity (Hamming distance) variation. In [Maturana et al., 2010b], two
different aggregation methods considering both impact measures were proposed, based
directly on the Pareto Dominance paradigm.

4.3.2 How to assign Credit?

Based on the impact measures received, at some point a credit needs to be assigned to
the operators, in order to update the empirical quality estimates that summarize their
performance. This credit can be the instantaneous value, i.e., the impact measure re-
ceived after its most recent application; but, given the stochastic nature of the underlying
algorithm, this tends to be very unstable and noisy. This is often remedied by an ag-
gregation of credits in the Operator Selection side, as done in [Lobo and Goldberg, 1997;
Barbosa and Sá, 2000].

A more robust, and by far the most common approach is to use as credit the average
of the latest W applications of each operator, W being the size of the sliding time window.
The impact measures of the operator are hence aggregated over a given time period, as
done in [Davis, 1989; Julstrom, 1995; Julstrom, 1997; Ho et al., 1999; Wong et al., 2003;
Giger et al., 2007; Maturana and Saubion, 2008a; Maturana et al., 2010b]. In case the im-
pact measure being used is the success, i.e., 0 or 1 depending if it succeeded in generating
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a fitter offspring or not, the average is usually used, being simply referred to as the success
rate [Niehaus and Banzhaf, 2001; Luchian and Gheorghies, 2003] of the operator. Though
the instantaneous version can be viewed as an average over a window of size 1, both will be
distinguished in the remainder of this text, termed respectively Instantaneous and Average
Credit Assignment schemes.

A very different approach is the one proposed in [Whitacre et al., 2006], which as-
signs credit to the operators based on their ability to generate outlier solutions, fol-
lowing some statistics over the received impact measures. The underlying idea is
that the generation of rare but highly beneficial improvements matters as much as,
or even more than frequent small improvements. A simpler adaptation of this pro-
posal was introduced into our AOS framework [Da Costa et al., 2008; Fialho et al., 2008;
Fialho et al., 2009b], and will be considered here too: the credit is set to the maximum
fitness improvement over a sliding time-window of size W .

For all these approaches, in case the mentioned statistics are done over the raw values
of the received impact measures, the AOS methods tend to have a problem-dependent
behavior, as different problems have different fitness distributions (what alters the range
of the fitness improvements received), while also presenting different levels of modality
(what also affects the magnitude of the diversity measures). In order to reduce such
effect, a normalization over the raw methods can be used, e.g., the credit received by the
given operator divided by the highest most recent credit received by all operators. Another
yet more robust approach is to discard the raw values, considering their ranks instead.
Both normalization and rank-based approaches, which are part of the contributions to
AOS proposed in this thesis, will be described in detail and analyzed in Chapter 5.

4.3.3 Whom to assign Credit to?

Another independent issue that has been addressed in different ways in the literature is
the choice of the operators that should be credited after the generation of a given offspring.
It is unquestionable that the operator used to generate the offspring should be credited;
but some authors consider that the operators used to generate its ancestors should also
receive a share of its credit, somehow claiming that the generated offspring is as good as it
is not only because of its parents and the current operator, but also because of how good
were its ancestors and the operators used to generate them.

This is usually done following a kind of bucket brigade algorithm, the credit be-
ing assigned with a decay factor for each level of ancestry [Davis, 1989; Julstrom, 1995;
Julstrom, 1997]. No clear indication, however, about the benefits of this approach can
be found in the literature to the best of our knowledge. In [Barbosa and Sá, 2000], for
example, the use of ancestors (up to 2 levels) was beneficial in some of the continuous
benchmark functions considered, while resulting in worse results on other functions.

Hence, the methods developed during this thesis do not consider ancestry for the Credit
Assignment : only the operator that has been applied to generate the given offspring is
rewarded.
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4.3.4 Compass: Aggregating Fitness and Diversity

Besides the fitness improvements, the diversity variation can also be considered for the
Credit Assignment, specially when tackling multi-modal problems, in order to reward a
possible tentative of escaping a local optimum. In an empirical analysis of the AOS
schemes within a GA applied to SAT problems (see Section 6.5), we have explored Compass
[Maturana and Saubion, 2008a], a method that assigns credit to the operators based on
an aggregation of both fitness and diversity measures, which works as follows.

A steady-state scheme is used, i.e., the offspring generated after an operator applica-
tion is instantaneously included into the main population, replacing another individual.
Based on this, every time an operator is applied, three impact measures are gathered:
(i) population mean diversity variation (∆D), calculated by means of Hamming distance,
(ii) mean fitness or quality variation (∆Q), and (iii) execution time T , as shown in Figure
4.2.a. The execution time becomes essential when dealing with complex operators, such as
the local search ones used in the Compass original work [Maturana and Saubion, 2008a].

Figure 4.2: Compass credit assignment: Sliding windows of three measures are maintained
(a). Average measures of ∆D and ∆Q are plotted and distance of those points are mea-
sured according to a plane with a slope of Θ (b). Finally, those distances are divided by
the execution time, and the outcome is the credit to be assigned to the operator.

Originally, the average of these values over the last τ applications of each operator is
displayed in a “diversity versus fitness” plot (black dots in Figure 4.2.b, each dot repre-
senting one operator). A user-defined hyper-parameter Θ defines the trade-off between
the exploitation (fitness) and the exploration (diversity) criteria, consequently tuning the
Exploration versus Exploitation (EvE) balance of the operators selection. In practice,
such angle defines the plane according to which perpendicular distances from the dots are
measured. Finally, the credit assigned to an operator is this measured perpendicular dis-
tance (between the dot representing its performance and the plane defined by Θ), divided
by the execution time (Figure 4.2.c). A complete representation of the Compass Credit
Assignment technique in the form of a pseudo-algorithm is presented in Algorithm 4.1.

In the Compass original paper [Maturana and Saubion, 2008a], it is combined with
the Probability Matching Operator Selection scheme (see Section 4.4.1); the resulting
AOS combination is applied to SAT problems, selecting between 6 evolutionary and local
search operators. Later on, we established a collaboration with them, in order to combine
their sophisticated Credit Assignment scheme with our state-of-the-art (by that time)
Operator Selection mechanism, the Dynamic Multi-Armed Bandit (DMAB), which will
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Algorithm 4.1: Credit Assignment : Compass (K,Θ)

1: Dop ←
(

Average(diversityop)

maxi=1...K |Average(diversityi|)

)

// mean normalized by max

2: Qop ←
(

Average(qualityop)

maxi=1...K |Average(qualityi|)

)

3: Vop ← (Dop, Qop) // vector representing op in the plot

4: αop ←
∣
∣
∣atan

(
Qop

Dop

)

−Θ
∣
∣
∣ // angle between vectorop and plane defined by Θ

5: return
(
|Vop|·cos(αop)−mini=1...K{|Vi|·cos(αi)}

Average(exectimeop)

)

// distance to plane divided by time

be described in Section 5.3.2. A summary of the results achieved by this efficient AOS
combination, applied to the same SAT problems, was published in [Maturana et al., 2009a;
Maturana et al., 2010a]. These empirical results will be revisited in Chapter 6; other
examples of schemes using the diversity to calculate the credit to be assigned to an operator
after its application will be recalled in Section 4.5.2.

4.4 Operator Selection

Based on the credits received from the Credit Assignment mechanism after one or more
operator applications, most Operator Selection schemes maintain an up-to-date empirical
quality estimate for each operator, and use it to update their application rates. These
probabilities are then used by the underlying algorithm to select the operator to be applied
the next time it needs to generate an offspring, what is usually done by means of a roulette
wheel-like process, as in the Probability Matching (PM) [Goldberg, 1990] and Adaptive
Pursuit (AP) [Thierens, 2005; Thierens, 2007] methods. Both methods will be detailed in
this Section.

Another possibility to Operator Selection will be introduced in this work: it is based
on the so-called Multi-Armed Bandit framework [Auer et al., 2002], and uses directly the
empirical quality estimate gathered by each operator together with an explorative term to
deterministically choose amongst the different available operators. This approach is the
basis of all Operator Selection schemes developed during this thesis work, which will be
exhaustively described in Chapter 5.

4.4.1 Probability Matching

Because of its simplicity and reasonable performance, the most widely used to date Op-
erator Selection scheme for AOS is the Probability Matching (PM) [Goldberg, 1990].
Although possibly presenting some very slight variations, and sometimes not be-
ing explicitly mentioned, PM is used in [Davis, 1989; Julstrom, 1995; Julstrom, 1997;
Lobo and Goldberg, 1997; Barbosa and Sá, 2000; Niehaus and Banzhaf, 2001;
Luchian and Gheorghies, 2003; Wong et al., 2003;
Whitacre et al., 2006; Maturana and Saubion, 2008a], to mention a few. Its basic idea
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is that the probability of selecting a given operator is updated proportionally to its known
empirical quality with respect to the others.

This can be mathematically formalized as follows. Let K denote the number of avail-
able variation operators. PM maintains a probability vector (pi,t)i=1,K and an empirical
quality estimate for each operator j noted q̂j,t. At each time t:

1. The j-th operator is selected with probability pj,t, via a roulette-wheel selection
scheme.

2. The selected operator is applied, and a credit rj,t is computed after the Credit As-
signment method at hand;

3. The empirical quality estimate q̂j,t of the j-th operator is then updated to account
for this credit received; this is done using an additive relaxation mechanism with
adaptation rate α (0 < α ≤ 1, the memory span decreases as α increases):

q̂j,t+1 = (1− α) q̂j,t + α · rj,t (4.1)

4. And finally, the probabilities of application of each operator, (pi,t)i=1,K , are updated
to be proportional to the their respective empirical quality estimates, (q̂i,t)i=1,K :

pi,t =
q̂i,t

∑K
l=1 q̂l,t

(4.2)

By updating the operators probabilities in this way, an operator that performs very
badly during a long period of the search will have its application probability decreased to
a very low value, or even zero. Such a situation should be avoided, as it would prevent
the AOS from using this same operator in case it becomes efficient in a later stage of the
search process. For this reason, a minimal selection probability pmin is usually enforced.
The update rule is then re-defined as follows:

pi,t+1 = pmin + (1−K ∗ pmin)
q̂i,t+1

∑K
l=1 q̂l,t+1

(4.3)

A complete representation of the PM Operator Selection technique in the form of a
pseudo-algorithm is presented in Algorithm 4.2.

Discussion: After Equation 4.3, any ineffective operator (not getting any reward) would
have at least a probability pmin of being selected. The best operator (getting maximal
rewards during some time) would be selected with probability pmax = (1− (K−1)∗pmin).
In practice, however, all mildly relevant operators keep being selected, and this hinders
the performance of PM (all the more so as the number of operators increases), as pointed
out in [Thierens, 2005].
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Algorithm 4.2: Operator Selection: Probability Matching (K, pmin, α)

1: for i = 1 to K do
2: pi ← 1.0/K // selection probability
3: q̂i ← 1.0 // empirical quality estimate
4: end for
5: while NotTerminated do
6: if one or more operators not applied yet then
7: op← uniformly selected between the operators not applied
8: else
9: op← ProportionalSelectOperator(p) // roulette-wheel

10: end if
11: Operator op is applied, impacting the search progress somehow
12: rop ← CreditAssignment.GetReward(op)
13: q̂op ← (1− α) · q̂op + α · rop // relaxation update rule
14: for i = 1 to K do

15: pi ← pmin + (1−K · pmin)
(

q̂i
PK

l=1
q̂l

)

// proportional probability update

16: end for
17: end while

4.4.2 Adaptive Pursuit

Originally proposed for learning automata [Thathachar and Sastry, 1985], the Adaptive
Pursuit (AP) method was ported to the AOS context [Thierens, 2005] in order to address
the above shortcoming of PM. The first three out of the four steps describing PM in
Section 4.4.1 are shared by AP: the operators are selected using a roulette-wheel process
over their probabilities; and after receiving the credit from the operator application, the
same relaxation rule is used to update the empirical quality estimates of the operators,
as defined in Equation 4.1. The difference is that, in AP, instead of updating the prob-
abilities proportionally to these estimates (see Equation 4.3), a winner-takes-all strategy
is employed to push forward very quickly the application probability of the current best
operator, noted i∗t , while consequently decreasing the others, as follows:







i∗t = arg maxi=1...K{ q̂i,t }
pi,t+1 =

{
pi,t + β (pmax − pi,t) if i = i∗t
pi,t + β (pmin − pi,t) otherwise

(4.4)

where β ∈ [0, 1] is the learning rate controlling the greediness of the winner-takes-all strat-
egy. The two other hyper-parameters of AP are the same as the ones used in PM: pmin,
that enforces a minimal level of operators exploration, and the adaptation rate α, which
controls the memory span of the Operator Selection scheme. A complete representation
of the AP technique in the form of a pseudo-algorithm is presented in Algorithm 4.3.

To show the gain brought by the winner-takes-all strategy, in [Thierens, 2005], PM and
AP were compared under the light of an artificially generated scenario, choosing between
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Algorithm 4.3: Operator Selection: Adaptive Pursuit (K, pmin, α, β)

1: pmax ← 1− (K − 1) · pmin

2: for i = 1 to K do
3: pi ← 1.0/K // selection probability
4: q̂i ← 1.0 // empirical quality estimate
5: end for
6: while NotTerminated do
7: if one or more operators not applied yet then
8: op← uniformly selected between the operators not applied
9: else

10: op← ProportionalSelectOperator(p) // roulette-wheel
11: end if
12: Operator op is applied, impacting the search progress somehow
13: rop ← CreditAssignment.GetReward(op)
14: q̂op ← (1− α) · q̂op + α · rop // relaxation update rule
15: op∗ ← arg maxl=1...K(q̂l)
16: for i = 1 to K do
17: if i = op∗ then
18: pop∗ ← (1− β) · pop∗ + β · pmax // winner-takes-all probability update
19: else
20: pi ← (1− β) · pi + β · pmin

21: end if
22: end for
23: end while

5 different artificial operators whose reward distributions were modified every ∆T steps.
This artificial scenario, referred to as the Uniform scenario, was also used in our empirical
comparisons, and it will be described into more detail in Section 5.4.1.

Discussion: Although AP showed a performance much superior to PM in the mentioned
artificial scenario, both methods still suffer from two main drawbacks. Firstly, pmin defines
a minimal level of exploration that is kept fixed during all the search process. Ideally, the
surer the Operator Selection scheme is about one operator being the best one, the less
exploration should be done by it, up to no exploration at all as far as the operator found
to be the best remains sufficiently good. A second issue refers to another hyper-parameter,
the adaptation rate α: it is also fixed during all the search process, and this means that
the received credit always has the same fixed weight in the update of the empirical quality
estimates of the operators. But, in case there is a long time one operator has not been
applied, the assigned credit should have a higher weight, in order to quickly make its
empirical quality estimate as up-to-date as possible. Conversely, in the case of an opera-
tor frequently applied, the reward weight should be smaller in order to avoid drastically
affecting its already well-established performance estimate. These issues were part of the
main motivations for the proposal of the Dynamic Multi-Armed Bandit (DMAB) and
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the Sliding Multi-Armed Bandit (SLMAB) Operator Selection techniques, which will be
further discussed, respectively, in Sections 5.3.2 and 5.3.3.

4.5 Some Adaptive Operator Selection Combinations

After separately analyzing the AOS components, namely the Credit Assignment and the
Operator Selection schemes, this Section will survey different approaches found in the
literature for the AOS as a whole, although most of the cited works were already partially
described in the two previous Sections.

The methods discussed here are divided into 5 categories: Section 4.5.1 reviews meth-
ods solely based on the fitness value and its derivations; Section 4.5.2 surveys methods
that also consider diversity, on its own, or aggregated with fitness; and, due to the number
of papers found, methods that use Fuzzy Logic for their operator control are overviewed
in Section 4.5.3 for the sake of completeness, although this kind of approach will not be
addressed in this thesis. Finally, other approaches that do not match any of the mentioned
criteria are surveyed in Section 4.5.4, while Section 4.5.5 gives some examples of the use
of AOS within EAs other than GA.

4.5.1 Fitness-based Approaches

The seminal AOS method, to the best of our knowledge, was proposed in [Davis, 1989].
Davis’ method updates the probability of each operator according to how often its appli-
cation helped improving the best fitness in the population. A complex decay mechanism
is employed to assign credit to the operators that generated the ancestors of the new-
born best individual, up to a pre-defined number of generations. Possibly due to the high
computational complexity for that time, this technique was not assessed on-line, it was
rather used to obtain a non-adaptive time-varying schedule (i.e., a deterministic param-
eter control scheme, as described in Section 3.3.2) for later use [Tuson and Ross, 1998],
which showed to perform better than a GA with fixed operator probabilities.

A similar but much simpler method was proposed in [Julstrom, 1995] and further
assessed in [Julstrom, 1997], referred to as Adaptive Operator Probabilities (ADOPP). The
most significant differences with respect to [Davis, 1989] are: (i) instead of the best fitness,
the median and the 90% quantile of the current fitness distribution are independently tried
as reference values for the measure of the fitness improvement; (ii) the rewarding is not
based on the raw value of the fitness improvement, but rather on the success rate (1 in
case of improvement, 0 otherwise); and (iii) the decay mechanism for the credit assignment
to the ancestors is simply done as (decayancestrylevel × credit). In [Julstrom, 1995], the
ADOPP seems to show good results on a bi-dimensional continuous problem, and on the
Traveling Salesman Problem (TSP), although no comparisons with other techniques are
presented. In [Julstrom, 1997], ADOPP is compared with a static strategy (probabilities
for each operator fixed at plausible values) on the rectilinear Steiner problem, not being
able to achieve better results than it. Note that in both cases, as well as in [Davis, 1989],
in addition to the complex bucket brigade-like Credit Assignment scheme, the Operator
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Selection mechanism used is somehow similar to the PM method, though it is not clearly
mentioned.

In [Lobo and Goldberg, 1997], the PM method is used again. An operator is credited
whenever improvements over the current best solution are achieved. Better performance
is shown with respect to several (static) baseline techniques on the OneMax problem. The
ancestors are not considered by the rewarding scheme, putting into question the use of
this complex and expensive (in terms of memory) procedure. In [Barbosa and Sá, 2000],
a similar method is tried on the continuous domain: the main difference lies in the ag-
gregation of two fitness improvements, one with respect to the parents, and another in
relation to the 90% quantile of the fitness values found in the current population. The use
of ancestors up to two levels is tried, credited in the same way as done in [Julstrom, 1997],
but no clear evidences are reported to support its use when applied on a set of continu-
ous benchmark problems – indeed, in some cases it even degrades the performance of the
underlying algorithm.

A very different approach is proposed in [Hatta et al., 1997]: the crossover operator to
be applied is chosen according to the elite degrees of the individuals selected to be parents.
Based on the assumption that an individual that has a large number of recent ancestors
with a high fitness value also tends to have a high fitness value, the elite degree of an
individual is basically the ratio of the sum of all its “elite ancestors” up to a pre-defined
level, divided by the total number of ancestors considered. An individual or ancestor is
considered to be an elite member if its fitness is higher than (µ + α × σ), where µ is the
average fitness of the current population, σ the respective standard deviation, and α a
user-defined hyper-parameter, referred to as the elite decision factor. Based on this engi-
neered Credit Assignment scheme, the Operator Selection is deterministically performed
as follows: in case the sum of the elite degrees of both parents is higher than another
user-defined threshold, a less disruptive operator is applied (the 2-point crossover in this
case) in order to try to maintain some of the good building blocks; a disruptive crossover
is applied otherwise (the uniform crossover). This work is extended in [Hatta et al., 2001],
in which some mutation operators are also considered, and a much more complex scheme
is devised to measure the elite degree as a continuous value, instead of the original discrete
one. In both works, better results are achieved with respect to the GA applying each oper-
ator independently, and to the uniform selection between the available operators. Besides,
in [Hatta et al., 2001], the scheme implementing the continuous elite degree is shown to
improve over the original discrete elite degree, assessed on the NK landscape, the TSP
problem, and on a set of continuous benchmark problems.

The Cost Operator Based Rate Adaptation (COBRA) method, devised in
[Tuson and Ross, 1998], uses as Credit Assignment the average fitness improvements
achieved over the parents, divided by the computational cost of evaluating an offspring.
No ancestors are considered. The Operator Selection is simply done as follows: prior to
the experiments, the user defines a set of static probabilities; then, at every adaptation
cycle, these probabilities are deterministically assigned to the operators, according to their
ranking with respect to the perceived performance measures, the top-ranked operators re-
ceiving the highest probabilities. On the Credit Assignment side, it is not clear which is
the influence of the computational cost, as the evaluation of an offspring is supposed to
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have a constant cost, no matter the operator used to generate it. Furthermore, on the
Operator Selection side, no guidelines are provided on how to define a priori the static set
of probabilities. Evaluated on the OneMax, Royal Road, Long k-Path and on a deceptive
problem, indeed (and not surprisingly), the performance of the COBRA method was found
to be dependent on the quality of this user-defined set of probabilities.

A different method, the Probabilistic Rule-driven Adaptive Model (PRAM), proposed
in [Ho et al., 1999], uses a sequence of learning/production phases to adapt the opera-
tors application rates. During the learning phase, operators are uniformly selected, and
their performances are estimated based on the fitness improvement of the offspring with
respect to its parent. On the following production phase, operators are selected by the
PM method, according to the empirical knowledge gathered in the first period. The
PRAM method achieves better results than a fixed strategy and a self-adaptive scheme.
In [Wong et al., 2003], the PRAM method is used in combination with an external mech-
anism for diversity maintenance, which gives a higher survival probability to individuals
located in sparsely populated regions of the search space. The resulting method, referred
to as APGAIN, consistently achieves better solution quality than several other static evolu-
tionary schemes within the same computational budget, on a set of continuous benchmark
problems. However, as pointed out in [Maturana and Saubion, 2008a], around 25% of
the generations are devoted to the learning phase, in order to try to accurately follow the
changes in the operators performances during the search process; this might severely harm
the population and the progress of the search in case disruptive operators are considered.

The Integrated-Adaptive GA (IAGA) [Luchian and Gheorghies, 2003], as its name
says, integrates several impact measures to adapt the operator application rates: the
frequency of absolute improvements (over the best), simple improvements (over the par-
ents), plateau walks (same fitness than its parents), and worsenings (fitness lower than its
parents) achieved by the applications of each operator within a generation. The operators
are selected via a PM-like scheme based on the ranks of the operators with respect to
the measured frequencies. Besides, the IAGA method also implements an adaptation of
some internal parameters of the operators, but their description is out of the scope of this
Section. The IAGA method shows to perform much better than the GA using different
sets of static probabilities on different instances of the Royal Road problem.

4.5.2 Diversity-based Approaches

Besides the Compass [Maturana and Saubion, 2008a], described in detail in Section 4.3.4,
other similar approaches have been proposed in the literature, aggregating the fitness and
diversity measures, or using only the diversity as an impact measure after an operator
application.

The Adaptive GA (AGA) proposed in [Srinivas and Patnaik, 1994] is, to the best of
our knowledge, the first method proposed for the adaptation of the operators application
rates that also take into account the diversity in the decision process, motivated by the
difficulty of solving multi-modal problems. Its adaptation method can be briefly described
as follows. The crossover and mutation rates are varied, for each individual, according
to the difference between the fitness of the best and the fitness of the current individual,
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divided by the difference between the fitness of the best and the average fitness of the
current population. The numerator measures how close to the best individual is the cur-
rent individual; the fitter the individual is, the less it will be disrupted by the operators.
Conversely, the denominator roughly measures the level of convergence of the population;
the more converged it is, the higher is the variation that should be introduced, in order to
possibly escape from local optima. The balance between both intensification and diver-
sification (the same as exploitation and exploration, respectively) factors is controlled by
a user-defined hyper-parameter for each operator. AGA is shown to significantly outper-
form a standard GA with fixed operator probabilities on a set of continuous benchmark
problems; a much higher gain is achieved in the highly multi-modal problems, as expected.

A similar approach, the Diversity-Guided EA (DGEA) [Ursem, 2002], is, as its name
says, completely guided by the level of diversity in the population. The main objective is
again to avoid premature convergence. A special diversity measure is proposed, referred to
as the “distance-to-average-point”, which takes into account the size of the search space,
the size of the population, and the sum of the differences between the genes of each indi-
vidual, in order to evaluate how converged the population is. Once every generation, the
algorithm switches between exploration and exploitation behaviors, based on the assessed
diversity level. Intuitively, exploration is performed by the generation of an entire pop-
ulation via the sole use of a mutation operator, while exploitation is done by crossover.
Compared to a set of non-adaptive GA schemes on some continuous benchmark problems,
the DGEA presents better performance, consistently reducing in around 25% the number
of fitness evaluations to attain a given target solution.

The Adaptive Operator Rate Controlled EA (AORCEA) [Giger et al., 2007] is an in-
teresting AOS method, although quite complex. It is very different from the previously
mentioned approaches in what concerns the update of the operators application rates. To
start with, the criterion to evaluate the impact of an operator application depends on the
level of stagnation of the search process, which is calculated based on the frequency dis-
tribution of the fitness values of the current population. In case more diversity is needed,
applications of operators are evaluated based on how different are the offsprings they gen-
erate with respect to their parents (Euclidean distance); the relative fitness improvements
are used otherwise. The operators are ranked according to how well they perform in
average with respect to the chosen criterion during the given adaptation cycle. Their ap-
plication rates are then linearly updated, by taking into account these ranks and the ratio
between the level of stagnation and a user-defined hyper-parameter. This hyper-parameter
exerts a function analogous to the greediness control β parameter used by AP (described
in Section 4.4.2). The AORCEA presents significantly better results when compared to
a non-adaptive GA on a set of continuous benchmark functions, and also on a real-world
problem, the optimization of the structure of a tubular steel frame for a motorcycle.

Guided by the same motivations than those of the Compass fitness and diver-
sity aggregation method [Maturana and Saubion, 2008a] (see Section 4.3.4), two other
Credit Assignment mechanisms have been later proposed in [Maturana et al., 2009b;
Maturana et al., 2010b], directly inspired by the concepts of Pareto dominance. Con-
sidering the diversification and the intensification as two criteria to be optimized, the first
scheme, referred to as Pareto Dominance (PD), evaluates the operator according to the
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number of other operators it dominates, i.e., operators that performed worst in average
than the operator under assessment on both objectives. Oppositely, the second scheme,
Pareto Rank (PR), accounts for the number of operators that dominate the operator under
assessment. The main difference between both is that the latter encourages only the use
of non-dominated operators, while the former rewards more accurately all the operators
that are performing well on average: the PD scheme is thus the best choice, as empiri-
cally shown in the cited references. Combined with an external scheme that dynamically
changes the set of available operators while solving the problem, the PD Credit Assign-
ment scheme with the PM Operator Selection mechanism achieves better performance
than other adaptive combinations on a set of SAT instances.

4.5.3 Fuzzy-based Approaches

Another kind of approach with several examples found in the literature is the use of Fuzzy
Logic Controllers (FLC) to control the selection of operators. Some of these methods will
be briefly reviewed now.

The seminal paper on this matter, to the best of our knowledge, is the work by
[Lee and Takagi, 1993], in which the operators application rates are deterministically con-
trolled according to fuzzy rules based on population-wise measures: the average, best, and
worst fitness values found in the current population. The FLC itself is off-line tuned by
another GA at the meta level, according to its performance on the control of the operators
of the main GA while solving the well-known set of “5 DeJong functions”. The resulting
tuned algorithm is later applied to the optimization of another FLC solving the inverted
pendulum problem, outperforming a simple static GA in terms of number of evaluations
to achieve a given target solution. Although being out of the scope of this thesis, it seems
worthy to highlight the several levels of efficient hybridizations between fuzzy and evolu-
tionary techniques that can be found in this work. In summary, a GA is used to optimize
an FLC, that controls the operator rates of another GA, which is used to optimize another
FLC, that is finally applied to a control problem. Besides, an important motivation for
using the kind of human-comprehensive knowledge representation employed by FLCs is
that experts can try to incrementally enhance the controller with their own understanding
about the problem.

In [Herrera and Lozano, 2001], an FLC optimized by a meta-GA is used to control the
use of 12 different operators by a GA, that is applied to continuous optimization problems.
But, in this work, the controller is optimized while solving the problem, by means of a
separate GA that co-evolves with the GA to be controlled. A gain with respect to non-
adaptive schemes is not shown in terms of efficiency, but rather in terms of robustness
when applied to continuous benchmark problems with very different levels of difficulty.

Another work using FLC to control the operators application within a
GA is presented in [Maturana and Saubion, 2007b; Maturana and Saubion, 2007a;
Maturana and Saubion, 2008b]. Similarly to the previously mentioned PRAM method
[Ho et al., 1999], the adaptation method is divided into two periods, a learning phase, dur-
ing which the FLC is improved after the empirical knowledge gathered from several trials
of all the operators; and a production phase, when the learned rules are actually employed
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to deterministically select which operator should be applied, according to the feedbacks
(diversity and quality variations) received from the search. However, around 55% of the
generations are spent by the learning phase, what greatly deteriorates the performance of
the algorithm, specially if disruptive operators are employed (as also previously discussed
for the PRAM method). The presented results do not compare the developed fuzzy-based
AOS scheme with other methods from the literature, but rather with different variants of
its own, on an instance set of the Quadratic Assignment Problem (QAP).

4.5.4 Other Approaches

Most of the previously cited works use slight variations of the PM method for the adap-
tation of the rates and further Operator Selection, while a lot of effort is invested on the
many different alternatives mentioned for the Credit Assignment part. There is no clear
evidence to support the preference for enhancing just one of the modules, but given the
difficulty of the task, it might seem relevant to separately investigate both issues. A first
step along this line is taken by [Thierens, 2005], which proposes a new mechanism for
Operator Selection, the Adaptive Pursuit (AP) (see Section 4.4.2), while assessing it on an
artificial dynamic scenario, assuming the reward associated to each operator to be known.
The reward distributions are modified every ∆T steps, with AP showing a much superior
performance than PM. This artificial scenario will be described in detail in Section 5.4.1.

In [Whitacre et al., 2006], attention is given to the Credit Assignment scheme again,
while the Operator Selection is the well-known PM, autonomously selecting between 9
operators. A 10th operator is applied according to a deterministic scheduler in order to
enforce some level of diversity. Several alternative impact measures are compared, e.g., the
rank of the generated offspring within the current population, and the age of the generated
solution; for the latter, the adaptation needs to happen once every many generations (20
in this case). From these impact measures, the main novelty proposed in this work is the
use of a Credit Assignment mechanism that rewards the production of outlier solutions,
which are found out based on statistics over the whole set of generated solutions. This
method is shown to be superior to the common Average scheme on a set of continuous
benchmark problems.

4.5.5 AOS within Other Evolutionary Algorithms

All the works reviewed in this Section up to now, as well as most of the literature on AOS,
are proposed in the context of GAs. However, the concept is general enough to be applied
to other EAs (as well as to other meta-heuristics).

For instance, in [Niehaus and Banzhaf, 2001], the PM method is used to select between
special operators in the Genetic Programming (GP) framework, based on the success rate
of each operator, a successful trial being defined as the generation of an offspring fitter
than its parents. The proposed adaptive scheme presents superior performance than the
standard GP using both randomly and empirically defined static application rates, on
different problems of symbolic regression and classification.

Some works in the scope of Differential Evolution (DE), yet another EA, can also be
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found in the literature. For instance, although being referred to as Self-Adaptive DE, the
SaDE method [Qin et al., 2009] employs indeed the AOS paradigm, with the PM method
selecting between DE mutation strategies according to the success rate of each operator.
This scheme is combined with another method to dynamically adapt the crossover rate CR
and the mutation scaling factor F. The SaDE method outperforms the DE independently
applying each of the available mutation strategies, and other previously proposed adaptive
and self-adaptive schemes, on a set of continuous benchmark problems.

In a collaboration with the China University of Geosciences [Gong et al., 2010;
Gong et al., 2011], we have also used the PM method within DE, but this time using the
average of the relative fitness improvements as Credit Assignment. Along the same lines,
a large part of the empirical results that will be presented in Chapter 6 were achieved ap-
plying our Rank-based Multi-Armed Bandit AOS mechanisms (which will be described in
Chapter 5) to DE on continuous benchmark optimization problems [Fialho and Ros, 2010;
Fialho et al., 2010b].

4.6 Discussion

Most of the Adaptive Operator Selection (AOS) methods surveyed in this Chapter are
employed to select between operators within Genetic Algorithms; a few approaches con-
sidering other variants, namely Genetic Programming and Differential Evolution, are also
mentioned. Although all these works are in the scope of Evolutionary Algorithms, the
adaptive paradigm, as reviewed in Section 3.3.2, is indeed very general. In fact, any
stochastic algorithm can benefit from this kind of approaches. At a higher level of ab-
straction, AOS schemes can also be used to select between different algorithms at the hyper
level, what is nowadays commonly referred to as Hyper-Heuristics (we refer to reader to
[Burke et al., 2010] for a recent very comprehensive review on this).

The ideal scenario for the use of the adaptive paradigm can be briefly characterized as
follows:

1. The algorithm has some choice to be made among different options that directly
affect the search process;

2. This choice is supposed to not have only a single best component during the whole
search process; instead, different components perform best during different stages of
the search;

3. It is possible to have an instantaneous feedback from the search process as a result
of the choice.

The first and the third issues are, in fact, requirements to be able to use adaptive
methods in general, that indeed quite always hold in the case of stochastic algorithms.
The second issue can be relaxed a bit: even if there is only one unique best option for
the given choice, it is usually unknown to the user, and generally problem-dependent.
Even in this case, thus, the use of an adaptive method can be justified anyway, in order
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to automatically find the best option while solving the problem. The price to pay is a
small loss in terms of performance (the time taken in order to find the best option), which
is compensated by the fact that everything is done during an optimization run, while
several runs would be needed in order to apply an off-line tuning procedure, as discussed
in Section 3.3.2.

In the context of AOS, the input is the feedback received from the search, and the
output is the operator to be applied, as depicted in Figure 4.1. The generality of the
method, however, depends on how general is the information used to constantly update
it. The methods surveyed in this Chapter use very general information, such as the
fitness and the diversity. In some cases, however, one might want to explore some prior
knowledge about the characteristics of the problem in order to do a more efficient AOS.
A lot of research on this has been done in the very competitive context of SAT problems.
An example of a problem-specific AOS method is the recent NCVW (Non-, Clause, and
Variable Weighting) [Wei et al., 2008], which uses SAT specific features, the variable and
clause weights, in order to choose between three well-known variable selection heuristics.
Although losing generality, exploring prior knowledge about the problem can be very
beneficial for the search process. Indeed, if the motivation is to go for state-of-the-art
results, this is very probably the path to be taken in any domain. On the opposite, if
the motivation is to have a general method to adapt the operator selection and achieve
good performance in very different situations and with different algorithms, such kind of
problem-specific knowledge should be avoided.

Finally, as remarked in the bibliographic review presented in Section 4.5, most of the
mentioned works concentrate a lot of effort on just one component of the AOS, usually
using a quite common choice for the other one. For instance, lots of methods use a very
complex Credit Assignment scheme, while implementing the standard PM for Operator
Selection. In this thesis, we will present different contributions addressing both issues: the
bandit-based approaches on the Operator Selection side; the Extreme fitness improvement
and the Rank-based measures over the fitness for Credit Assignment. Besides, the Compass
[Maturana and Saubion, 2008a] aggregation between fitness and diversity will also be con-
sidered, after some work done in collaboration with the authors [Maturana et al., 2009a].
The other options for Credit Assignment are the common Instantaneous and Average
fitness improvement over the parents. All the proposed AOS combinations, presented in
Chapter 5, will be compared with both PM and AP Operator Selection methods, combined
with the above-mentioned Credit Assignment schemes.
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Chapter 5. Contributions to Adaptive Operator Selection

In this Chapter, we present our main algorithmic contributions to
the Adaptive Operator Selection problem, namely, the extreme and
the rank-based approaches for Credit Assignment, the bandit-based
techniques for Operator Selection, and the artificial scenarios pro-
posed to their empirical assessment.

5.1 Introduction

As discussed throughout Chapter 4, in essence, the goal of Adaptive Operator Selection
(AOS) is to select on the fly the operator maximizing some measure of quality, usually,
though not exclusively, reflecting the fitness improvement brought by its application. AOS
thus raises two main tasks, referred to as Operator Selection and Credit Assignment (Sec-
tion 4.2). This Chapter describes the contributions developed during this thesis work for
each of these tasks, as well as for their empirical assessment. A brief summary of these
contributions, in a chronological order, is presented as follows.

Starting with the first task, the Operator Selection might be seen as yet another in-
stance of the Exploration versus Exploitation (EvE) dilemma: the operator that is cur-
rently known to be the best should be used as much as possible (exploitation), while the
other operators should also be tried from time to time (exploration). The exploration
needs to be done, on the one hand, because some seemingly poorly-performing operators
might just have been unlucky on its recent trials; and on the other hand, due to the
dynamics of the evolutionary process, i.e., one of the other operators might eventually
become the new best operator at a further moment of the search.

The EvE trade-off has been intensively studied in the context of Game Theory,
in the framework of the so-called Multi-Armed Bandit (MAB) [Lai and Robbins, 1985;
Auer et al., 2002]. The use of MAB algorithms to solve the EvE dilemma has been inves-
tigated in the selection between different algorithm portfolios to solve decision problems
[Gagliolo and Schmidhuber, 2008], before being extended to the AOS context in the work
presented here. Our preliminary attempt to do so was by directly using a slightly modified
version of the Upper Confidence Bound (UCB) algorithm [Auer et al., 2002] (described in
more detail in Section 5.3.1), which was chosen by providing asymptotic optimality guar-
antees with respect to the total cumulative reward in MAB problems. However, these
guarantees hold only in a stationary context; some modifications need to be proposed in
order to efficiently use the UCB algorithm in the dynamic context of AOS – this is where
most of the contributions developed in this thesis are concentrated.

A first proposal, referred to as Dynamic Multi-Armed Bandit (DMAB)
[Da Costa et al., 2008], is presented in Section 5.3.2. The DMAB proceeds by cou-
pling the original UCB technique with the Page-Hinkley statistical change-detection test
[Hinkley, 1970]: upon detecting a change in the operator quality distribution, the MAB
process is restarted from scratch.

Concerning the Credit Assignment, most of the AOS combinations found in the lit-
erature use some simple statistics over the fitness improvements. Instead of using the
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common Instantaneous and Average Credit Assignment schemes (see Section 5.2.1), we
proposed the use of Extreme fitness improvements [Fialho et al., 2008], based on the as-
sumption that rare but high improvements might be even more important than frequent
but moderate ones (Section 5.2.2).

The combination of Extreme Credit Assignment with DMAB Operator Selection re-
ferred to as the Ex-DMAB AOS technique, showed to be very efficient, outperform-
ing the baseline approaches on different benchmarking scenarios [Fialho et al., 2008;
Fialho et al., 2009a; Maturana et al., 2009a]. However, directly using the raw values of
the fitness improvements (Credit Assignment) to update the preferences (Operator Selec-
tion) of the AOS technique showed not to be a very good approach: as different problems
have different fitness ranges, this AOS scheme needs to have its hyper-parameters tuned
for every new problem in order to achieve good performance. For this reason, on the
Credit Assignment side, we proposed the use of a simple normalization of these raw values
[Fialho et al., 2009b] (described in Section 5.2.3).

On the Operator Selection side, even with the normalized rewards, the hyper-parameter
of the DMAB controlling the change-detection test continued to be very problem-
dependent, as the restarting mechanism is directly related to the dynamics of the fitness
landscape. This was the main motivation for the proposal of a smoother way to account
for dynamic environments in the MAB framework, referred to as Sliding Multi-Armed
Bandit (SLMAB) [Fialho et al., 2010a], presented in Section 5.3.3. Briefly, it uses a slid-
ing time window to gracefully update the operator quality estimates, discarding ancient
events while preserving the information from recent operator applications. Contrasting
with DMAB, SLMAB does not call upon an external monitoring of the evolution process
and involves only one hyper-parameter, as the original MAB technique, while DMAB has
two.

By the use of normalization, the effects of problem-dependency on the Extreme Credit
Assignment are smoothed, but not eliminated. This is what led us to the proposal of
the two last Credit Assignment measures, completely based on ranks, the Area-Under-
Curve (AUC) and the Sum-of-Ranks (SR) [Fialho et al., 2010c] (Section 5.2.4). In addition
to the gain in robustness achieved by the use of rank-based measures, the use of ranks
over the exact fitness values rather than ranks over the fitness improvements preserves the
important invariance property of the method with respect to monotonous transformations
(i.e., comparison-based), as presented in Section 5.2.5. These rank/comparison-based
Credit Assignment schemes were combined with a simplified version of the UCB, to which
we refer to as the Rank-based Multi-Armed Bandit (RMAB) (Section 5.3.4).

By the time this manuscript is being written, the AOS technique constituted by the
RMAB Operator Selection method with the AUC Credit Assignment scheme is our fi-
nal and recommended proposal in case one wants to implement the AOS paradigm: it
achieves state-of-the-art (or equivalent) performance while being very robust with respect
to their hyper-parameters, as confirmed by the results presented in [Fialho et al., 2010c;
Fialho et al., 2010b], which will be detailed in Chapter 6.

Additionally, while developing these AOS combinations, we have also proposed some
new artificial scenarios for their empirical assessment. The Boolean and the Outlier sce-
narios [Da Costa et al., 2008] were introduced to evaluate the AOS schemes in situations
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involving five artificial operators with different reward distributions than the previously
existing Uniform scenario [Thierens, 2005]. The latter is described in Section 5.4.1, while
the two newly proposed scenarios are presented in Section 5.4.2. Besides, another family
of artificial scenarios was proposed to simulate different situations with respect to the
mean and variance of rewards given by two artificial operators, referred to as the Two-
Values (T V) benchmarks [Fialho et al., 2010a], presented in Section 5.4.3.

Each of these mentioned contributions will be detailed in the following of this Chapter,
divided into three categories. Section 5.2 presents the contributions for Credit Assignment ;
while the new methods for Operator Selection are described in Section 5.3. At the end of
the presentation of each Operator Selection scheme, the corresponding AOS combinations
are reminded. Finally, Section 5.4 details the newly proposed artificial scenarios for the
empirical assessment of the developed AOS combinations. For each Section, the basic or
initial approaches are also reminded prior to the presentation of the contributions, for the
sake of self-containedness.

The last contribution of the present thesis consists in a principled and systematic
empirical comparison of the proposed AOS methods, compared with one another and with
some baseline approaches. Several experiments were done on some different benchmarking
scenarios; they will be analyzed in detail in Chapter 6.

5.2 Contributions to Credit Assignment

Credit Assignment is the name given to the scheme that assesses the performance of an
operator regarding the progress of the search, which can be measured in different ways, as
reviewed in Section 4.3. Starting from the existing Instantaneous or Average of the fitness
improvements brought by the application of a given operator (Section 5.2.1), we have
proposed the use of Extreme values (Section 5.2.2). In the quest for a higher robustness, a
simple normalization over these raw values was next proposed (Section 5.2.3), before the
development of the most recent and very robust rank-based Area-Under-Curve (AUC) and
Sum-of-Ranks (SR) schemes, both described in Section 5.2.4. These latter methods, when
using the fitness values instead of the fitness improvements as raw measures of impact,
become fully Comparison-based, as emphasized in Section 5.2.5.

It is worth remembering that, after discussion in Section 4.3.3, for all the Credit As-
signment schemes considered (the baseline and the schemes proposed by us), no ancestors
are rewarded: the credit is only assigned to the operator that was used to achieve the
given fitness improvement. Besides, by convention, all schemes assign a null credit (=0)
in case the computed credit is negative.

5.2.1 Basic Credit Assignment Scheme: Fitness Improvements

As discussed in Section 4.3, a Credit Assignment scheme is defined by three aspects: (i)
how to measure the impact of an operator application; (ii) how to assign credit to the
operator based on this measured impact; and (iii) to which operator the credit should be
assigned to.
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Concerning the first issue, the Credit Assignment schemes proposed in this thesis use
as a measure of the impact after an operator application, unless stated otherwise, the
fitness improvement brought by the generated offspring over its parent, if a mutation
operator is used, or over the best of its parents in the case of crossover. Formally, let F , o
and x respectively denote the fitness function, a variation operator, and an element of the
current population. The impact of an operator application on the search at time t, i.e., the
fitness improvement, is measured as δ(t) = max((F(o(x)) − F(x)), 0) when the objective
is to be maximized, δ(t) = max((F(x) −F(o(x)), 0) otherwise. For the description of the
Credit Assignment schemes throughout this Section, we assume the objective function to
be maximized.

The most common ways of assigning credit will be used as baseline for comparison,
namely: (i) the Instantaneous, which credits the operator according to the fitness im-
provement received after its most recent application; and (ii) the Average, which assigns
as credit the average of the fitness improvements achieved by its last W applications, W
being a hyper-parameter (the size of the sliding window for each operator) that needs to
be defined by the user. We refer the reader to Section 4.3.2 for a more extensive discussion
including some references for both approaches.

5.2.2 Extreme Fitness Improvement

Our first proposal for the Credit Assignment problem, referred to as the Extreme value-
based scheme [Fialho et al., 2008], is inspired by the following remark. Let us consider an
operator bringing frequent, small improvements, and compare it to an operator bringing
rare, large improvements. The latter operator will hardly be considered if the reward
reflects the Average fitness improvement, as the average estimated over a few trials is likely
to be 0 (and this becomes even worse in case the Instantaneous values are considered),
implying that very few further trials of this operator will take place, although it might be
the current best operator.

Hence, as advocated in [Whitacre et al., 2006], attention should be payed to extreme,
rather than average, events. Incidentally, the role of extreme events in design has long
been acknowledged in numerical engineering (e.g., taking into account rogue waves when
dimensioning an oil rig). Additionally, they have been receiving an ever growing attention
in the domain of complex systems, as extreme events govern diffusion-based processes
ranging from epidemic propagation to financial markets.

The proposed Extreme value-based Credit Assignment mechanism proceeds as follows.
When operator o is selected after the Operator Selection rule under examination, o is
applied on the current individual x; the fitness of the generated offspring is computed and
the improvement achieved over its parents is added to the sliding window of operator o
with size W , implementing FIFO order. Finally, the credit to be assigned to this operator
is set to the maximum fitness improvement found in its sliding time window.

More formally, let t be the current time step, and to,1 (respectively to,i) denote the
time step where operator o was used for the last time (respectively, the last time before
to,i−1). If δo(t) denotes the fitness improvement observed at time t, then the credit to be
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assigned to operator o is computed as:

ro(t) = max
i=1...W

{δ(to,i)} (5.1)

Hence, the Extreme value-based mechanism involves a single hyper-parameter, the
window size W , as does the previously mentioned Average scheme. This hyper-parameter
is meant to reflect the time scale of the process. If too large, the switches between two
different situations with respect to operators qualities might be delayed, i.e., operators
will be applied after their optimal epoch. If W is too small, operators causing large but
infrequent jumps might be ignored, as successful events will probably not be observed at
all, or too rapidly forgotten. The Extreme value-based scheme will be simply referred to
as Extreme in the following.

5.2.3 Normalized Fitness Improvement

Although alleviating the user from the need of selecting which operators should be applied
to the problem at hand, and doing so while solving the problem, each of the AOS methods
presented in this thesis involves some hyper-parameters that also need to be tuned. The
three Credit Assignment schemes previously mentioned, namely, Instantaneous, Average,
and Extreme, reward the operators based on simple statistics over the fitness improvements
achieved by their application. The use of the raw values of the fitness improvements,
however, makes these schemes (and consequently the hyper-parameter tuning of the AOS
techniques implementing them) to be very problem-dependent.

Firstly, different problems have fitness ranges with different variance and at different
orders of magnitude. Hence, a given AOS setting is efficient just when applied to the prob-
lem used during the off-line tuning phase of its hyper-parameters. Additionally, and even
more importantly, the fitness variance, as well as the magnitude of the possible rewards
received, tend to reduce as the search approaches the optimum, while improvements them-
selves tend to become more and more scarce. Thus, even when the AOS is very carefully
tuned for the problem at hand, its behavior might not be optimal during all the search
process.

A proposal to improve the robustness of the mentioned Credit Assignment schemes
over different problems was to use a simple Normalization scheme [Fialho et al., 2009b]:
the credit to be assigned to the operator is priorly divided by the maximum credit that
would be assigned to any of the operators, according to the Credit Assignment scheme
under employment (e.g., the mentioned Instantaneous, Average and Extreme schemes).
In this way, no matter the moment of the search or the problem that is being tackled, all
the rewards are in the real-value interval between 0 and 1, and the current best operator
always receives a reward of 1.

The utilization of all these basic Credit Assignment schemes described in Sections
5.2.1 to 5.2.3, namely, the Absolute or Normalized output of Instantaneous, Average, or
Extreme schemes, calculated over the fitness improvements, is exemplified in the form of a
pseudo-algorithm in Algorithm 5.1, considering a maximization function. It is important
to remember that, for all these “basic” schemes, there is one FIFO window of size W for
each of the K operators.

72



5.2 Contributions to Credit Assignment

Algorithm 5.1: Credit Assignment Schemes over ∆F (op, type, norm, W, K)

1: if type = Instantaneous then
2: reward← last(wRewardsop)
3: else if type = Average then
4: reward← avg(wRewardsop)
5: else if type = Extreme then
6: reward← max(wRewardsop)
7: end if
8: if norm then // normalization
9: normfactor← maxi=1...K{this.GetReward(i, type, norm=false, W, K)}

10: reward← reward/normfactor
11: end if
12: return max{reward, 0}

5.2.4 Rank-based Credit Assignment Schemes

The normalization over the fitness improvement contribute into reducing the mentioned
effects of problem-dependency, but do not eliminate the problem. An important flaw of
this approach is that, as the normalization factor depends on the region of the landscape
that is currently being explored, the same gain might have different weights in the update
of the empirical estimates throughout the search process, and this is likely to still lead to
problem-dependent hyper-parameter configuration for the AOS schemes.

Inspired by the gain in robustness achieved by GAs when employing rank-based
parental selection schemes (e.g., the tournament selection) instead of selection schemes
over the raw fitness values (as the fitness-proportional roulette-wheel method), it seems
clear that the use of ranks instead of raw values for the Credit Assignment is a way
towards robust AOS techniques. Following this path, we have proposed two Credit As-
signment schemes totally based on ranks, namely, the Area-Under-Curve (AUC) and the
Sum-of-Ranks (SR) [Fialho et al., 2010c; Fialho et al., 2010b], which will be now described
in turn.

Sliding Window

Besides the fact that ranks are used to assign credit, another major difference is that these
newly proposed schemes maintain the gains achieved by all the operators in a single sliding
window of size W , still being updated in a FIFO way; while in the previously described
Credit Assignment schemes, there is one separate window for each operator. Each slot
in this unique window is a structure that contains the index of the operator that was
applied, the fitness improvement (or other impact assessment) achieved by this operator
application, and the corresponding ranking of this fitness improvement with respect to all
the other fitness improvements stored in the current window.

The motivation for using a unique FIFO window for all operators is related to the
already discussed dynamics of the AOS problem. By doing so, the oldest result stored in
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the window is as old as W operator applications; while in the case of multiple windows, the
results of very old applications of a given operator not applied during a long period might
still be used for the estimation of its empirical quality, although not reflecting the reality
anymore. Besides, as the inclusion of a new value of fitness improvement in the window
alters the ranking of all the values worse than it (and in case the window contained already
W values before this inclusion, the oldest value is deleted from the window; then the
ranking of all the results worse than the excluded value are also updated), the application
of one operator might also affect the empirical quality estimates of the other operators (in
addition to its own). In this way, thus, the dynamics with respect to the performance of
the operators are already handled to some extent on the Credit Assignment side.

Decaying Mechanisms for Rank-values

Following, and somehow smoothening the intuition of the Extreme Credit Assignment
presented in Section 5.2.2, special mechanisms were proposed for the assignment of rank-
values. The overall idea is that the top-ranked rewards should exert a higher influence on
the calculation of the credit assigned to each operator.

Firstly, each slot in the window is ranked according to the values of the fitness im-
provements stored in it, in a descending order, with the slot i receiving a rank-value of
R(i). A decay factor D ∈ ]0, 1] is then applied over these rank-values. The final decayed
rank value Decay(R(i)), which defines the weight of each operator application i in the
AUC and SR Credit Assignment schemes, is then calculated as:

Decay(R(i)) = DR(i)(W −R(i)) (5.2)

The hyper-parameter D defines how skewed the ranking distribution is. The smaller the
value of D, the faster the decay (i.e., the more Extreme it is). The use of D = 1 is
equivalent to a linear decay (i.e., W −R(i)). We refer to this as the Decay approach.

Another way of providing a decaying mechanism is the Normalized Discounted Cu-
mulative Gain (NDCG), originally proposed in the context of Information Retrieval (IR)
[Järvelin and Kekäläinen, 2000; Burges et al., 2005]. The motivation for using it is very
similar: the discovery of highly relevant documents should receive a higher weight than the
marginally relevant documents in the evaluation of the effectiveness of an IR method. For-
mally, the original NDCG method assign to element i (documents in the original context,
operator applications in ours) the following rank-value:

Original NDCG(R(i)) =
2R(i) − 1

log(1 + i)
(5.3)

It seemed to be an interesting method for assigning decayed rank-values to the operator
applications, mainly due to the fact that it does the same job, but without requiring the
definition of any hyper-parameter. In the original context, however, the NDCG measure
does not consider only the ranking (with respect to relevance) of the corresponding docu-
ment, but also the order (the i in the denominator of Equation 5.3) in which it appears in
the original document list: it is important for the IR methods to bring the most relevant
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documents firstly. But in the AOS context, the order in which the top-ranked impact
measures are achieved is not important, what matters is how many top-ranked impact
measures are brought by each operator, in the time scale limited by the sliding window
size W . Therefore, in order to apply the NDCG method in the AOS context, it was
re-written as follows:

Adapted NDCG(R(i)) =
2(W−R(i)) − 1

log(1 + R(i))
(5.4)

In practice, however, we found out that the NDCG method is rather equivalent to
the Decay scheme defined in Equation 5.2 when using D = 0.4, as shown in Figure
5.1. Anyway, the NDCG and the Decay approaches, combined with each of the two
rank-based Credit Assignment schemes that will be presented in the following, will be
independently considered in the experiments presented in Chapter 6. It is true that this
choice complicates the experimental setup and the analysis of results (by adding another
degree of freedom for the rank-based approaches), but we decided to do so because, in
this way, it becomes possible to verify how much can be gained in terms of performance
by trying some different values for D in the Decay scheme, with respect to the fixed
parameter-less NDCG approach.
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Figure 5.1: Comparison between different decaying mechanisms for W = 15.

AUC method: Rank-based Area-Under-Curve

The Area-Under-Curve (AUC) Credit Assignment method, as its name says, borrows ideas
from the Area Under the ROC Curve, a criterion originally used in Signal Processing and
later adopted in Machine Learning to compare binary classifiers, with the property of being
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robust with respect to class imbalance [Bradley, 1997]. Originally, the Receiver Operating
Characteristic (ROC) curve depicts how the true positive rate varies with the false positive
rate. This indicator is adapted to the rank-based assessment of operators as follows.

Let us consider the list of fitness improvements achieved in a given time window, and
let the list be ranked after the raw values of these fitness improvements. The ROC curve
associated to a given operator o is drawn by scanning this ordered list, starting from the
origin: a vertical segment is drawn when the given fitness improvement has been generated
by o, a horizontal segment is drawn otherwise, and a diagonal segment is drawn in case of
ties. The quality associated to operator o finally is the Area Under this Curve.

As an example, considering the list of 15 operator applications presented in Table 5.1,
the ROC curve corresponding to the quality of operator 1 with respect to the others is the
solid line, upper bound of the area illustrated in Figure 5.2a. The grey area corresponds
to the AUC evaluation for this operator. In this example, for the sake of clarity, all
rank positions have the same weight, i.e., all horizontal and vertical segments have length
1. However, it makes sense to give more weight to the top-ranked values, as previously
discussed. A decay factor can be applied, with each segment of the ROC curve being
re-scaled accordingly; in this case, there is the need of defining the hyper-parameter D (or
use the parameter-less NDCG scheme). Figure 5.2b presents the AUC for the same set
of rewards, but using decay factor D = 0.4. The corresponding weight of each segment,
after application of the decaying mechanism, is depicted in the last column of Table 5.1.

∆F Op. R(i) D1.0 D0.4

5 1 1 15 15
4 1 2 14 7
3 3 3 12.5 2.4
3 1 3 12.5 2.4

2.5 1 5 11 0.69
2 2 6 10 0.31
1 3 7 8 0.077
1 4 7 8 0.077
1 1 7 8 0.077

0.7 1 10 6 0.012
0.6 2 11 5 0.0049
0.5 3 12 4 0.002
0.4 4 13 3 7.3e-4
0.2 4 14 2 2.4e-4
0.1 3 15 1 6.1e-5

Table 5.1: Sample list of 15 operator applications, ordered by fitness improvement (∆F)
in descending order, with respective original (R(i)) and decayed (D1.0 and D0.4) rank
values.

It is important to note that, although using rank-based measures, the range of the
credit values provided by AUC is sensitive to the window size W : the bigger the window,
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Figure 5.2: Different AUC computations for a single operator (op. 1) with respect to the
others, according to sample data from Table 5.1.

the exponentially higher will be the credit assigned to the best operator. In order to avoid
this situation, we propose again the use of a normalization scheme.

In the preliminary empirical results of the AUC Credit Assignment scheme combined
with the Rank-based Multi-Armed Bandit (RMAB) Operator Selection mechanism (which
will be presented in Section 5.3.4), published in [Fialho et al., 2010c], the normalization
was done on a per-axis basis, i.e., in the AUC plot (exemplified in Figure 5.2), the x
coordinates (respectively the y ones) were divided by the maximum value to be plotted in x
(respectively y). What happens in this case, however, is that different operators might have
a different number of rewards being assigned to each axis; therefore, they can be normalized
by different values. Consequently, by using this scheme, it was later verified that good
performance was attained just in situations involving only 2 operators. Later on, in
[Fialho et al., 2010b; Fialho and Ros, 2010], we used a much simpler normalization scheme
that eliminates this effect. Basically, the AUC credit of a given operator is normalized
by the sum of the credits of all operators, so that their sum is equal to 1. This is the
current version of the AUC Credit Assignment scheme, simply referred to as AUC in the
remainder of this text; the preliminary version will be called as AUCv1 for the sake of
distinction. An empirical comparison between both versions on the OneMax problem will
be presented in Section 6.4.2.

Figure 5.3 depicts the AUC for each operator, considering the same sample data pre-
sented in Table 5.1. In case the same weight is considered for all the rewards (Figure
5.3a), the area corresponding to operator 1 is equivalent to (and the credit to be assigned
to it is evaluated as) 56% of the sum of the areas. If a linear decay is used (Figure 5.3b;
see the corresponding weights in the fourth column of Table 5.1), the area of operator 1 is
increased to 64%. Remembering that the idea is to exploit as much as possible the best
operator, Figure 5.3c is a supporting example for the use of a strong decaying factor: with
D = 0.4, the AUC of operator 1 receives a score of 92 out of 100.
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Figure 5.3: Comparison between different decaying mechanisms for the calculation of the
AUC credit. The final credit assigned to each operator is its AUC divided by the sum of
AUCs of all operators, i.e., the proportion of the sum of the areas that is occupied by it.

A complete and detailed representation of how to calculate the AUC credit is presented
in the form of a pseudo-algorithm in Algorithm 5.2.

SR method: Sum-of-Ranks

The Sum-of-Ranks (SR) is a much simpler method, that credits the operators with the
sum of the ranks of the rewards given after its applications, subject to the same decaying
mechanisms previously described. For instance, considering the sample data in Table 5.1,
the SR value for operator 1 using decay factor D = 0.4 would be: 15 + 7 + 2.4 + 0.69 +
0.077 + 0.012 = 25.179

As for the AUC, the final credit assigned to the operator is its SR value normalized by
the SR values of all operators, so that the sum of the credits assigned to all operators is
equal to 1. Following the same example, the credit to be assigned to operator 1 would be
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Algorithm 5.2: Credit Assignment : Rank-based Area-Under-Curve (W, D, op)

1: area← x← y ← 0
2: for rank position r ← 1 to W do // loop on window (just one window for all operators)
3: ∆r ← Dr(W − r) // calculate weight of rank position in the area
4: tiesY ← CountT iesTargetOp(r) // # rewards equal to reward ranked r given by op
5: tiesX ← CountT iesOtherOps(r) // # rewards equal to reward ranked r given by others
6: if tiesX + tiesY > 0 then // if ties, proportional diagonal trace
7: for rank position s← (r + 1) to (r + tiesX + tiesY ) do

8: ∆r ← ∆r +
(

Ds(W−s)
tiesX+tiesY

)

// sum weights of tied ranks, divided by # ties

9: end for
10: x← x + tiesX ·∆r
11: area← area + y · tiesX ·∆r // sum the rectangle below
12: y ← y + tiesY ·∆r
13: area← area + 0.5 ·∆r2 · tiesX · tiesY // sum the triangle below slanted line
14: r ← r + tiesX + tiesY − 1
15: else if Opr == op then // if op generated r, vertical segment
16: y ← y + ∆r
17: else // if another operator generated r, horizontal segment
18: x← x + ∆r
19: area← area + (y ·∆r)
20: end if
21: end for
22: return area/

(
∑K

i=1 CreditAssignment.GetReward(W, D, i)
)

// credit = normalized area

evaluated as 25.179/28.050931 = 89.76 out of 100. Formally, the operator i is rewarded at
time t as follows:

SRi,t =

∑

opr=i D
r(W − r)

∑W
r=1 Dr(W − r)

(5.5)

A more complete view of the SR Credit Assignment scheme is presented in Algorithm
5.3, which also includes the handling of ties, not represented in Equation 5.5.

5.2.5 Comparison-based Credit Assignment Schemes

Coming back to the discussion about the robustness of the Credit Assignment schemes in
Section 5.2.4, by the use of ranks, both AUC and SR methods are invariant with respect
to linear scaling of the fitness function, i.e., their behavior, when applied on a given fitness
function F , is exactly the same than when applied to a fitness function defined by (a · F),
with a real value a > 0. Nevertheless, as the raw rewards that are used here are actual
values of fitness improvements, some monotonous transformations will indeed modify the
ranking of such values, and, hence, the outcome of the whole algorithm (see some empirical
examples on this in Section 6.7.2).

The complete invariance with respect to monotonous transformations can be attained
with a very simple modification: the replacement of the fitness improvements by the
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Algorithm 5.3: Credit Assignment : Sum-of-Ranks (W, D, op)

1: sum← 0
2: for rank position r ← 1 to W do // loop on window (just one window for all operators)
3: ∆r ← Dr(W − r) // calculate weight of rank position in the sum
4: tiesY ← CountT iesTargetOp(r) // # rewards equal to reward ranked r given by op
5: tiesX ← CountT iesOtherOps(r) // # rewards equal to reward ranked r given by others.
6: if tiesX + tiesY > 0 then // if ties
7: for rank position s← (r + 1) to (r + tiesX + tiesY ) do

8: ∆r ← ∆r +
(

Ds(W−s)
tiesX+tiesY

)

// sum weights of tied ranks, divided by # ties

9: end for
10: sum← sum + tiesY ·∆r
11: r ← r + tiesX + tiesY − 1
12: else if Opr == op then // if op generated r
13: sum← sum + ∆r
14: end if
15: end for
16: return sum/

(
∑K

i=1 CreditAssignment.GetReward(W, D, i)
)

// credit = normalized sum

fitness values of the newborn offspring as a raw impact measure. By doing this, the AUC
and the SR Credit Assignment schemes become fully comparison-based, as only sorting
some fitness values is required. This means that, in addition to the linear scaling of the
fitness functions, they also become invariant to all the family of fitness functions defined
by monotonous transformations over the original function.

These comparison-based Credit Assignment schemes will be referred to as Fitness-
based Area-Under-Curve (FAUC) and Fitness-based Sum-of-Ranks (FSR) in the following.
As in the original schemes, only the fitnesses of the offspring that improved over their
parents are considered, a null reward is assigned otherwise. To date (and to the best of our
knowledge), they are the most robust methods for evaluating the operators performance,
although being a bit less efficient than the simple rank-based schemes in some cases, as
acknowledged in the experimental comparisons that will be presented in Chapter 6.

5.3 Contributions to Operator Selection

Let us turn now to the other component of AOS, the Operator Selection. This is the
process used to select the next operator to be applied, based on the credits received from
the Credit Assignment scheme under employment during the current search process, as
reviewed in Section 4.4. In this thesis, we have proposed and extended the use of the
Multi-Armed Bandit (MAB) paradigm for Operator Selection. Starting with a slightly
modified version of the Upper Confidence Bound (UCB) algorithm, which will be surveyed
in Section 5.3.1, we have proposed two modifications in order to enable it to account for
the dynamics of the AOS problem: the Dynamic Multi-Armed Bandit (DMAB) and the
Sliding Multi-Armed Bandit (SLMAB). They will be described, respectively, in Sections
5.3.2 and Section 5.3.3. Lately, we have proposed the use of a simplified version of the UCB

80



5.3 Contributions to Operator Selection

algorithm, that directly uses the output of the rank/comparison-based Credit Assignment
schemes as the empirical quality estimate of each operator. This technique, referred to as
the Rank-based Multi-Armed Bandit (RMAB), will be presented in Section 5.3.4.

5.3.1 Basic Operator Selection Scheme: Multi-Armed Bandit

A very important concept for efficient problem solving within EAs is that of the Ex-
ploration versus Exploitation (EvE) balance: as discussed throughout Chapter 2, the
EA needs to efficiently exploit as much as possible the most promising regions of the
search space, while it also needs to explore the search space as a whole, in order to
have higher chances of finding the true global optimum. In the context of Operator
Selection, the same EvE problem exists, but at a higher level of abstraction: the most
promising operator needs to be exploited as much as possible, while the other opera-
tors also need to be explored from time to time, as the problem of operator selection
is dynamic and one of the other operators might become efficient at a further stage
of the search. The EvE dilemma has been intensively studied in the context of Game
Theory, in the so-called Multi-Armed Bandit (MAB) framework [Lai and Robbins, 1985;
Auer et al., 2002]. Based on these works, we have decided to consider the MAB algorithms
as possible solutions for the Operator Selection problem, as presented in the following.

To start with, the general paradigm for solving Multi-Armed Bandit (MAB) problems
can be formalized as follows. A MAB problem involves K arms; the i-th arm is character-
ized by its fixed, unknown reward probability pi ∈ [0, 1]. At each time step t, the player
selects an arm j; with probability pj it gets reward rt = 1, otherwise rt = 0.

At any point T during the game, the performance of the MAB strategy is measured
by its cumulative reward

∑T
t=1 rt. An equivalent criterion, more amenable to theoreti-

cal analysis, is the so-called regret of the strategy, defined as the difference between its
performance and the best possible performance. Clearly, the best possible performance is
achieved by playing at each time step the (unknown) best arm, i.e., the arm with maximal
probability p∗ of getting a reward. Hence, the regret of the strategy after T time steps is:

L(T ) = T · p∗ −
T∑

t=1

rt (5.6)

Classically, it is assumed that arms are independent from each other; and that the
rewards associated to each arm are independently and identically distributed (i.i.d.).
Under these assumptions, it can be shown that the minimal regret increases logarith-
mically with time (L(T ) = O(log(T ))) [Lai and Robbins, 1985]. One of the solutions
proposed for the MAB problem, the so-called Upper Confidence Bound (UCB) algo-
rithm [Auer et al., 2002], achieves this optimal regret rate through an Exploration versus
Exploitation-based criterion. Formally, the i-th arm is associated to its empirical quality
estimate q̂i (the average of the rewards ri obtained up to the given time instant); and to
a confidence interval that depends on the number of times ni the i-th arm has been tried.
The UCB algorithm deterministically selects, at each time step, the arm with best upper
bound of the confidence interval defined in Equation 5.7.
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Select arg maxi=1...K

(

q̂i,t +
√

2 log
P

k nk,t

ni,t

)

(5.7)

with ni,t+1 = ni,t + 1 (number of times used) (5.8)

and q̂i,t+1 =

(
Pt

j=0
ri,j

ni,t+1

)

(empirical quality estimate) (5.9)

Clearly, the left term in Equation 5.7 favors the arm with best empirical quality (ex-
ploitation), while the right term promotes the trial of the other arms (exploration). The
UCB algorithm works thus by choosing mostly the arm that can possibly give the best
reward, while giving a chance from time to time to infrequently tried arms. Its efficiency
comes from the fact that, although every arm is selected an infinite number of times, the
lapse of time between two selections of an under-optimal arm increases exponentially with
respect to the number of time steps. For this reason, the UCB is frequently phrased as
“Be optimistic in front of the Unknown”.

However, the mentioned optimality of the UCB algorithm with respect to the balance
between the Exploration and Exploitation terms is ensured only in the original MAB
context, in which rewards are Boolean. In the AOS context, the rewards are usually
in between some real-value interval, depending on the Credit Assignment scheme being
employed, and this “breaks” this balance. In order to correct it, a Scaling factor was
introduced by us into the original formula, being represented by the C term in Equation
5.10 [Da Costa et al., 2008]. Besides, in order to avoid storing all rewards received by each
operator up to time t, the averaging procedure of the empirical quality estimate presented
in Equation 5.9 can be re-written as shown in Equation 5.12.

Select arg maxi=1...K

(

q̂i,t + C ·
√

2 log
P

k nk,t

ni,t

)

(5.10)

with ni,t+1 = ni,t + 1 (number of times used) (5.11)

and q̂i,t+1 =

(
(ni,t−1)·q̂i,t+ri,t

ni,t

)

(empirical quality estimate)(5.12)

A complete representation of this Operator Selection technique is presented in the form
of a pseudo-algorithm in Algorithm 5.4.

It must be noted that the MAB paradigm differs in two aspects from the mainstream
framework concerned with learning optimal strategies, namely Reinforcement Learning
(RL). On the one hand, MAB aims to select the best action, whereas RL is concerned
with finding the best sequence of actions. On the other hand, while RL is concerned with
learning the optimal sequence, it does not pay attention to the rewards it gets during the
training phase. Quite the contrary, MAB simultaneously wants to learn the best action,
and to optimize the cumulative reward it gets during learning. Clearly, the latter objective
is the only one relevant in the context of AOS: the goal is to continuously learn which
operator should be applied while maximizing the fitness improvement in the course of
evolution.
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Algorithm 5.4: Operator Selection: Multi-Armed Bandit (K,C)

1: for i = 1 to K do
2: ni ← 0 // number of operator trials
3: q̂i ← 0.0 // empirical quality estimate
4: end for
5: while NotTerminated do
6: if one or more operators not applied yet then
7: op← uniformly selected between the operators not applied
8: else

9: op← arg maxi=1...K

(

q̂i + C.

√

2. log(
PK

j=1 nj)

ni

)

10: end if
11: Operator op is applied, impacting the search progress somehow
12: rop ← CreditAssignment.GetReward(op)
13: nop ← nop + 1

14: q̂op ←
(

(nop−1)∗q̂op+rop

nop

)

15: end while

Although we acknowledge that MAB is the name given to the problem, for the sake
of convenience, in the remainder of this manuscript we will refer to the UCB selection
strategy with scaling factor C (as shown in Equation 5.10) as the MAB technique. As this
technique is the basis of all the Operator Selection methods developed during this thesis,
it will be always used as baseline for empirical comparison, being combined with one of the
Credit Assignment schemes that use the raw values of fitness improvements to measure
the impact of operator applications, namely, the absolute and the normalized versions of
the Instantaneous, Average, and Extreme schemes.

5.3.2 Dynamic Multi-Armed Bandit

As previously discussed, the MAB algorithm has been designed in order to minimize the
regret, i.e., the loss compared to the cumulative reward obtained by the (unknown) optimal
strategy [Auer et al., 2002]. This makes it compulsory to determine the best arm (say with
reward r): in case the algorithm settles on the second best arm (say with reward r′), it
incurs some loss r− r′ at each time step, and its regret increases linearly with the number
of time steps. In the meanwhile, unpromising arms are tried exponentially less and less;
since the reward distribution is assumed to be stationary, the chances of mistaking the
best arm for an unpromising one decreases exponentially with the number of trials. The
main rationale behind the MAB exploration (trying other arms than the one with best
empirical q̂) is thus to determine the best arm among the most promising ones.

AOS faces quite different priorities. The main need for exploration comes from the
dynamics of the environment: one cannot assume the reward distribution to be stationary,
the quality of any operator is bound to vary along evolution (see in Section 6.4.2, e.g., the
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variation in the quality of some mutation operators on the OneMax problem). Henceforth,
mistaking the best and second best operator has moderate consequences as the loss is small
(provided r and r′ are sufficiently close) compared to the cost of exploration. The point
thus becomes to identify as fast as possible a sufficiently good operator.

Note that if the reward distribution is not stationary, the MAB regret cannot but
linearly increase with the number of time steps in the worst case. The worst case is when
the reward distribution of the supposedly best arm does not change, whereas a previously
bad arm covertly becomes the best one. The only way to detect such a worst-case change
would be to try all arms sufficiently often, i.e., to define a minimal selection probability,
along the same lines as the Probability Matching (PM) Operator Selection technique. In
the evolutionary framework, however, such a worst-case change scenario is unlikely to
occur.

On the one hand, the average reward of every operator tends to decrease as evolution
goes on (diminishing returns): in the One-Max problem, for instance, the best mutation
operator is the 5-bit mutation when the population is far away from the optimum; but
the reward of the 5-bit mutation decreases as the population goes to more fit regions, and
at some point the 3-bit mutation operator catches up (more details on this can be found
in Section 6.4). This suggests that when a good operator has been identified, there is no
need for exploration as long as this operator remains sufficiently good.

On the other hand, even without employing a minimal selection probability, and with
the lapse of time between two exploration trials increasing exponentially as the search
goes on, there is still some exploration being done by the original MAB algorithm. It
should thus be able to handle the AOS dynamic scenarios to some extent, although not
having been devised to do so. The problem, however, lies in the update rule of the MAB
empirical quality estimate q̂; the simple averaging formula presented in Equation 5.12 can
be re-written as:

q̂i,t+1 = q̂i,t +
1

ni,t
· (ri,t − q̂i,t) (5.13)

From Equation 5.13, it becomes clear that the weight of the reward received by operator i
from the Credit Assignment under employment at time t (ri,t) is inversely proportional, in
the update of the operator empirical quality estimate q̂i,t, to the number of times operator
i was applied (ni,t). Therefore, in case the current best operator has been selected ni

times and its reward falls down by δ, it will need roughly ni · δ/ε trials before recovering
an accurate quality estimate of operator i up to precision ε. In other words, the longer is
the steady-state of the quality of the best operator, the longer it will take for the MAB
process to correct its empirical knowledge in case the situation changes. This inertia
is what significantly degrades the performance of the original MAB algorithm on the
dynamic AOS context, as assessed in the experimental comparisons that will be presented
in Chapter 6.

The above remarks motivated the proposal of the Dynamic Multi-Armed Bandit
(DMAB) approach: the original MAB algorithm is coupled with a statistical test, the
Page-Hinkley (PH) change-point detection test [Page, 1954]. Briefly, upon the detection
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of a change in the reward distribution, the MAB process is restarted from scratch. After
describing the PH test, more details about the DMAB will be given in the following.

Page-Hinkley Change-Point Detection Test

Given a series of observations (r1, . . . , rℓ), a frequently asked question is whether these
observations can be attributed to a same statistical law (Null hypothesis), or if some change
in the law underlying the observations has occurred at some point (Change hypothesis). A
standard test for the change hypothesis is the Page-Hinkley (PH) test [Page, 1954], which
can be formally described as follows.

Let r̄ℓ denote the average of (r1, . . . rℓ) and let eℓ denote the difference (rℓ − r̄ℓ + δ),
where δ is a tolerance parameter [Page, 1954]. The PH test considers the random variable
mt defined as the sum of (e1, . . . , et). The maximum value Mt of the |mt| values for
(ℓ = 1 . . . t) is also computed and the difference between Mt and |mt| is monitored. When
this difference is greater than some user-specified threshold γ, the PH test is triggered,
i.e., it is considered that the Change hypothesis holds. This can be formally written as
follows:







r̄ℓ = 1
ℓ

∑ℓ
i=1 ri

mt =
∑t

ℓ=1(rℓ − r̄ℓ + δ)

Mt = arg maxℓ=1...t{|mℓ|}
PHt = Mt − |mt|
Return (PHt > γ)

(5.14)

The PH test involves two hyper-parameters. Parameter γ controls the trade-off be-
tween false alarms and unnoticed changes; and parameter δ enforces the robustness of
the test when dealing with slowly varying environments. Following early experiments
[Da Costa et al., 2008], the latter has been kept fixed to 0.15; while the former is a hyper-
parameter that needs to be defined by the user.

MAB + PH = DMAB

The hybridization of the original MAB algorithm (UCB with Scaling factor) with the
PH statistical test results in the so-called Dynamic Multi-Armed Bandit (DMAB). It
maintains four indicators for each arm i: from the MAB side, the number ni,t of times
this arm has been tried up to time t, and its current (average) empirical quality estimate
q̂i,t; from the PH test side, there are the average and the maximum deviation measures mi

and Mi. In addition to these indicators, the DMAB also consequently inherits the hyper-
parameters of both components, which need to be tuned beforehand by the user, namely,
the MAB scaling factor C and the PH change-detection threshold γ. A complete and
detailed representation of DMAB, with its indicators and hyper-parameters, is presented
in Algorithm 5.5.

Note that the DMAB combination was firstly proposed in another dynamic context by
[Hartland et al., 2007], being originally applied in AOS by us in [Da Costa et al., 2008].
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Algorithm 5.5: Operator Selection: Dynamic MAB (K,C, γ, δ = 0.15)

1: for i = 1 to K do
2: ni ← 0 // number of operator trials (MAB)
3: q̂i ← 0.0 // empirical quality estimate (MAB)
4: mi ←Mi ← 0.0 // cumulative and max. cumulative difference (PH)
5: end for
6: while NotTerminated do
7: if one or more operators not applied yet then
8: op← uniformly selected between the operators not applied
9: else

10: op← arg maxi=1...K

(

q̂i + C.

√

2. log(
PK

j=1 nj)

ni

)

11: end if
12: Operator op is applied, impacting the search progress somehow
13: rop ← CreditAssignment.GetReward(op)
14: nop ← nop + 1

15: q̂op ←
(

(nop−1)∗q̂op+rop

nop

)

// identical to the MAB algorithm up to here

16: mop ← mop + (rop − q̂op + δ) // then the PH change-detection test is performed
17: if |mop| > Mop then
18: Mop ← |mop|
19: else if Mop − |mop| > γ then
20: Restart MAB and PH variables (n, q̂,m,M)
21: end if
22: end while

In the latter paper, the absolute Instantaneous value of rewards given by some artifi-
cial scenarios (described in Sections 5.4.1 and 5.4.2) was used as the Credit Assign-
ment scheme, in order to study the Operator Selection techniques independently. Be-
ing fed by the Extreme value of fitness improvements (and also by the other Credit
Assignment schemes based on fitness improvements, for the sake of empirical compari-
son), it was later assessed on some EA binary benchmark problems [Fialho et al., 2008;
Fialho et al., 2009a; Fialho et al., 2009b]. It was also evaluated on some SAT instances
[Maturana et al., 2009a], within an aggregation of fitness and diversity, the Compass (de-
scribed in Section 4.3.4), being used as Credit Assignment. All these experiments will be
reminded in detail in Chapter 6.

5.3.3 Sliding Multi-Armed Bandit

Although showing to be very efficient, the DMAB Operator Selection technique presents
two main weaknesses. On the one hand, the change-point detection test is triggered only
in the case of an abrupt change, whereas the reward of an operator usually decreases
gradually: this makes it very difficult to calibrate this test (namely, its change-detection
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threshold γ). On the other hand, upon triggering the test, the whole memory of the MAB
process is lost, and the exploration of the operators must start anew.

These remarks motivated the introduction of a new bandit-based Operator Selection
technique, referred to as the Sliding Multi-Armed Bandit (SLMAB) [Fialho et al., 2010a].
The underlying idea of this method is to be able to gracefully follow the dynamics of the
AOS scenario, without needing the very sensitive and somehow controversial (although
efficient when correctly tuned) restart mechanism employed by DMAB.

Several heuristics have been proposed to update statistical estimates in a non-
stationary context. The most natural heuristic is the so-called relaxation update rule,
used by the PM and AP Operator Selection schemes, in which the weight of the instant
reward rt on the update of the empirical quality estimate is defined by some constant
learning rate α (0 < α ≤ 1):

q̂i,t+1 = (1− α) · q̂i,t + α · ri,t (5.15)

The difficulties with the above rule are that, besides introducing the extra hyper-
parameter α to be tuned by the user, it defines a constant weight for the instant reward
ri,t, regardless of how frequently the i-th operator has been applied in the last time steps.
In the AOS framework, however, different operators are applied with different frequencies;
if an operator has not been applied for a long time, the weight of the instant reward it
received should be higher, everything else being equal, in order to enable a more rapid
adjustment of its q̂i,t.

The update rule must thus take into account the number of time steps elapsed since
the previous time step ti in which the i-th operator has been applied. Finally, in order to
preserve the MAB trade-off between exploration and exploitation, one must also maintain
the ni,t counters reflecting the frequency of application of operators up to time step t.

Considering a window of size W , the proposed update of the sliding exploitation and
exploration terms (respectively, q̂ and n), which is performed every time operator i is
applied, is defined as:







q̂i,t+1 = q̂i,t · W
W+(t−ti)

+ ri,t · 1
ni,t+1

ni,t+1 = ni,t ·
(

W
W+(t−ti)

+ 1
ni,t+1

) (5.16)

The above update rule is designed in such a way that, if an operator is applied with
frequency W/nt, then nt is constant. The rationale for this update scheme can be explained
as follows.

If an operator is performing well and is almost always applied, counter ni,t rapidly
increases up to W and sticks to this value, while its empirical quality estimate q̂i,t ac-
curately reflects the reward expectation for the current stage of the search. The main
difference compared to the MAB and DMAB settings is that ni,t is upper bounded by
W . Equivalently, the inertia of the reward estimate is bounded: the weight of the instant
reward cannot be less than 1/W .

Oppositely, if an operator is rarely applied, its q̂i,t can be seen as an outdated estima-
tion of the actual reward expectation. On the other hand, the fact that the operator is
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rarely applied means that its empirical quality estimate is lower than that of the current
best operator. With the averaging update rule employed by the original MAB scheme,
presented in Equation 5.12, it would take a long time to correct the empirical quality esti-
mate of this operator in case it had become the new best one. With the proposed sliding
update rule, however, this outdated estimation of the operator quality is more efficiently
corrected: if the operator has not been tried in the previous W time steps, ni,t is low,
consequently the weight given to the instant reward is high in the update formula, thus
rapidly shifting the empirical quality estimate towards its actual value.

Besides the scaling factor C, that is needed by all bandit-based Operator Selection
mechanisms, the other hyper-parameter that needs to be defined in SLMAB is the window
size W , used in the proposed window-based relaxation update mechanism. But, as most
Credit Assignment schemes found in the literature, including the schemes proposed in this
thesis, rely on windowing the operator reward distribution, this latter hyper-parameter
can be said to be parameterized “for free” (by using the same window size W employed
by the Credit Assignment scheme being used). A complete presentation of the SLMAB in
the form of a pseudo-algorithm is presented in Algorithm 5.6.

Algorithm 5.6: Operator Selection: Sliding Multi-Armed Bandit (K,C,W )

1: times← 0 // number of total time steps
2: for i = 1 to K do
3: ni ← 0 // number of operator trials
4: q̂i ← 0.0 // empirical quality estimate
5: lasti ← 0 // last time it was applied
6: end for
7: while NotTerminated do
8: if one or more operators not applied yet then
9: op← uniformly selected between the operators not applied

10: else

11: op← arg maxi

(

q̂i + C ·
√

2·log(
PK

j=1 nj)

ni

)

12: end if
13: Operator op is applied, impacting the search progress somehow
14: rop ← CreditAssignment.GetReward(op)

15: q̂op ← q̂op ·
(

W
W+(times−lastop)

)

+ rop ·
(

1
nop+1

)

16: nop ← nop ·
(

W
W+(times−lastop) + 1

nop+1

)

17: lastop ← times
18: times← times + 1
19: end while

The SLMAB Operator Selection technique, combined with the absolute Instantaneous,
Average and Extreme Credit Assignment schemes, was assessed on some artificial sce-
narios, described in Section 5.4, being also used to select between some mutation and
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crossover operators within a real EA applied to the Royal Road benchmark problem
[Fialho et al., 2010a]. All these experiments will be detailed in Chapter 6.

5.3.4 Rank-based Multi-Armed Bandit

The main criticism with respect to the bandit-based AOS schemes described up to now
is related to the high sensitivity of their hyper-parameters, what was an important moti-
vation factor for most of the further developments presented throughout Sections 5.2 and
5.3. From the Operator Selection point-of-view, the SLMAB represented a further step to-
wards more robust schemes, by eliminating one of the two very sensitive hyper-parameters
present in the DMAB approach (the Page-Hinkley change-detection threshold γ), while
still being able to achieve equivalent performance in following the AOS dynamics on some
artificial benchmark functions [Fialho et al., 2010a]. But, even for the SLMAB, there is
still the need to tune the scaling factor C, which is indeed a very sensitive hyper-parameter
common to all bandit-based Operator Selection approaches previously presented. The diffi-
culty for tuning this parameter comes from the Credit Assignment scheme being employed,
as follows.

By the time the DMAB and SLMAB techniques were proposed, the Credit Assignment
schemes under consideration were the basic Instantaneous, Average (Section 5.2.1), and
Extreme ones (Section 5.2.2), as well as their Normalized versions (Section 5.2.3). All
these schemes assign credit based directly on some statistics over the raw values of the
fitness improvements. Whenever these raw values are used, the tuning of the AOS hyper-
parameters tends to be highly problem-dependent, as the range of fitness values varies
widely from one problem to another, as well as in the course of an optimization run.
Hence, the scaling factor C, which has as original role to tune the balance between the
exploitation and exploration terms of the UCB formula (Equation 5.10), also needs to play
a radically different role, that of accounting for the scale of the rewards received. This
double role is the reason why C shows to be such a sensitive hyper-parameter.

These issues motivated the proposal of the rank-based and further comparison-based
Credit Assignment schemes, presented in Sections 5.2.4 and 5.2.5, respectively. How-
ever, the direct combination of these schemes with the previously described bandit-based
Operator Selection techniques showed a rather poor performance after some preliminary
experiments. The reason for this is that the AUC and the SR indicators already provide,
on the Credit Assignment side, an empirical statistic over the last W offspring generated;
while the MAB techniques do another aggregation of rewards in the Operator Selection
side (the q̂ in Equation 5.10) – the two layers of statistics were somehow diluting the
interesting characteristics of the proposed performance measurements. Therefore, as the
outputs of the AUC and SR indicators already reflect accurate and up-to-date perfor-
mance measures of one operator with respect to all others, they can be used directly as
the exploitation term in the MAB formula, i.e., q̂i,t = AUCi,t or SRi,t, depending on the
scheme being used.

This simple adaptation of the MAB scheme brings another very important benefit for
Operator Selection. As the mentioned rank/comparison-based Credit Assignment schemes
maintain just one sliding window for the rewards received by all operators, the inclusion
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of a new reward in the sliding window, achieved by a given operator, affects the quality
estimates of all the other operators. Consequently, the AOS dynamics are already handled
on the Credit Assignment side in a transparent way, without needing an external observer,
as the change-detection test in the DMAB technique, or a relaxation update rule, as the
one employed in the SLMAB scheme.

Finally, in order to ensure a minimal level of exploration, the MAB term n is modified
to reflect the number of times each operator appears in the sliding window. A complete
representation of this simplified version of the MAB algorithm, specially adapted to be
used with the rank/comparison-based Credit Assignment schemes, thus referred to as the
Rank-based Multi-Armed Bandit (RMAB), is presented in the form of a pseudo-algorithm
in Algorithm 5.7.

Algorithm 5.7: Operator Selection: Rank-based Multi-Armed Bandit (K,C)

1: for i = 1 to K do
2: ni ← 0 // number of times operator i appears in the current credit window
3: q̂i ← 0.0 // empirical quality estimate = normalized CreditAssignment output
4: end for
5: while NotTerminated do
6: if one or more operators not applied yet then
7: op← uniformly selected between the operators not applied
8: else

9: op← arg maxi

(

q̂i + C ·
√

2·log(
PK

j=1
nj)

ni

)

10: end if
11: Operator op is applied, impacting the search progress somehow
12: for i = 1 to K do // the application of one operator might affect the others
13: q̂i ← CreditAssignment.GetReward(i)
14: ni ← CreditAssignment.GetTimes(creditWindow, i)
15: end for
16: end while

In order to evaluate the efficiency and robustness of the AOS techniques derived from
the combination of the RMAB Operator Selection scheme with the rank/comparison-based
Credit Assignment schemes, they were firstly assessed within a GA applied to the OneMax
problem and to other three fitness functions defined by monotonous transformations over
this problem [Fialho et al., 2010c]. Later on, their performances were also evaluated on a
set of 24 single-objective continuous problems [Fialho et al., 2010b; Fialho and Ros, 2010],
selecting between different mutation strategies within a DE algorithm. As expected, these
combinations showed to be very robust with respect to their hyper-parameters, namely,
the scaling factor C, the decay factor D, and the window size W ; while achieving the
same level of state-of-the-art performance of the previously presented (efficient but very
problem-dependent) approaches. The experimental results on the OneMax and on the
continuous problem will be detailed, respectively, in Sections 6.4 and 6.6.
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5.4 Contributions to Empirical Assessment

By the time this manuscript is being written, the use of RMAB as Operator Selec-
tion, with the Area-Under-Curve (AUC) Credit Assignment scheme, is our final recom-
mended choice in case one wants to use the AOS paradigm on his own optimization
algorithm/problem. The reason for this choice will be extensively discussed and justified
in Section 6.8, based on the evidences brought by the comprehensive empirical analysis
that will be presented in Chapter 6.

5.4 Contributions to Empirical Assessment

While developing the AOS schemes presented in this Chapter, some artificial benchmark
problems were proposed to analyze different aspects of their behavior in a controlled
environment. All these scenarios, that will be now described in turn, were used in part of
the empirical analysis of the AOS schemes, which will be presented in Section 6.3.

Based on the Uniform artificial scenario, proposed in [Thierens, 2005] and described
in Section 5.4.1 for the sake of self-containedness, we have introduced two other artificial
scenarios. Referred to as the Boolean and the Outlier scenarios, they will be presented in
Section 5.4.2. They involve the same switches between five operators, but with rewards
coming from different distributions and with different probabilities.

More recently, we have extended this set of artificial benchmarks by proposing a new
family of problems, referred to as the Two-Values (T V) benchmarks [Fialho et al., 2010a],
which can be used to simulate different situations with respect to the mean and variance
of rewards given by two artificial operators. The T V benchmarks will be described in
detail in Section 5.4.3.

5.4.1 Basic Artificial Scenario: Uniform

The Uniform artificial benchmark, proposed in [Thierens, 2005], involves a set of 5 op-
erators, in which the reward distribution associated to each operator is constant during
an epoch (∆T times steps). During every epoch, the operator reward is uniformly drawn
from an interval, as follows: {4, 6} for the current best operator, {3, 5} for the second best,
{2, 4} for the third, {1, 3} for the fourth, and {0, 2} for the worst operator.

The reward distributions associated to all operators are permuted at the end of ev-
ery epoch, using pre-defined permutations to decrease the experimental noise, defined in
[Thierens, 2005] as follows: 41203 7→ 01234 7→ 24301 7→ 12043 7→ 41230 7→ 31420 7→
04213 7→ 23104 7→ 14302 7→ 40213. More precisely, the best operator in the first epoch
is the op4, which becomes the worst one in the second epoch. The best operator in the
second epoch is op0, which was the fourth one in the first epoch.

It is true to say that these abrupt changes in the quality of the operators are very
unrealistic; they are used here as a kind of extreme scenario with respect to AOS dynamics.
Different epoch lengths are considered, e.g., set to ∆T = 50 for fast dynamics and ∆T =
200 for slow ones. The performance associated to an AOS scheme is the cumulative reward
obtained during this sequence of 10 epochs. As the reward expectation of the best operator
is 5, the maximal cumulative reward is 2,500 in the fast case (5 × 10× 50) and 10,000 in
the slower one (5× 10× 200).
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5.4.2 Boolean and Outlier Scenarios

Within the Uniform benchmark, an operator always gets a reward that is positive, while
also being informative, i.e., it indicates (to some extent) which is the best operator, pos-
sibly mistaking just with the second best, as the intervals of their reward distributions
overlap. In a real evolutionary context, however, the AOS task might be much more chal-
lenging. For instance, the probability of getting some useful information about the quality
of the operator might be smaller than that, up to the situation in which no information
whatsoever is provided to the AOS (specially true when the search is getting closer to
the optimum); or, even if some rewards are frequently provided, the information gathered
from them might not be so useful in order to efficiently differ between the available opera-
tors. Based on these two difficulties, we proposed [Da Costa et al., 2008] and further used
[Fialho et al., 2010a] two variants of the Uniform benchmark, referred to as the Boolean
and Outlier scenarios.

In the Boolean scenario, the best operator gets a reward of 10 with probability 50%,
and 0 otherwise; the second best gets the same reward of 10 but with probability 40%
and 0 otherwise; and so forth, until the worst operator, getting a reward of 10 with
probability 10% and 0 otherwise. In this scenario, the difference between the operators
is the probability of getting a non-null reward; the reward takes the same value in all
cases. In particular, the best operator has the same reward expectation as in the Uniform
scenario, though with a much higher variance.

Quite the contrary, in the Outlier scenario, all operators get a non-null reward with
the same probability (10%). The difference lies in the reward value, set to 50 for the best
operator, 40 for the second best and so forth, up to 10 to the worst operator. While the
reward expectation is still the same as in the Uniform benchmark, the AOS is provided
with much less information (only 10% of the trials produce some information), and the
reward variance is much higher than in the Boolean scenario.

Summarizing, thus, the probability of getting some information is high (for the best
operator) in the Boolean benchmark, while being low (for all operators) in the Outlier
benchmark. But the Boolean scenario typically does not provide useful information (all
rewards have the same values, only the probabilities differ), while the Outlier scenario in-
volves very informative but rare rewards. Both use the same sequence of switches between
reward distributions after every epoch, and the reward expectation for each operator is
also the same as in the Uniform case.

5.4.3 Two-Value Scenarios

As discussed in the previous Section, any AOS is usually provided with some (more or
less) informative results (the reward amount, everything else being equal); and it is more
or less likely to be provided with any information at all. Typically, the MAB process is
well equipped to deal with Boolean-like settings, where operators (arms) get the same
reward in case of success and only the probability of success differs.

Along these lines, a framework for AOS benchmarks, referred to as Two-Values (T V)
benchmarks, was proposed in [Fialho et al., 2010a], enabling a more precise control of
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the two issues previously discussed. Briefly, every operator is assumed to get one out
of two reward values, a small value noted r and a large one noted R. Within these two
parameters, it is possible to control the informativeness of the reward distribution, defined
by the ratio R/r; while the third parameter, p, defines the probability of getting reward
R; and (1− p) is the probability of getting r. Needless to say, the mean and the variance
of the rewards received are also intrinsically managed by these parameters.

Formally, the reward distribution specified from the triple (p, r,R) is defined as:

{
T V(p, r,R) = R with probability p

r with probability 1− p

with expectation and variance respectively noted IE(p, r,R) and V (p, r,R):

IE(p, r,R) = p ·R + (1− p) · r
V (p, r,R) = p · (1− p) · (R− r)2

It is clear that only the ratio R/r impacts the results; thus, in the remainder of this
manuscript, r will be set to 1 and omitted in the notations for the sake of simplicity
– a reward distribution will be noted T V(p,R) instead of T V(p, 1, R). Furthermore, a
scenario involving T V(p1, R1) and T V(p2, R2) will be denoted by ART (p1, R1, p2, R2).
The respective roles of p and R are exemplified in Figure 5.4, displaying two samples of
size 100 of distributions with the same expectation and high versus low variance.
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(a) T V(0.1, 10), V (.1, 10) = 7.29
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Figure 5.4: Two samples drawn from two T V distributions with same expectation
IE(.1, 10) = IE(.9, .2) = 1.9; the distribution on the left picture presenting a much higher
variance (V (.1, 10) = 7.29) then the one on the right (V (.9, 2) = .09).

Such a general framework will help us into analyzing very different aspects of the
behavior of the AOS schemes proposed. The main question will always be how agile a
given AOS combination is into switching between two different situations, what will be
analyzed under the light of different variants of this scenario in Section 6.4. But other low
level details could also be analyzed, e.g., does the AOS (or the Credit Assignment scheme
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it implements) tend to favor operators with a high variance instead of the ones with a low
variance [Fialho et al., 2010a].

In the same way as for the previously presented scenarios, the exchanges between the
reward distributions, done after each epoch of ∆T time steps, obey a fixed sequence in
order to decrease the experimental noise: 01 7→ 01 7→ 10 7→ 01 7→ 10 7→ 10 7→ 10 7→ 01 7→
01 7→ 10.

5.5 Discussion

In order to be well-accepted by the EA community, the main requirement of a good AOS
technique is, of course, to be able to efficiently automate the control of the operators to
be applied, in a dynamic way, during the search process. But it also needs to be (i) easily
implementable and, even more importantly, to be (ii) computationally cheap.

The first issue can be alleviated by making available implementations of the proposed
schemes (e.g., as open source libraries). The algorithms implemented in this work were
coded in ANSI-C++. The Evolving Objects (EO) library1 [Keijzer et al., 2002] was used
to assist the implementation of the underlying EAs, controlled by the proposed AOS
methods. All this experimental framework is freely available under request by email. And
indeed, it was already requested by some researchers, and we acknowledge its recent use
by one of them [Verel et al., 2010] on the assessment of a newly proposed method.

A lot of care should be taken, however, with the second issue: the more computationally
expensive the AOS technique, the smaller the margin of possible benefits it can bring to the
underlying algorithm whose operators are being controlled by it. These benefits are usually
computed in terms of computational time or effort to achieve a given solution. Indeed, in
some domains, such as in numerical engineering, the fitness evaluation is very expensive,
what makes the AOS computational cost negligible. But in combinatorial problems, such
as the Boolean Satisfiability problems (see Section 6.5.2), the cost of evaluating the fitness
of a given solution is almost zero. In this latter case, it might become impracticable to
consult and update the AOS technique every time an operator is applied: a trade-off should
thus be found between the AOS granularity (how frequent it is consulted and updated, e.g.,
once every generation instead of once every application) and the AOS dynamics accuracy
(the more frequent it is updated, the more reliable will be its estimation with respect to
the operators empirical performance).

A third issue worth discussing concerns a very common critic that prevents people from
using AOS schemes on their own algorithms and problems: although being proposed to
automate some user choices, these schemes have their own (hyper-)parameters that need
to be tuned in order to achieve acceptable performance, e.g., the scaling factor C and
the window size W , respectively, common to all Operator Selection schemes and Credit
Assignment mechanisms we have proposed. What should be argued in this case is that the
AOS schemes automatically take care of many shallow parameters (i.e., which operators
should be considered by the EA, and at which rate each of the chosen ones should be
applied), besides the main fact that they control the rates in a dynamic way, during the

1EO: C++ library for coding EAs, freely available at http://eodev.sourceforge.net/ as of today.
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search process, while involving only a few general hyper-parameters (2 or 3, depending on
the AOS combination being implemented).

A very common approach to solve this hyper-parameter setting issue is to use off-line
parameter tuning methods to automatically set them. Indeed, this has been done for all
the experiments that will be presented in Chapter 6, in order to compare the proposed
and the baseline techniques at their peak performance. But off-line tuning is an expensive
procedure, as discussed earlier in Section 3.3.2; so, ideally, a good AOS technique should
also be robust with respect to its hyper-parameters, i.e., whenever a new problem needs
to be solved, the tuning of the AOS hyper-parameters should be required as rarely as
possible.

Although a good level of efficiency with respect to the AOS dynamics was attained very
early in this thesis work, with the proposal of the Ex-DMAB technique (combining the Ex-
treme Credit Assignment, presented in Section 5.2.2, with the DMAB Operator Selection,
described in Section 5.3.2), the hyper-parameters of such AOS combination showed to be
very sensitive, a good performance being shown just in case the hyper-parameters were
tuned for every new problem. All the further developments proposed in this thesis, for
both Credit Assignment and Operator Selection issues, aimed at smoothening this effect
by creating more robust (i.e., less problem-dependent) techniques, while maintaining the
same level of performance.

A big progress was achieved on this direction by the recent proposal of the RMAB for
Operator Selection (Section 5.3.4), combined with any of the rank-based Credit Assignment
schemes described in Sections 5.2.4 and 5.2.5. The simple fact that rewards are computed
based on ranks instead of raw values of fitness improvements already provides a much
higher robustness to the AOS technique implementing it, guaranteeing invariance with
respect to any linear scaling of the original fitness function. Furthermore, the use of ranks
over the fitness values of the generated offspring, instead of ranks over the fitness improve-
ments, provides to the AOS technique the property of being fully comparison-based, i.e.,
invariant with respect to all monotonous transformations over the same original fitness
function. This robustness gain was confirmed by performing independent off-line tun-
ing procedures over the AOS combination constituted by the Fitness-based Area-Under-
Curve (FAUC) as Credit Assignment with the RMAB as Operator Selection over very
different problems – the same or very similar hyper-parameter settings were found to
be the best, while state-of-the-art (or very close to that) performance was achieved, as
reviewed in the empirical comparisons that will be presented in Chapter 6.

The proposed rank-based AOS techniques are efficient and robust, but it is impor-
tant to note that their current implementations can not achieve good performance in
problems with high multi-modality (i.e., several local optima), because the only action
being rewarded is the progress with respect to the fitness. As exemplified in Section
4.5.2, in order to efficiently tackle multi-modal problems, the maintenance of some diver-
sity in the population should also be rewarded somehow. Further developments should
be done in this direction in the near future by, e.g., trying to provide the same level
of robustness and invariance properties to the Credit Assignment schemes proposed in
[Maturana et al., 2010b], which aggregate both fitness and diversity measures to evaluate
the operator performance. A different alternative, in the case of multi-modal problems,
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would be to let the proposed AOS techniques as they are, i.e., rewarding just exploitation
(fitness), but implementing efficient convergence detection mechanisms in the underlying
EAs, in order to restart the search process in case it gets trapped in a local optimum, con-
sequently giving more opportunities to the algorithm to possibly achieve better solutions
within the same computational budget; such kind of approach, briefly discussed in Section
2.3.3, is very common in Evolution Strategies [Auger and Hansen, 2005].

Finally, concerning the artificial scenarios proposed for the empirical assessment of
the AOS techniques, it is true that many different and more general settings could have
been proposed, such as considering more than two T V operators, or more complex reward
distributions (e.g., taking uniformly drawn values in two intervals centered in the r and R
values, or smoother transitions between epochs). But the preliminary motivation was the
analysis of the effect of both, the reward level of informativeness R/r and the probability p
of receiving a positive reward, on the AOS performance, as will be shown in the empirical
comparisons presented in Section 6.3. More complex and realistic reward landscapes shall
be considered in further studies, according to the needs of the empirical analysis.
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6.1 Introduction

In this Chapter, we present some empirical evaluations of the pro-
posed AOS contributions. The methods are compared with one an-
other, and with other baseline approaches, on diverse benchmark
scenarios. Besides the performance evaluation, their sensitivity and
robustness in relation to their hyper-parameters is also analyzed.

6.1 Introduction

From the standard MAB Operator Selection technique with a Credit Assignment based
on fitness improvements, up to the latest RMAB that is rewarded based on ranks, several
contributions for Adaptive Operator Selection (AOS) have been proposed in Chapter 5.
In this Chapter, a comprehensive empirical analysis for each of the AOS methods, re-
sulting from the combination of the proposed Operator Selection mechanisms and Credit
Assignment schemes, will be presented.

Their performance will be assessed and compared in diverse benchmark scenarios, with
different characteristics and levels of complexity. Firstly (Section 6.3), the empirical anal-
ysis on the artificial scenarios will consider the selection between operators whose rewards
come from different pre-defined artificial distributions that are deterministically changed
after every ∆T iterations. Then (Section 6.4), experiments on some boolean EA bench-
mark problems (OneMax, Long k-Path and Royal Road) will be analyzed: in these cases,
the AOS schemes are applied to a Genetic Algorithm, automatically selecting between
actual mutation and crossover operators, with the rewards coming from the progress at-
tained by the search process on the considered fitness landscapes. Additionally (Section
6.5), the results obtained in the scope of a collaboration with Université d’Angers will
be reminded: in this scenario, only the Dynamic Multi-Armed Bandit (DMAB) Opera-
tor Selection technique (Section 5.3.2) is evaluated, combined with the Compass Credit
Assignment method (Section 4.3.4). The resulting AOS combination is used by a GA
to autonomously select between some crossover, mutation and local search operators, in
the context of Boolean Satisfiability (SAT) problems. In the last set of experiments (Sec-
tion 6.6), the AOS schemes are used within a Differential Evolution algorithm in order to
control which of the available mutation strategies should be applied; the results will be
assessed in a big set of single-objective continuous benchmark functions.

Prior to all these experiments, a preliminary off-line tuning of the hyper-parameters
was done for each AOS technique. The details about this procedure will be presented
in Section 6.2, together with some general experimental settings. Besides, the specific
experimental settings for each scenario will also be detailed in the respective Sections,
before the presentation of the results. In addition to the performance, the sensitivity
of each hyper-parameter and the robustness of the AOS techniques with respect to their
hyper-parameters will also be analyzed in Section 6.7. Finally, the conclusions and findings
gathered from all these empirical data will be discussed in Section 6.8.
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6.2 General Experimental Settings

The different AOS combinations proposed have some hyper-parameters that need to be
set, as discussed throughout Chapter 5. On each of the considered benchmark scenarios,
an off-line tuning procedure was preliminarily performed for the hyper-parameters of each
technique, in order to compare them at their peak performance. A summary of the
AOS combinations and their respective hyper-parameters is presented in Section 6.2.1,
while Section 6.2.2 describes the values explored for each hyper-parameter, and the off-
line tuning procedure used. Finally, Section 6.2.3 overviews the different performance
measures and displays that have been used in the diverse empirical comparisons that will
be presented in the following.

6.2.1 AOS Combinations and Respective Hyper-Parameters

In this Chapter, all the AOS combinations proposed in Chapter 5, namely, the bandit-
based MAB, DMAB and SLMAB Operator Selection mechanisms, combined with Absolute
and Normalized versions of the Instantaneous, Average, and Extreme Credit Assignment
schemes, as well as the RMAB Operator Selection with the rank/comparison-based Credit
Assignment schemes, are compared with one another on different benchmark scenarios.

Regarding the Credit Assignment, all the schemes, except for the Instantaneous one,
have a common hyper-parameter, the size of the sliding window W . This parameter
defines how many operator applications are taken into account to calculate the credit
to be assigned to a given operator after its most recent application. It is important to
remember that the rank/comparison-based schemes have only one window for all operators,
while the other schemes use one window per operator. For the schemes based on the
raw values of the fitness improvements, although the fact of normalizing the output or
not could be considered as another (boolean) hyper-parameter, schemes employing the
Absolute or the Normalized values are separately considered. The rank/comparison-based
schemes have an hyper-additional parameter, the exponential decay factor of the ranking
distribution, referred to as D. Here, again, the choice of use of the fitness values or
the fitness improvements as impact measures for the ranking could be seen as a hyper-
parameter, but the schemes implementing each of them are independently analyzed and
compared with one another.

On the Operator Selection side, all the proposed bandit-based schemes have a common
hyper-parameter, the scaling factor C. This parameter defines the balance between the
UCB exploration and exploitation terms. In case one of the Credit Assignment schemes
based on the raw values of fitness improvements is used, C also accounts for the scale of
the received rewards, as discussed in Section 5.3.4. Additionally, the DMAB also needs the
setting of the threshold γ for the Page-Hinkley change-detection statistical test, used by its
restarting mechanism. Concerning the SLMAB, it requires the definition of its own sliding
window size w, used by its update mechanism – after some preliminary experiments, this
hyper-parameter will be tuned “for free” here, by using the same value than that of the
Credit Assignment W .

As baseline AOS method for comparison, we consider the probability-based Adaptive
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Pursuit (AP) Operator Selection scheme [Thierens, 2005] (Section 4.4.2), combined with
the same Credit Assignment schemes based on the raw values of fitness improvements. AP
needs the setting of: the adaptation rate α to control the update of the empirical quality
estimates of each operator; the learning rate β, which defines the level of greediness of the
winner-take-all strategy for the update of the application rates of each operator; and the
minimal application probability of each operator, referred to as pmin, in order to avoid
inefficient operators to get lost by the process (i.e., have zero probability of being applied),
as they might become useful in a further stage of the search. Experiments were also done
considering the PM method (Section 4.4.1), but its results will be neglected here, due to
the fact that it was always outperformed (significantly in most of the times) by AP.

The other methods used for comparison are: the “Naive” uniform strategy, i.e., the
operator to be applied is randomly selected using a uniform distribution, which represents
what would be a common choice for a naive user; and the “Oracle” strategy, available
only to some of the benchmark problems considered, that represents what would be the
optimal behavior with respect to operator selection on the problem at hand. Needless
to say, these two latter methods do not have any hyper-parameter to be tuned. For
the experiments on the boolean and on the continuous benchmark problems, there is
an additional baseline technique: the probabilities of applying each operator were off-line
tuned for each benchmarking scenario, and the winner configuration is used for comparison,
being referred to as “Static”.

The lists of the considered Credit Assignment and Operator Selection schemes, with
their corresponding hyper-parameters, are presented in Tables 6.1 and 6.2, respectively;
while Table 6.3 summarizes the AOS combinations considered.

Baseline Credit Assignment Schemes Hyper-Parameters

Absolute Instantaneous (AbsIns)
—

Normalized Instantaneous (NormIns)

Absolute Average (AbsAvg)
W Sliding window size

Normalized Average (NormAvg)

Proposed Credit Assignment Schemes Hyper-Parameters

Absolute Extreme (AbsExt)
W Sliding window size

Normalized Extreme (NormExt)

Decay/Area-Under-Curve (Decay/AUC)
W Sliding window size

Decay/Fitness-based Area-Under-Curve (Decay/FAUC)
Decay/Sum-of-Ranks (Decay/SR)

D Decay factor
Decay/Fitness-based Sum-of-Ranks (Decay/FSR)

NDCG/Area-Under-Curve (NDCG/AUC)

W Sliding window size
NDCG/Fitness-based Area-Under-Curve (NDCG/FAUC)
NDCG/Sum-of-Ranks (NDCG/SR)
NDCG/Fitness-based Sum-of-Ranks (NDCG/FSR)

Table 6.1: Baseline and proposed Credit Assignment methods, and their hyper-parameters
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Baseline Operator Selection Methods Hyper-Parameters

Naive
—

Oracle (when available)

Static (boolean and BBOB)
P1

. . . Application rate for each op.
Pk

Adaptive Pursuit (AP)
pmin Minimal operator probability
α Adaptation rate
β Learning or “greediness” rate

Proposed Operator Selection Methods Hyper-Parameters

Multi-Armed Bandit (MAB) C Scaling factor

Dynamic Multi-Armed Bandit (DMAB)
C Scaling factor
γ Threshold for Page-Hinkley test

Sliding Multi-Armed Bandit (SLMAB)
C Scaling factor
w Window size (no tune, w ←W )

Rank-based Multi-Armed Bandit (RMAB) C Scaling factor

Table 6.2: Baseline and proposed Operator Selection methods, and their hyper-parameters

Credit Assign. + Op. Selection Credit Assign. + Op. Selection

×
Ins.

×
AP

×
AUC

× RMAB
Abs.

Avg.
MAB Decay FAUC

Norm.
Ext.

DMAB NDCG SR
SLMAB FSR

24 ∆fitness-based combinations 8 rank-based combinations

Table 6.3: List of 32 AOS combinations considered in most experiments

6.2.2 Off-line Tuning of Hyper-Parameters

To promote a fair empirical comparison, it is generally desirable to evaluate the AOS
schemes at their best. Accordingly, an off-line tuning was performed preliminarily to every
experiment in order to determine, for each AOS combination, the best hyper-parameter
configuration. Table 6.4 presents the ranges of values tried for each hyper-parameter,
unless stated otherwise.

Briefly, the Credit Assignment settings involve 4 configurations for the schemes based
on the raw values of fitness improvements and for the rank-based schemes using the NDCG
decaying mechanism, while 20 configurations are explored for the other rank-based schemes
(using Decay). The Operator Selection settings include: 64 possible configurations for AP,
7 for MAB and RMAB, and 49 for DMAB. For the SLMAB, there are 7 possible config-
urations, except for its combination with the Instantaneous, when the Credit Assignment
window size is set to 1 but all the 4 values are also tried for the sliding window used by its
update rule, thus summing up to 28 configurations. The final number of possible configu-
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Param. Used by |values| Range of Values

pmin AP 4 {0, .05, .1, .2}
α AP 4 {.1, .3, .6, .9}
β AP 4 {.1, .3, .6, .9}
C all MABs 7 {0.01, 0.1, 0.5, 1, 5, 10, 100}
γ DMAB 7

{
10−3, ..., 103

}

W all Credit Assignment 4 {10, 50, 100, 500}
D Decay/rank-based Cr. Assign. 5 {0.25, 0.5, 0.75, 0.9, 1.0}

P1 . . . Pk Static strategy 6 {0, 0.2, 0.4, 0.6, 0.8, 1.0}

Table 6.4: Ranges of values tried for the corresponding hyper-parameters

rations for each AOS combination is attained by multiplying the number of configurations
for its respective Credit Assignment and Operator Selection components.

Regarding the “Static” strategy, 6 possible values were tried for the application rate
of each operator. Only configurations with application rates summing up to 1 were tried.
This results in 56 different configurations for the scenarios involving 4 operators, and 126
configurations for the scenarios with 5 operators.

In order to find the optimal values of all hyper-parameters for each method on each
of the analyzed scenarios, rather than a complete factorial Design of Experiments, we
used the F-Race off-line parameter tuning method [Birattari et al., 2002]. As discussed
in Section 3.3.2, the general idea of Racing techniques is to start with all configurations,
discarding some of them as soon as there is enough statistical evidence showing that
they will not likely be the best one. More specifically, the F-Race applies the Racing
paradigm using the Friedman two-way analysis of variance by ranks [Conover, 1999] as
statistical test to eliminate candidate configurations. In order to enable a fair comparison,
as recommended in [Birattari, 2004b], all the experiments in this work use, for each epoch,
the same initial population (the “blocking design” concept). Starting from a minimal
number of 11 runs, after each run for all configurations, the elimination of inefficient
configurations is performed with the statistical test being applied at a confidence level of
95%. Although 11 runs might be excessive (e.g., [Birattari, 2004a] recommends one run
over each instance), we prefer to be conservative here, in order to be sure that the methods
are really compared at their best, specially because there is a considerable variance in the
results of some of the benchmark problems. The procedure is stopped when a single
configuration remains, or when all “survivors” have been run on the maximal number
of runs, set to 50 in these experiments. In the latter case, the retained configuration
is the one with the best mean amongst the survivors, as done in [Birattari et al., 2002]

(although different alternatives could be used, e.g., in a critical situation the configuration
with best worst case could be considered). In all cases, 50 runs are launched for the
retained configuration and the results presented in this paper are based on statistics over
these runs, unless stated otherwise.

It is worth noting that other off-line tuning methods than the F-Race could have been
tried, notably the methods that iteratively refine the set of candidate configurations, such
as the Iterated F-Race [Balaprakash et al., 2007], the Sequential Parameter Optimization
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[Bartz-Beielstein et al., 2005], and others, surveyed in Section 3.3.2. However, the objec-
tive here was rather to simply do some tuning of the hyper-parameters while being more
computationally efficient. Although we acknowledge that the use of different off-line tun-
ing techniques, or different sets of candidate configurations tuned by the same F-Race,
could eventually lead to different winners on some benchmark scenarios, we believe that
this issue does not affect the global conclusions gathered from the diverse benchmark
situations that will be considered in the following.

6.2.3 Performance Indicators and Results Presentation

Several complementary views and indicators for analyzing the AOS performance will be
used on each benchmark scenario. The main ones will be summarized now, distinguishing
between off-line and on-line performance presentations.

Off-line Performance

The diverse benchmark scenarios considered in the following use different indicators to
evaluate the performance of the AOS schemes. These indicators will be described in the
corresponding Sections presenting the specific Experimental Settings for each scenario.
The off-line performance measures are compared in a Table, for each analyzed scenario,
in which each cell corresponds to a Credit Assignment and an Operator Selection, and
indicates:

• the average and standard deviation of the performance measure at hand (according
to the type of scenario); and

• the values of the best hyper-parameter configuration determined after the F-Race
procedure, as described in Section 6.2.2.

Besides the numerical results, two different kinds of statistical comparison are shown
in the same Table (see Table 6.5 for instance). The first comparison is the global one:
the best performance achieved between all the considered AOS techniques is presented
in bold-face with grey background, like this . The results which are not significantly
different, according to at least one of both unsigned Wilcoxon rank sum and Kolmogorov-
Smirnov non-parametric tests applied at confidence level 90%, are displayed with a grey
background. Small result variations among the different AOS schemes thus translate
like many grey cells. The second comparison takes place in the scope of each Operator
Selection technique: the best performance achieved by it using one of the available Credit
Assignment schemes is marked with a ⋆ symbol. Accordingly, all the schemes within
the same Operator Selection technique that obtained equivalent performance, according
to the same statistical tests, are marked with a N symbol. Finally, the caption of the table
indicates the performances of the Naive uniform strategy, and of the Oracle and Static
strategies (whenever available).

In some scenarios, however, given the high dispersion of the results, it is not meaning-
ful to present only the averages and standard deviations, i.e., no significant difference can
be found, in terms of performance, between most of the AOS schemes. Because of this, in
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order to be able to figure out the difference of performance between the techniques, the
empirical distribution of the results over 50 runs is presented, depicted using Empirical
Cumulative Distribution Functions (ECDFs): for each level of performance (on x-axis)
the percentage of runs reaching this score is indicated (on y-axis); see, e.g., Figure 6.15b.
The x-axis is limited by the average performance of the Naive uniform approach: thus,
the y value attained by the corresponding ECDF curve at the right border of the plot
represents the percentage of runs of the method under assessment that performed bet-
ter than the Naive uniform baseline. ECDFs are preferred in lieu of standard box-plot
diagrams, mainly because they display the whole distribution, consequently enabling a
fine-grained comparison of the different schemes, accounting for the fact that one scheme
might outperform another scheme with regard to some quantile performance, although
being outperformed with respect to the average or median value.

ECDFs are also used to assess the sensitivity of the schemes with respect to their hyper-
parameters. More precisely, ECDFs aggregating series of runs corresponding to several
hyper-parameter configurations will be presented for each AOS, to graphically show how
fast the performance degrades when departing from the optimal parameter configuration.

On-line Performance

The off-line performance, however, does not tell whether an AOS fails to detect the best
operator due to an excess of exploration, or exploitation. In the former case, the AOS
fails to stick to the best operator after the change. In the latter case, it fails to swiftly
adapt whenever a change occurs.

For this reason, the on-line performance of the AOS schemes with respect to operator
selection is also presented for some benchmark scenarios. The on-line performance plots
(or behavior plots, e.g., Figure 6.2) depict, for each operator, its instant selection rate
along time. For the sake of a smoother presentation, given the high variation of behavior
between the many runs, the selection rates plotted represent the average of every 50 time
steps for each run, further averaged over 50 runs. Additionally, on all such plots for DMAB,
the small peaks below the x-axis indicate the frequency of restarts after the triggering of
the PH change-detection statistical test, also averaged in the same way.

6.3 On Artificial Scenarios

In order to assess the proposed and the baseline AOS combinations in controlled envi-
ronments, i.e., in benchmark problems in which the expected behavior is exactly known,
experiments were done on the artificial scenarios described in Section 5.4. The specific
experimental settings for these experiments, in complement to the general settings pre-
sented in Section 6.2, will be described in Section 6.3.1. The empirical comparison of the
AOS schemes on the Uniform, Boolean and Outlier scenarios will be surveyed in Section
6.3.2, while Section 6.3.3 will present the results involving two different ART instances.
Finally, Section 6.3.4 will present a discussion about the highlights of these experiments.
The results that will be analyzed here were partially published in [Da Costa et al., 2008;
Fialho et al., 2010a; Fialho et al., 2010c].
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6.3.1 Experimental Settings

On these artificial scenarios, the most natural performance indicator is the total gain
brought by an AOS scheme, referred to as the Total Cumulative Reward (TCR). It is
computed as the sum of the rewards gathered by the algorithm over the complete run.

Besides the average and standard deviation of the TCR, a related but not equivalent
indicator, the percentage of times the best operator is selected, is also presented for an
illustrative purpose in the comparison tables (see, e.g., Table 6.5); it will be referred to as
p(best) in the remainder of this text. It is important to note that two techniques might
present similar p(best), although presenting very different TCR performance, due to the
difference between the sub-optimal choices done by each of them, the so-called error costs,
which are not taken into account by this measure.

In all cases, the reward distributions are modified every ∆T time steps. The epoch
lengths considered are ∆T ∈ {50, 200, 500, 2000}, i.e., ranging from very fast to very slow
dynamics. Ten epochs are considered, unless stated otherwise. Although being already
defined in the corresponding Sections 5.4.2 and 5.4.3, the sequences used for the exchanges
of reward distributions are reminded here: for the Uniform, Boolean and Outlier scenarios,
the sequence is 41203 7→ 01234 7→ 24301 7→ 12043 7→ 41230 7→ 31420 7→ 04213 7→ 23104 7→
14302 7→ 40213; and for the ART scenarios, 01 7→ 01 7→ 10 7→ 01 7→ 10 7→ 10 7→ 10 7→
01 7→ 01 7→ 10.

An alternative view of off-line performance is also shown for each artificial scenario:
how the performance (in terms of TCR and p(best)) of each Operator Selection technique,
with its best Credit Assignment scheme found by the off-line tuning, scales with respect
to the different epoch lengths considered (see, for instance, Figure 6.1). The motivation is
not to compare the results on the different scenarios, but rather to compare the “trend”
of the scaling of the performance of the AOS combinations on the different epoch lengths.

6.3.2 Results on Uniform, Boolean and Outlier Scenarios

The Uniform, Boolean and Outlier scenarios involve 5 operators, with rewards coming
from different distributions, as described in Sections 5.4.1 and 5.4.2. Empirical results on
each of these scenarios will be separately analyzed in the following.

Uniform scenario

On the Uniform scenario, results are very clear and almost in total accordance with respect
to all the four different epoch lengths considered. Tables 6.5 and 6.6 present, respectively,
the results obtained on ∆T ∈ {50, 200} and ∆T ∈ {500, 2000}.

Given the high informativeness of the rewards received with respect to the quality of
the operators, and their steady-stateness during each epoch, it becomes reasonably easy
to detect which is the current best operator on this scenario. In the worst case, as the
reward distributions of subsequent operators partially overlap between each other, the
second best operator might occasionally be considered to be the best one; but the error
cost is always very small for the same reason, therefore it does not greatly affect the Total
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Cumulative Reward (TCR). The difference in performance thus lies mainly in how fast
the AOS techniques are able to adapt to new situations, whenever a change occurs.

Accordingly, using Average or Extreme Credit Assignment schemes will always delay,
in W operator applications at most, the perception that the situation has changed. This
is a tentative explanation for the fact that both Absolute and Normalized versions of the
Instantaneous Credit Assignment scheme are clearly the best options for all the Operator
Selection methods tried with them. This interpretation is supported by the output of
the Racing process for each of the AOS combinations using the Average and the Extreme
schemes: the best configuration retained for all of them has the same sliding window size
W = 10, i.e., the lowest value in the range tried for this hyper-parameter (Table 6.4).

Between the rank-based Credit Assignment schemes, the AUC is the best option. The
fact that a linear decay (i.e., D = 1) is retained as best configuration might also be related
to the subtle overlap between the rewards received by the different operators: in such a
case, there is no need of a strong decaying factor to differ between them.

On the Operator Selection side, the clear winner is DMAB, which, combined with the
Absolute Instantaneous (AbsIns) Credit Assignment scheme, significantly outperforms all
the other AOS combinations on all epochs, except for the same DMAB with Normalized
Instantaneous (NormIns) Credit Assignment in three out of four cases. Indeed, for the
longest epoch (∆T = 2000), the AbsIns-DMAB AOS technique obtains a TCR equivalent
to 99.7% of the Oracle TCR, selecting the best operator in around 99.5% of the appli-
cations. This outstanding performance is explained by the well-calibrated PH test (as
shown in Figures 6.2a and 6.2b). Although using a very sensitive hyper-parameter (see
sensitivity analysis in Section 6.7), the restarting mechanism is very efficient on this kind
of situation in which the qualities of the operators change abruptly. For faster dynamics
(smaller ∆T ), the performance is gracefully degraded: shorter the steady-state epoch, less
negligible becomes the price to pay for the extra exploration needed after each restart.
But, still, DMAB remains the clear winner with respect to TCR and p(best) for all epoch
lengths, as shown in Figure 6.1.

The standard MAB is the second best Operator Selection technique on this scenario,
achieving a performance slightly (but significantly, given the small standard deviations)
inferior than that of DMAB, for all epoch lengths. Its combination with either AbsIns
or NormIns Credit Assignment schemes, although being the simplest bandit-based AOS
combination considered, is able to achieve up to 97% of the Oracle TCR for ∆T = 2000,
selecting the best operator in around 92% of the times (Figure 6.2c); its well-tuned EvE
balance enables the discovery of the new situation by paying the minimal price with respect
to exploration. The SLMAB is also able to swiftly follow the dynamics of the scenario,
employing the same level of exploration; but it achieves similar performance than that of
MAB only because of the low error cost, as it is not able to differ well between the best and
the second best operators in some of the epochs (Figure 6.2d); this explains why its p(best)
is much lower than that of MAB, although obtaining a similar TCR. The AUC-RMAB
combination with linear decay achieves very similar performance (Figure 6.2e) than that
of MAB. Given the very low value retained for its scaling factor C, it becomes clear
that all the adaptation is in fact done on the Credit Assignment side: an impact measure
brought by the application of one operator might affect the whole ranking distribution,
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Figure 6.1: Scaling of mean performance (TCR above, and p(best) below) in relation to the
epoch length ∆T , for each Operator Selection technique with its best Credit Assignment
scheme, on the Uniform scenario.

consequently affecting the quality estimate of all operators, as discussed in Section 5.2.4.

Conversely, the baseline probability-based Adaptive Pursuit (AP) method does not
follow the same trend, being significantly outperformed by all bandit-based schemes on the
two longer epochs (see Figure 6.1). This limitation is blamed on an excess of exploration
(lower bounded by the pmin=0.05 parameter), as shown in Figure 6.2f. It is worth noting
that pmin=0 was also tried in the parameter tuning process (Table 6.4), but achieved lower
performance than that of pmin=0.05. The value used in fact translates into up to 25% of
exploration trials in this case, as pmin refers to the minimal level of exploration for each
operator. Finally, all AOS combinations succeed in performing significantly better than
the Naive uniform baseline method.
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Credit/OpSel SLMAB DMAB MAB AP

AbsIns
2077 ± 55 ⋆ 2171 ± 36 2120 ± 23 2103 ± 35 ⋆

C10W50 C1G1W1 C5W1 P.05A.9B.9W1
Pb: 65.6 ± 4.9 Pb: 66.9 ± 4.8 Pb: 63.5 ± 1.7 Pb: 58.9 ± 5.6

NormIns
1957 ± 109 2294 ± 30 ⋆ 2142 ± 61 ⋆ 2077 ± 43

C1W10 C.01G.1W1 C.5W1 P.05A.9B.9W1
Pb: 44.8 ± 11.6 Pb: 75.6 ± 5.3 Pb: 55.8 ± 8.6 Pb: 56.6 ± 5.5

AbsAvg
1926 ± 103 2084 ± 49 1915 ± 40 2030 ± 70

C5W10 C.5G1W10 C1W10 P0A.9B.9W10
Pb: 45.2 ± 10.7 Pb: 48.9 ± 6.0 Pb: 41.7 ± 4.6 Pb: 39.8 ± 6.4

NormAvg
1896 ± 102 1907 ± 52 1907 ± 52 1906 ± 100

C1W10 C.5G10W10 C.5W10 P0A.1B.9W10
Pb: 41.6 ± 11.3 Pb: 34.1 ± 5.3 Pb: 34.1 ± 5.3 Pb: 33.3 ± 8.0

AbsExt
1879 ± 97 2120 ± 33 1884 ± 46 1892 ± 43
C10W100 C.5G1W10 C1W10 P.05A.9B.9W10

Pb: 38.8 ± 6.6 Pb: 70.0 ± 3.4 Pb: 40.8 ± 5.8 Pb: 46.7 ± 6.3

NormExt
1800 ± 105 1990 ± 54 1949 ± 39 1868 ± 41

C1W10 C.01G.1W10 C.5W10 P.05A.9B.9W10
Pb: 38.4 ± 9.3 Pb: 50.0 ± 7.2 Pb: 51.4 ± 3.3 Pb: 43.2 ± 5.9

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F )
1952 ± 19 ⋆ 1947 ± 18 N 1927 ± 16 1937 ± 17
C.5D1W10 C.5D.75W10 C.5W10 C.5W10

Pb: 55.8 ± 1.3 Pb: 56.4 ± 1.5 Pb: 55.0 ± 1.8 Pb: 55.7 ± 1.6

(a) Results on the Uniform scenario, for ∆T=50 (Naive TCR: 1500, Optimal TCR: 2500)

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
8530 ± 329 N 9773 ± 117 ⋆ 9145 ± 37 N 8826 ± 73 ⋆

C5W10 C.1G10W1 C5W1 P.05A.6B.9W1
Pb: 56.7 ± 11.8 Pb: 95.1 ± 1.5 Pb: 78.6 ± 0.7 Pb: 73.0 ± 2.5

NormIns
8610 ± 106 ⋆ 9699 ± 136 N 9156 ± 154 ⋆ 8806 ± 68 N

C5W500 C.01G.001W1 C.5W1 P.05A.9B.9W1
Pb: 71.3 ± 1.9 Pb: 89.7 ± 6.8 Pb: 70.4 ± 6.3 Pb: 72.6 ± 2.2

AbsAvg
8355 ± 346 9066 ± 108 8769 ± 64 8561 ± 300

C5W10 C1G1W10 C5W10 P0A.9B.9W10
Pb: 54.3 ± 12.2 Pb: 67.6 ± 5.1 Pb: 71.2 ± 1.7 Pb: 43.9 ± 9.3

NormAvg
7909 ± 427 8643 ± 138 8643 ± 138 8228 ± 121

C1W10 C.5G10W10 C.5W10 P.05A.9B.9W10
Pb: 36.6 ± 11.0 Pb: 49.5 ± 4.7 Pb: 49.5 ± 4.7 Pb: 50.7 ± 4.5

AbsExt
8128 ± 323 9526 ± 39 8867 ± 43 8626 ± 85

C5W10 C.5G10W10 C5W10 P.05A.9B.9W10
Pb: 43.2 ± 10.6 Pb: 90.2 ± 0.8 Pb: 74.6 ± 0.8 Pb: 70.7 ± 2.7

NormExt
7668 ± 393 9236 ± 159 8908 ± 142 8593 ± 94

C1W10 C.1G.001W10 C.5W10 P.05A.9B.9W10
Pb: 34.3 ± 11.2 Pb: 77.8 ± 6.4 Pb: 69.8 ± 5.6 Pb: 69.6 ± 3.0

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F )
8755 ± 87 ⋆ 8469 ± 92 8469 ± 92 8469 ± 92
C.1D1W50 C.1D.5W50 C.1W50 C.1W50

Pb: 74.6 ± 2.5 Pb: 68.9 ± 3.7 Pb: 68.9 ± 3.7 Pb: 68.9 ± 3.7

(b) Results on the Uniform scenario, for ∆T=200 (Naive TCR: 6000, Optimal TCR: 10000)

Table 6.5: Results on the Uniform scenario for ∆T ∈ {50, 200}
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Credit/OpSel SLMAB DMAB MAB AP

AbsIns
22948 ± 678 ⋆ 24785 ± 41 ⋆ 23572 ± 66 ⋆ 22270 ± 91 ⋆

C5W10 C.1G10W1 C5W1 P.05A.6B.9W1
Pb: 73.2 ± 11.8 Pb: 98.1 ± 0.2 Pb: 85.5 ± 0.5 Pb: 76.3 ± 1.2

NormIns
21041 ± 637 24448 ± 400 23294 ± 377 22212 ± 97 N

C5W500 C.01G.001W1 C.5W1 P.05A.9B.9W1
Pb: 63.6 ± 6.6 Pb: 90.9 ± 8.0 Pb: 73.3 ± 7.1 Pb: 75.4 ± 1.1

AbsAvg
22659 ± 631 23494 ± 222 23199 ± 114 21778 ± 119

C5W10 C1G1W10 C5W10 P.05A.9B.9W10
Pb: 69.8 ± 11.0 Pb: 78.5 ± 4.0 Pb: 82.8 ± 1.0 Pb: 68.2 ± 1.9

NormAvg
20712 ± 1057 22777 ± 253 22502 ± 221 21671 ± 133

C1W10 C.5G.01W10 C1W10 P.05A.9B.9W10
Pb: 42.6 ± 12.8 Pb: 71.4 ± 3.9 Pb: 68.2 ± 3.4 Pb: 67.2 ± 2.0

AbsExt
21578 ± 776 24509 ± 48 23275 ± 69 22085 ± 105

C5W10 C.5G10W10 C5W10 P.05A.9B.9W10
Pb: 50.5 ± 14.1 Pb: 95.9 ± 0.4 Pb: 83.7 ± 0.5 Pb: 75.7 ± 1.3

NormExt
20471 ± 1526 23882 ± 355 23109 ± 366 22063 ± 114

C1W10 C.1G.001W10 C.5W10 P.05A.9B.9W10
Pb: 43.0 ± 14.4 Pb: 84.4 ± 6.1 Pb: 75.7 ± 5.7 Pb: 75.5 ± 1.4

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F )
23251 ± 117 ⋆ 22804 ± 134 22804 ± 134 22804 ± 134

C.1D1W50 C.1D.5W50 C.1W50 C.1W50
Pb: 86.0 ± 1.2 Pb: 81.8 ± 2.6 Pb: 81.8 ± 2.6 Pb: 81.8 ± 2.6

(a) Results on the Uniform scenario, for ∆T=500 (Naive TCR: 15000, Optimal TCR: 25000)

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
95872 ± 2745 ⋆ 99781 ± 72 ⋆ 96954 ± 128 ⋆ 89617 ± 156 ⋆

C5W10 C.1G10W1 C5W1 P.05A.3B.9W1
Pb: 83.3 ± 13.1 Pb: 99.5 ± 0.0 Pb: 92.2 ± 0.3 Pb: 78.5 ± 0.5

NormIns
83221 ± 6417 98731 ± 1583 N 95329 ± 916 89534 ± 159 N

C1W10 C.01G.001W1 C1W1 P.05A.3B.9W1
Pb: 45.3 ± 17.2 Pb: 94.2 ± 7.9 Pb: 84.5 ± 3.3 Pb: 78.3 ± 0.5

AbsAvg
95135 ± 663 97625 ± 1105 96332 ± 330 89242 ± 174

C10W10 C1G10W10 C5W10 P.05A.9B.9W10
Pb: 86.2 ± 2.4 Pb: 89.8 ± 5.4 Pb: 91.1 ± 0.7 Pb: 76.9 ± 0.6

NormAvg
87364 ± 4064 95958 ± 718 93741 ± 912 89137 ± 192

C1W10 C.5G.001W10 C1W10 P.05A.9B.9W10
Pb: 51.0 ± 13.1 Pb: 84.5 ± 3.5 Pb: 77.4 ± 3.7 Pb: 76.7 ± 0.7

AbsExt
94716 ± 613 99492 ± 79 96658 ± 99 89560 ± 154 N

C10W10 C.5G10W10 C5W10 P.05A.9B.9W10
Pb: 85.6 ± 1.9 Pb: 98.9 ± 0.1 Pb: 91.7 ± 0.2 Pb: 78.9 ± 0.4

NormExt
85092 ± 6055 97103 ± 1444 95044 ± 656 89540 ± 161 N

C1W10 C.1G.001W10 C1W10 P.05A.9B.9W10
Pb: 48.8 ± 15.1 Pb: 87.2 ± 7.3 Pb: 85.5 ± 2.1 Pb: 78.8 ± 0.4

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F )
96449 ± 231 ⋆ 95501 ± 234 95501 ± 234 95501 ± 234

C.1D1W100 C.1D.5W100 C.1W100 C.1W100
Pb: 92.9 ± 0.6 Pb: 90.9 ± 1.1 Pb: 90.9 ± 1.1 Pb: 90.9 ± 1.1

(b) Results on the Uniform scenario, for ∆T=2000 (Naive TCR: 60000, Optimal TCR: 100000)

Table 6.6: Results on the Uniform scenario for ∆T ∈ {500, 2000}
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Figure 6.2: Behavior of DMAB, MAB, SLMAB, RMAB and AP, combined with their best
Credit Assignment schemes, on the Uniform scenario with ∆T = 2000. The outstanding
performance of DMAB, using either AbsInst or AbsExt Credit Assignment schemes, is
achieved by the fact that restarts are perfectly triggered by the PH test in the transitions,
as indicated by the small peaks below the x-axis of the corresponding plots.
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Boolean scenario

Differently from the Uniform scenario, in the Boolean scenario it is not the values of
the rewards that inform which is the best operator, but rather the frequency with which
each operator is rewarded. This makes this scenario a very difficult one for AOS, as
discussed in Section 5.4.2. Tables 6.7 and 6.8 present, respectively, the results obtained
on ∆T ∈ {50, 200} and ∆T ∈ {500, 2000}, confirming this assumption.

For instance, with ∆T = 50, only 47% of good choices are made by SLMAB, the best
method in this case, and less than 40% by all others. When ∆T increases, the overall
performance of all Operator Selection techniques (with their corresponding best Credit
Assignment scheme) in relation to both TCR and p(best) measures, gradually increases
accordingly, as shown in Figure 6.3. Anyway, the maximum p(best) attained in the longest
epoch is 80%, while in the Uniform scenario rates up to 99.5% were found.

Concerning the Operator Selection techniques, for the shortest epoch, SLMAB achieves
the best TCR, but its performance is not significantly different from all the others. Starting
from ∆T = 200, the DMAB takes the lead, with the gap between its performance and
those of the others increasing, up to the longest epoch, in which the winner configuration
for DMAB is significantly better than all the other techniques. It is important to note
that, as the values of the rewards received are always the same (= 10), very few restarts are
done by DMAB (see, e.g., Figures 6.4a and 6.4b); hence, the performance of the standard
MAB is very similar to the DMAB performance, being significantly different only for the
longest epoch. The other three Operator Selection techniques, namely, SLMAB, RMAB
and the baseline AP, present equivalent but inferior performance for all epoch lengths,
except for the longest one, in which SLMAB is significantly better than AP, but still
equivalent to RMAB.

By analyzing these behavior plots for ∆T = 2000 in Figure 6.4, it can be seen that,
except for the overall winner NormIns-DMAB (Figure 6.4a) and the second best NormIns-
MAB (Figure 6.4c), the performance of the other bandit-based AOS combinations is hin-
dered by a lack of further exploitation of the best operator: in around 20% of the trials, a
sub-optimal operator is applied (see Figures 6.4d and 6.4e, respectively, for the behavior
of SLMAB and RMAB). For AP, although the pmin value is set to 0 in this case, its low
performance is explained by a failure in identifying the best operator in all cases where the
best operator becomes the second best (Figure 6.4f), possibly due to the high inertia of the
two-tiered update of empirical quality estimates employed by this method, as discussed in
Section 4.4.2.

For the Credit Assignment, as in the Uniform scenario, the best scheme is the Instanta-
neous one, both Absolute and Normalized alternatives performing equivalently in almost
all cases. The Average-based schemes perform almost as good; while the Extreme-based
ones are outperformed by far: as the only values that are taken here are 0 or 10, it be-
comes difficult for the Extreme reward to distinguish among operators. Along the same
lines, a tentative of interpretation for the inefficiency of the rank-based Credit Assignment
schemes (no matter the decaying factor used), is that the only two possible values for
the rewards do not enable enough granularity in the ranking distribution, consequently
resulting in similar qualities to the operators.
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Figure 6.3: Scaling of mean performance (TCR above, and p(best) below) in relation to the
epoch length ∆T , for each Operator Selection technique with its best Credit Assignment
scheme, on the Boolean scenario.
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Credit/OpSel SLMAB DMAB MAB AP

AbsIns
1922 ± 162 ⋆ 1893 ± 136 ⋆ 1893 ± 136 ⋆ 1798 ± 148 N

C10W50 C5G1000W1 C5W1 P0A.3B.9W1
Pb:47.3 ± 10.0 Pb: 38.7 ± 7.7 Pb: 38.7 ± 7.7 Pb: 29.8 ± 9.2

NormIns
1922 ± 162 N 1890 ± 151 N 1890 ± 151 N 1852 ± 144 ⋆

C1W50 C.5G10W1 C.5W1 P0A.1B.9W1
Pb: 47.3 ± 10.0 Pb: 38.9 ± 7.2 Pb: 38.9 ± 7.2 Pb: 36.3 ± 9.2

AbsAvg
1855 ± 182 N 1793 ± 132 1735 ± 132 1727 ± 116

C5W10 C.5G1W10 C5W10 P.05A.6B.9W10
Pb: 37.4 ± 9.7 Pb: 31.3 ± 7.0 Pb: 29.6 ± 7.3 Pb: 28.5 ± 6.7

NormAvg
1743 ± 169 1775 ± 153 1764 ± 127 1723 ± 130

C1W10 C.01G.1W10 C1W10 P.05A.9B.9W10
Pb: 31.4 ± 11.8 Pb: 27.7 ± 9.3 Pb: 29.1 ± 6.5 Pb: 27.4 ± 8.2

AbsExt
1639 ± 168 1679 ± 162 1674 ± 173 1656 ± 158
C10W10 C5G100W10 C5W10 P0A.6B.6W10

Pb: 23.6 ± 10.9 Pb: 25.6 ± 6.2 Pb: 25.4 ± 5.9 Pb: 22.0 ± 7.1

NormExt
1639 ± 168 1670 ± 173 1670 ± 173 1693 ± 128

C1W10 C.5G100W10 C.5W10 P0A.3B.9W10
Pb: 23.6 ± 10.9 Pb: 25.6 ± 5.9 Pb: 25.6 ± 5.9 Pb: 23.4 ± 8.4

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F )
1798 ± 135 ⋆ 1716 ± 119 1775 ± 127 N 1724 ± 116 N

C.5D1W50 C1D.5W50 C1W500 C1W50
Pb: 35.9 ± 6.6 Pb: 30.8 ± 4.6 Pb: 33.7 ± 4.7 Pb: 31.2 ± 4.4

(a) Results on the Boolean scenario, for ∆T=50 (Naive TCR: 1500, Optimal TCR: 2500)

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
8058 ± 427 ⋆ 8154 ± 348 N 8154 ± 348 ⋆ 7966 ± 249

C10W100 C5G1000W1 C5W1 P.05A.1B.6W1
Pb: 55.7 ± 10.6 Pb: 50.8 ± 8.6 Pb: 50.8 ± 8.6 Pb: 47.5 ± 6.1

NormIns
8058 ± 427 N 8162 ± 356 ⋆ 8152 ± 364 N 8160 ± 393 ⋆

C1W100 C.5G10W1 C.5W1 P0A.1B.9W1
Pb: 55.7 ± 10.6 Pb: 52.1 ± 8.9 Pb: 51.5 ± 8.9 Pb: 45.0 ± 10.4

AbsAvg
7979 ± 380 N 8063 ± 360 N 7921 ± 313 7871 ± 271

C5W10 C1G10W10 C5W10 P.05A.9B.6W10
Pb: 46.5 ± 9.6 Pb: 45.2 ± 8.6 Pb: 45.7 ± 6.2 Pb: 45.0 ± 5.0

NormAvg
7536 ± 494 8033 ± 416 N 7769 ± 376 7817 ± 249

C1W10 C.01G.001W10 C1W10 P.05A.9B.9W10
Pb: 32.5 ± 11.0 Pb: 43.3 ± 11.0 Pb: 39.2 ± 8.9 Pb: 44.4 ± 5.8

AbsExt
7414 ± 420 7475 ± 520 7402 ± 429 7477 ± 526
C10W10 C1G10W10 C5W10 P0A.9B.9W10

Pb: 30.5 ± 9.4 Pb: 33.0 ± 10.7 Pb: 31.3 ± 5.5 Pb: 31.4 ± 9.7

NormExt
7414 ± 420 7526 ± 480 7409 ± 437 7611 ± 358

C1W10 C.01G1W10 C.5W10 P0A.1B.9W10
Pb: 30.5 ± 9.4 Pb: 31.7 ± 11.4 Pb: 31.6 ± 5.7 Pb: 31.3 ± 8.6

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F )
7841 ± 289 ⋆ 7476 ± 361 7580 ± 246 7466 ± 267
C.5D1W100 C.5D.75W50 C.5W100 C1W100

Pb: 47.4 ± 7.8 Pb: 36.1 ± 8.9 Pb: 40.6 ± 3.2 Pb: 42.1 ± 5.0

(b) Results on the Boolean scenario, for ∆T=200 (Naive TCR: 6000, Optimal TCR: 10000)

Table 6.7: Results on the Boolean scenario for ∆T ∈ {50, 200}
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Credit/OpSel SLMAB DMAB MAB AP

AbsIns
21234 ± 751 N 21888 ± 611 ⋆ 21532 ± 834 N 20783 ± 1098 N

C5W10 C5G100W1 C5W1 P0A.3B.9W1
Pb: 56.5 ± 9.5 Pb: 66.2 ± 5.4 Pb: 63.3 ± 6.4 Pb: 46.5 ± 10.9

NormIns
21234 ± 751 N 21740 ± 658 N 21578 ± 817 ⋆ 21245 ± 983 ⋆

C.5W10 C.5G10W1 C.5W1 P0A.1B.9W1
Pb: 56.5 ± 9.5 Pb: 63.6 ± 6.5 Pb: 63.1 ± 7.1 Pb: 49.3 ± 12.6

AbsAvg
21412 ± 531 ⋆ 21588 ± 604 N 21106 ± 579 20406 ± 519

C5W10 C5G100W10 C10W10 P.05A.1B.9W10
Pb: 59.3 ± 6.7 Pb: 62.5 ± 5.8 Pb: 61.2 ± 4.6 Pb: 51.3 ± 5.6

NormAvg
19883 ± 1003 21495 ± 591 N 20711 ± 752 20263 ± 445

C1W10 C.01G.1W10 C1W10 P.05A.1B.9W10
Pb: 36.7 ± 11.6 Pb: 54.6 ± 8.7 Pb: 48.4 ± 7.9 Pb: 50.2 ± 4.7

AbsExt
19852 ± 926 20515 ± 854 19649 ± 751 19728 ± 1144

C10W10 C.1G10W10 C5W10 P0A.9B.6W10
Pb: 38.2 ± 10.8 Pb: 41.4 ± 9.5 Pb: 36.5 ± 6.5 Pb: 35.6 ± 12.9

NormExt
19852 ± 926 20492 ± 850 19692 ± 730 20074 ± 1188

C1W10 C.01G1W10 C.5W10 P0A.1B.9W10
Pb: 38.2 ± 10.8 Pb: 40.5 ± 9.6 Pb: 36.1 ± 5.7 Pb: 38.7 ± 12.9

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F )
20942 ± 628 ⋆ 20234 ± 615 19917 ± 515 20199 ± 657

C.1D.9W50 C.5D.25W50 C1W500 C.5W50
Pb: 53.7 ± 6.5 Pb: 47.4 ± 9.0 Pb: 48.3 ± 3.4 Pb: 47.0 ± 9.1

(a) Results on the Boolean scenario, for ∆T=500 (Naive TCR: 15000, Optimal TCR: 25000)

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
90844 ± 2083 N 92361 ± 818 91954 ± 1044 N 85949 ± 4444

C5W10 C5G100W1 C10W1 P0A.3B.6W1
Pb: 69.6 ± 8.2 Pb: 78.0 ± 1.6 Pb: 79.0 ± 2.3 Pb: 48.5 ± 16.1

NormIns
90844 ± 2083 N 93735 ± 1291⋆ 91986 ± 1040 ⋆ 88921 ± 3679 ⋆

C.5W10 C.5G10W1 C1W1 P0A.1B.9W1
Pb: 69.6 ± 8.2 Pb: 80.4 ± 4.0 Pb: 79.0 ± 2.9 Pb: 57.5 ± 12.6

AbsAvg
91285 ± 2300 ⋆ 92650 ± 858 91479 ± 1037 N 85488 ± 812

C5W10 C5G100W10 C10W10 P.05A.9B.6W50
Pb: 70.6 ± 8.2 Pb: 78.8 ± 2.2 Pb: 78.4 ± 2.4 Pb: 62.6 ± 3.1

NormAvg
85793 ± 3017 91755 ± 2273 87394 ± 2652 85803 ± 4244

C1W10 C.01G1W10 C1W50 P0A.3B.9W10
Pb: 50.6 ± 11.6 Pb: 69.4 ± 8.9 Pb: 54.3 ± 7.8 Pb: 48.4 ± 13.6

AbsExt
85480 ± 3093 90258 ± 2535 83560 ± 3862 84695 ± 3298

C10W10 C.01G10W10 C5W10 P0A.9B.9W10
Pb: 48.8 ± 12.7 Pb: 64.1 ± 9.8 Pb: 44.5 ± 7.3 Pb: 45.4 ± 10.5

NormExt
85468 ± 3070 90708 ± 2028 83620 ± 3806 85357 ± 4002

C1W10 C.01G1W10 C.5W10 P0A.3B.9W10
Pb: 48.9 ± 12.8 Pb: 65.6 ± 7.5 Pb: 44.6 ± 7.8 Pb: 48.0 ± 13.8

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F )
90530 ± 1293 ⋆ 87203 ± 1784 82875 ± 1501 87108 ± 1576

C.1D1W50 C.5D.75W50 C.1W100 C.5W50
Pb: 72.2 ± 4.8 Pb: 66.0 ± 7.8 Pb: 53.1 ± 4.1 Pb: 65.7 ± 6.4

(b) Results on the Boolean scenario, for ∆T=2000 (Naive TCR: 60000, Optimal TCR: 100000)

Table 6.8: Results on the Boolean scenario for ∆T ∈ {500, 2000}
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(e) Decay/AUC-RMAB (C.1 D1 W50)
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(f) NormIns-AP (P0 A.1 B.9 W1)

Figure 6.4: Behavior of DMAB, MAB, SLMAB, RMAB and AP, combined with their
best Credit Assignment schemes, on the Boolean scenario with ∆T = 2000. DMAB is
the overall winner again, combined with the NormIns Credit Assignment scheme: very
few restarts are correctly triggered. Conversely, when combined with the AbsExt Credit
Assignment, it triggers several misplaced restarts, while failing to correctly follow the
changes (as does NormIns-AP).
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Outlier scenario

The Outlier scenario is by far the most difficult between the three scenarios involving 5
artificial operators. As discussed in Section 5.4.2, although providing very informative
rewards about the quality of each operator (such as in the Uniform case, but without any
overlapping), the non-zero rewards are very rare (only 10% of the cases), resulting in a
huge variance (V = 225 for the best operator, while V = 25 for the same best in the
Boolean scenario, both with IE = 5) that greatly complicates the job of the AOS schemes.
As for the other two scenarios, empirical results on this scenario are presented in Tables
6.9 and 6.10, respectively, for ∆T ∈ {50, 200} and ∆T ∈ {500, 2000}.

Accordingly, all techniques perform very poorly for small values of ∆T . This is not a
surprise, due to the small chance of seeing some outlier reward within 50 or even 200 time
steps. For instance, the best TCR obtained over all techniques is 1722 for ∆T = 50 (with
a p(best) of only 28%), while the naive approach would do 1500; and 7560 for ∆T = 200,
versus 6000 for the naive strategy. This situation changes for some techniques, when the
steady-state period between each switch in the rewards distribution is longer (i.e., bigger
∆T , hence more chances of receiving informative rewards), as shown by the scaling of
their performances with respect to ∆T in Figure 6.5.

For ∆T = 2000 (Table 6.10b), MAB and RMAB attain, respectively, 92% and 89% of
the maximum TCR, with a significant advantage to MAB with respect to RMAB and to all
the other techniques: the standard MAB is able of efficiently recognizing and exploiting the
best operator (Figure 6.6c). For ∆T = 500, however, RMAB and AP are not significantly
different from MAB, again the winner. Concerning DMAB, differently from the former
two artificial scenarios, in this case its restarting mechanism is not able to provide good
performance: given the high variance of the rewards received, it is very difficult to find
a good value for the Page-Hinkley change-detection threshold γ, and this results in the
triggering of several misplaced restarts, as shown in Figures 6.6a and 6.6b. The DMAB
is only able to outperform SLMAB, in terms of both TCR and p(best) measures, for the
two longest epochs, and AP (only with respect to TCR) for the longest epoch. While AP
has its performance hindered again by pmin=0.05 (Figure 6.6f), SLMAB fails to efficiently
recognize the best operator in the first epoch, takes a long time to adapt to new situations
and, finally, it is not able to exploit the best operator more than 80% of the times even at
the end of a steady-state epoch as long as 2000 time steps (Figure 6.6d).

Regarding the Credit Assignment schemes, here, the Absolute Extreme is clearly the
best, as could be expected: when an outlier value is triggered, this scheme will main-
tain this operator in some top position longer than any other scheme. Interestingly, the
Instantaneous reward is a complete disaster for AP, while maintaining a fair level of per-
formance (at least similar to that of the Average reward) for the bandit-based techniques:
some average actually takes place in the computation of q̂ on the bandit-based approaches
(see Equation 5.10), hence keeping some memory of the outlier value; while the benefit
of such value vanishes more rapidly within the two-tiered mechanism of AP. It is also
clear that Normalization does not work at all here, as it impacts on very few time steps
(most rewards are 0), while hiding the outlier effect by bringing the extreme value of the
reward back to 1. On the other hand, the rank-based Credit Assignment schemes show
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Figure 6.5: Scaling of mean performance (TCR above, and p(best) below) in relation to the
epoch length ∆T , for each Operator Selection technique with its best Credit Assignment
scheme, on the Outlier scenario.

their value in this scenario: all the four different variants are not significantly different,
being also equivalent with respect to the global best method in most epoch lengths; the
only exception is the longest epoch, in which the different combinations with RMAB (Fig-
ure 6.6e) are still ranked second, but with a significant difference in relation to the best
(AbsExt-MAB). Indeed, as discussed in Section 5.2.4, the use of the rank-based schemes
with decay factor tries to mimic, in a smoother way, the intuition of the Extreme Credit
Assignment ; this explains their good performance on this scenario.
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Credit/OpSel SLMAB DMAB MAB AP

AbsIns
1633 ± 284 N 1673 ± 244 N 1649 ± 283 N 1601 ± 249 N

C5W10 C10G100W1 C10W1 P.05A.1B.9W1
Pb: 25.5 ± 8.0 Pb: 25.1 ± 5.9 Pb: 26.1 ± 5.8 Pb: 21.4 ± 5.7

NormIns
1541 ± 254 1541 ± 254 N 1541 ± 254 N 1545 ± 255 N

C1W100 C.1G10W1 C.1W1 P0A.3B.9W1
Pb: 20.5 ± 3.6 Pb: 20.1 ± 5.6 Pb: 20.1 ± 5.6 Pb: 21.1 ± 8.4

AbsAvg
1677 ± 264 N 1650 ± 286 N 1647 ± 264 N 1607 ± 223 N

C10W10 C5G10W10 C10W10 P.1A.6B.3W10
Pb: 26.8 ± 7.3 Pb: 23.7 ± 5.0 Pb: 24.7 ± 7.0 Pb: 22.8 ± 5.2

NormAvg
1586 ± 217 N 1591 ± 205 N 1561 ± 284 N 1603 ± 278 N

C5W10 C1G1W10 C1W500 P.05A.9B.9W500
Pb: 22.0 ± 3.4 Pb: 23.4 ± 4.6 Pb: 21.8 ± 5.3 Pb: 21.7 ± 4.4

AbsExt
1722 ± 236 ⋆ 1697 ± 255 ⋆ 1697 ± 255 ⋆ 1617 ± 232 ⋆

C100W10 C100G1000W10 C100W10 P.1A.6B.3W10
Pb: 28.3 ± 5.9 Pb: 28.3 ± 6.2 Pb: 28.3 ± 6.2 Pb: 23.9 ± 5.1

NormExt
1575 ± 269 N 1568 ± 336 N 1550 ± 236 N 1616 ± 244 N

C5W10 C.01G1W10 C5W10 P.1A.9B.3W10
Pb: 22.1 ± 4.2 Pb: 21.8 ± 7.0 Pb: 22.1 ± 2.1 Pb: 23.6 ± 5.2

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F )
1634 ± 273 N 1640 ± 244 ⋆ 1599 ± 255 N 1619 ± 229 N

C1D.75W50 C5D.25W500 C1W50 C1W50
Pb: 26.6 ± 6.5 Pb: 29.0 ± 4.0 Pb: 24.7 ± 6.4 Pb: 25.6 ± 5.8

(a) Results on the Outlier scenario, for ∆T=50 (Naive TCR: 1500, Optimal TCR: 2500)

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
7210 ± 650 N 7085 ± 643 N 7085 ± 643 N 6758 ± 599

C10W50 C10G1000W1 C10W1 P.05A.1B.6W1
Pb: 33.8 ± 9.5 Pb: 29.7 ± 7.2 Pb: 29.7 ± 7.2 Pb: 26.0 ± 6.3

NormIns
6150 ± 685 6090 ± 1003 6082 ± 1031 6203 ± 667

C.1W10 C.01G1W1 C.01W1 P.05A.1B.1W1
Pb: 20.8 ± 5.5 Pb: 19.4 ± 6.1 Pb: 19.4 ± 6.4 Pb: 21.8 ± 5.2

AbsAvg
7270 ± 707 N 7231 ± 606 ⋆ 7231 ± 606 N 6896 ± 730

C10W50 C10G1000W10 C10W10 P.05A.9B.9W50
Pb: 38.3 ± 10.0 Pb: 32.3 ± 6.5 Pb: 32.3 ± 6.5 Pb: 29.1 ± 8.3

NormAvg
6419 ± 673 6710 ± 659 6656 ± 803 6881 ± 604
C5W500 C1G1W50 C1W100 P.05A.6B.9W50

Pb: 24.3 ± 6.9 Pb: 24.7 ± 6.4 Pb: 24.9 ± 8.0 Pb: 28.1 ± 8.3

AbsExt
7288 ± 662 ⋆ 7170 ± 527 N 7329 ± 466 ⋆ 7449 ± 641 ⋆

C100W50 C100G1000W10 C100W50 P.05A.9B.6W50
Pb: 41.3 ± 8.1 Pb: 33.5 ± 5.5 Pb: 42.8 ± 4.0 Pb: 40.6 ± 7.5

NormExt
6801 ± 779 N 7086 ± 955 N 7086 ± 955 N 7429 ± 608 N

C1W50 C1G100W50 C1W50 P.05A.9B.9W50
Pb: 27.7 ± 11.8 Pb: 30.3 ± 8.5 Pb: 30.3 ± 8.5 Pb: 39.5 ± 7.1

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F )
7481 ± 633 ⋆ 7223 ± 625 N 7190 ± 521 N 7275 ± 586 N

C1D.75W100 C1D.5W100 C1W100 C1W100
Pb: 42.0 ± 7.0 Pb: 37.5 ± 7.3 Pb: 37.2 ± 6.1 Pb: 38.3 ± 6.6

(b) Results on the Outlier scenario, for ∆T=200 (Naive TCR: 6000, Optimal TCR: 10000)

Table 6.9: Results on the Outlier scenario for ∆T ∈ {50, 200}
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Credit/OpSel SLMAB DMAB MAB AP

AbsIns
19379 ± 1274 ⋆ 18896 ± 1270 N 18920 ± 1279 17391 ± 1145

C10W100 C10G1000W1 C10W1 P.05A.1B.1W1
Pb: 42.4 ± 9.8 Pb: 37.3 ± 7.5 Pb: 37.5 ± 7.7 Pb: 29.1 ± 4.6

NormIns
15418 ± 1705 15289 ± 1892 15135 ± 1851 15445 ± 829

C.1W500 C.1G1W1 C.1W1 P.1A.1B.1W1
Pb: 21.6 ± 9.1 Pb: 21.0 ± 5.8 Pb: 20.4 ± 5.6 Pb: 21.5 ± 2.1

AbsAvg
19156 ± 1227 N 19227 ± 1192 N 19222 ± 1194 18451 ± 1199

C5W50 C10G1000W10 C10W10 P.05A.9B.6W50
Pb: 37.3 ± 10.7 Pb: 40.4 ± 8.3 Pb: 40.5 ± 8.4 Pb: 34.4 ± 6.6

NormAvg
17077 ± 1909 17950 ± 1327 17665 ± 1607 18500 ± 996

C1W50 C1G1W50 C1W100 P.05A.9B.1W50
Pb: 26.7 ± 10.4 Pb: 31.7 ± 6.5 Pb: 28.3 ± 7.7 Pb: 35.0 ± 6.3

AbsExt
19191 ± 1164 N 19461 ± 1042 N 20734 ± 1052⋆ 20491 ± 1128 ⋆

C100W50 C100G1000W50 C100W50 P.05A.9B.9W50
Pb: 45.0 ± 6.5 Pb: 49.4 ± 3.3 Pb: 61.2 ± 4.6 Pb: 57.1 ± 5.4

NormExt
18130 ± 1990 19500 ± 1227 ⋆ 19038 ± 1747 20362 ± 1151 N

C1W50 C1G.1W50 C1W50 P.05A.9B.9W50
Pb: 29.1 ± 11.7 Pb: 45.5 ± 7.7 Pb: 36.1 ± 11.3 Pb: 55.6 ± 5.6

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F )
19897 ± 982 N 20010 ± 993 N 20053 ± 981 ⋆ 20012 ± 1095 N

C1D.25W100 C1D.5W100 C1W100 C1W100
Pb: 53.0 ± 5.9 Pb: 53.4 ± 5.6 Pb: 54.4 ± 6.4 Pb: 53.4 ± 4.9

(a) Results on the Outlier scenario, for ∆T=500 (Naive TCR: 15000, Optimal TCR: 25000)

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
79428 ± 3113 82658 ± 2319 81842 ± 2705 69735 ± 2054

C5W50 C10G1000W1 C10W1 P.05A.1B.6W1
Pb: 44.6 ± 7.2 Pb: 51.4 ± 7.5 Pb: 50.4 ± 7.8 Pb: 29.5 ± 2.5

NormIns
62286 ± 6064 60675 ± 6308 60298 ± 6874 61442 ± 2398

C.5W500 C.1G1W1 C.1W1 P.05A.1B.1W1
Pb: 21.0 ± 9.1 Pb: 20.3 ± 6.7 Pb: 19.8 ± 6.8 Pb: 20.9 ± 2.1

AbsAvg
80723 ± 3381 83515 ± 2814 81949 ± 2759 79059 ± 2394

C5W50 C5G100W100 C10W10 P.05A.6B.1W100
Pb: 41.7 ± 10.6 Pb: 53.9 ± 7.4 Pb: 51.3 ± 7.7 Pb: 44.5 ± 5.7

NormAvg
72584 ± 3463 80043 ± 3641 78659 ± 2492 79026 ± 2363

C5W500 C1G1W100 C5W100 P.05A.6B.1W100
Pb: 37.9 ± 7.6 Pb: 44.0 ± 8.0 Pb: 44.5 ± 5.3 Pb: 44.1 ± 5.8

AbsExt
86372 ± 2602 ⋆ 87699 ± 2108 N 92119 ± 1982⋆ 86595 ± 2035 ⋆

C100W50 C100G1000W50 C100W50 P.05A.9B.1W50
Pb: 60.8 ± 9.1 Pb: 68.4 ± 2.6 Pb: 81.2 ± 2.4 Pb: 70.6 ± 3.1

NormExt
75437 ± 1787 87978 ± 3308 ⋆ 85638 ± 5590 86474 ± 2039 N

C5W50 C1G.1W50 C1W100 P.05A.9B.1W50
Pb: 37.9 ± 1.7 Pb: 64.2 ± 6.8 Pb: 53.9 ± 12.3 Pb: 70.1 ± 3.0

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F )
89348 ± 2506 ⋆ 88547 ± 2801 N 89137 ± 3095 N 88785 ± 3214 N

C.5D.75W100 C.5D.5W100 C.5W100 C.5W100
Pb: 72.8 ± 4.4 Pb: 70.2 ± 6.9 Pb: 71.8 ± 6.8 Pb: 70.8 ± 7.5

(b) Results on the Outlier scenario, for ∆T=2000 (Naive TCR: 60000, Optimal TCR: 100000)

Table 6.10: Results on the Outlier scenario for ∆T ∈ {500, 2000}
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(f) AbsExt-AP (P.05 A.9 B.1 W50)

Figure 6.6: Behavior of DMAB, MAB, SLMAB, RMAB and AP, combined with their best
Credit Assignment schemes, on the Outlier scenario with ∆T = 2000. Here, given the high
variance of the rewards, the restarts are not helpful: the overall winner is AbsExt-MAB,
followed by the robust Decay/AUC-RMAB.
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6.3.3 Results on ART Scenarios

As described in Section 5.4.3, ART scenarios take into account 2 operators with rewards
coming from 2 different T V distributions. It is important to remember that each distribu-
tion is defined by two parameters: the reward R, and the probability p of getting reward
R (reward r = 1 otherwise); the resulting instance is referred to as ART (p1, R1, p2, R2).

While many ART scenarios with different levels of difficulty were investigated, only
the two most representative ones will be considered in the following. It is important to
highlight that, for both instances, the two longest epochs (∆T ∈ {500, 2000}) are used
to check how fast each AOS scheme can adapt to a new situation after a long period of
stability; hence, only one permutation of rewards is done (01 7→ 10) in these cases, i.e.,
only two epochs of length ∆T are considered.

Low Average/High Variance vs. High Average/Low Variance scenario

The ART (0.01, 101, 0.5, 10) problem involves a low average/high variance distribution
(IE1 = 2, V1 = 99) and a high average/low variance distribution (IE2 = 6, V2 = 20.25)
operators. Detailed results are presented in Tables 6.11 and 6.12, respectively, for ∆T ∈
{50, 200}, and for ∆T ∈ {500, 2000}.

Indeed, the fact that the high-variance operator is also the one with lower reward
expectation should make this operator to be easily discarded. Given this clearness in the
reward distribution, the Absolute version of all the three kinds of Credit Assignment based
on the raw values of fitness improvements are able to achieve good performance for all
epoch lengths, with higher TCR values being attained by Operator Selection techniques
employing the Absolute Extreme (AbsExt) Credit Assignment. Accordingly, the rank-
based AUC Credit Assignment schemes also perform well, significantly better than the
SR-based variants, with a small (although significant in most cases) difference between its
linear (Decay with D = 1) and NDCG (equivalent to Decay with D = 0.4) variants. This
confirms again the fact that, when there are only few possible reward values, the decay
factor does not matter much in the distinction between the qualities of the operators.

Figure 6.7 shows how the performance of each Operator Selection technique, with its
corresponding best Credit Assignment scheme, scales with respect to the epoch length
∆T . As can be seen, the performance ranking of the Operator Selection techniques is very
clear, in terms of both TCR and p(best) measures. The overall winner is again DMAB,
combined with the AbsExt Credit Assignment, which precisely performs restarts every time
a change occurs (Figures 6.8a and 6.8b), supported by its well-tuned PH change-detection
test. Although having one hyper-parameter less, the SLMAB performs not significantly
different from the winner DMAB in all cases, with its sliding update rule quickly adapting
to the new situation (Figures 6.8c and 6.8d). RMAB comes in third place, combined
with AUC with linear decay in all cases, one more time confirming that the adaptation
being done on the Credit Assignment side is rather efficient (Figures 6.8e and 6.8f). It
significantly outperforms the MAB and the AP methods for all epoch lengths, except
for the longest epoch, in which the best configuration for AP becomes not significantly
different with respect to all techniques, due to the very high standard deviation on its
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Figure 6.7: Scaling of mean performance (TCR above, and p(best) below) in relation to the
epoch length ∆T , for each Operator Selection technique with its best Credit Assignment
scheme, on the ART (0.01, 101, 0.5, 10) scenario.

TCR performance (though with a lower mean). The standard MAB and the baseline AP
Operator Selection techniques succeed in following the dynamics of the scenario, but their
performances are greatly affected by the facts that their adaptation is slower than those
of the others, and they are not able to exploit the best operator up to the maximal rate.
By analyzing the behavior plots, it is also interesting to see the gain, in terms of speed of
adaptation and exploitation efficiency, provided by the different bandit-based extensions
with respect to the original MAB technique (Figures 6.8g and 6.8h).
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Credit/OpSel SLMAB DMAB MAB AP

AbsIns
2559 ± 137 ⋆ 2461 ± 140 N 2423 ± 142 ⋆ 2341 ± 164 ⋆

C5W10 C5G10W1 C10W1 P.1A.9B.9W1
Pb: 12.9 ± 3.8 Pb: 18.8 ± 2.3 Pb: 20.4 ± 4.6 Pb: 23.0 ± 5.3

NormIns
2148 ± 145 2401 ± 162 2401 ± 162 N 2246 ± 194 N

C5W100 C1G10W1 C1W1 P.1A.9B.9W1
Pb: 36.2 ± 2.6 Pb: 22.0 ± 3.0 Pb: 22.0 ± 3.0 Pb: 27.8 ± 6.2

AbsAvg
2513 ± 131 N 2447 ± 192 N 2304 ± 133 2277 ± 156 N

C5W10 C1G10W10 C10W10 P.1A.9B.9W10
Pb: 15.4 ± 4.5 Pb: 19.2 ± 7.0 Pb: 27.0 ± 4.9 Pb: 26.2 ± 5.3

NormAvg
2139 ± 251 2348 ± 156 2348 ± 156 N 2186 ± 168

C1W50 C1G10W10 C1W10 P.1A.9B.9W10
Pb: 36.0 ± 10.0 Pb: 25.1 ± 3.5 Pb: 25.1 ± 3.5 Pb: 31.1 ± 6.2

AbsExt
2465 ± 114 N 2538 ± 148 ⋆ 2234 ± 205 2276 ± 149 N

C10W10 C1G1W10 C10W10 P.1A.6B.9W10
Pb: 18.0 ± 5.8 Pb: 14.0 ± 6.5 Pb: 30.1 ± 12.7 Pb: 26.3 ± 4.5

NormExt
2141 ± 192 2335 ± 149 2332 ± 149 N 2207 ± 166

C5W10 C1G10W10 C1W10 P.1A.6B.9W10
Pb: 35.1 ± 4.7 Pb: 25.4 ± 4.8 Pb: 25.4 ± 4.8 Pb: 29.9 ± 5.8

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F )
2508 ± 136 ⋆ 2371 ± 153 2499 ± 129 N 2365 ± 131
C.01D1W10 C1D.9W10 C.01W10 C1W10

Pb: 15.1 ± 1.6 Pb: 23.3 ± 1.3 Pb: 15.3 ± 1.9 Pb: 22.7 ± 1.5

(a) Results ART (0.01, 101, 0.5, 10) scenario, for ∆T = 50 (Naive TCR: 2000, Optimal TCR: 3000)

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
10656 ± 226 N 10348 ± 243 10182 ± 243 ⋆ 10204 ± 297 ⋆

C5W10 C5G100W1 C10W1 P.05A.6B.9W1
Pb: 5.1 ± 1.4 Pb: 10.1 ± 2.7 Pb: 11.6 ± 1.9 Pb: 11.8 ± 2.8

NormIns
8635 ± 278 10012 ± 273 10012 ± 273 9921 ± 296
C10W500 C1G100W1 C1W1 P.1A.6B.9W1

Pb: 33.4 ± 0.8 Pb: 14.1 ± 1.8 Pb: 14.1 ± 1.8 Pb: 15.7 ± 2.9

AbsAvg
10637 ± 229 N 10483 ± 262 10063 ± 260 N 10159 ± 303 N

C5W10 C1G10W10 C10W10 P.05A.9B.9W10
Pb: 5.2 ± 1.4 Pb: 7.5 ± 2.7 Pb: 13.5 ± 2.3 Pb: 12.3 ± 3.3

NormAvg
8777 ± 260 9899 ± 442 9899 ± 442 9875 ± 258

C5W50 C1G100W10 C1W10 P.1A.9B.9W10
Pb: 32.3 ± 2.4 Pb: 15.7 ± 4.8 Pb: 15.7 ± 4.8 Pb: 16.4 ± 2.4

AbsExt
10680 ± 216 ⋆ 10719 ± 221 ⋆ 9322 ± 1010 10149 ± 300 N

C10W10 C5G10W10 C10W10 P.05A.9B.9W10
Pb: 4.6 ± 1.7 Pb: 3.9 ± 0.4 Pb: 23.9 ± 15.5 Pb: 12.4 ± 3.3

NormExt
8503 ± 278 9778 ± 399 9778 ± 399 9893 ± 270

C5W50 C1G100W10 C1W10 P.1A.6B.9W10
Pb: 35.5 ± 3.6 Pb: 17.5 ± 5.1 Pb: 17.5 ± 5.1 Pb: 16.3 ± 2.5

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F )
10419 ± 262 ⋆ 10052 ± 280 10160 ± 250 9977 ± 259

C.5D1W100 C.5D.9W10 C.01W10 C.5W10
Pb: 8.3 ± 1.5 Pb: 12.8 ± 1.4 Pb: 11.6 ± 0.6 Pb: 13.9 ± 2.1

(b) Results ART (0.01, 101, 0.5, 10) scenario, for ∆T = 200 (Naive TCR: 8000, Optimal TCR: 12000)

Table 6.11: Results on ART (0.01, 101, 0.5, 10), 10 epochs for ∆T ∈ {50, 200}
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Credit/OpSel SLMAB DMAB MAB AP

AbsIns
5400 ± 127 N 5291 ± 173 5190 ± 169 N 5246 ± 416 ⋆

C1W10 C5G100W1 C5W1 P0A.9B.1W1
Pb: 2.8 ± 1.6 Pb: 6.8 ± 4.1 Pb: 9.4 ± 5.0 Pb: 7.1 ± 12.7

NormIns
5217 ± 157 4923 ± 273 4923 ± 273 5085 ± 267
C5W500 C.5G10W1 C.5W1 P.05A.9B.9W1

Pb: 8.2 ± 0.5 Pb: 16.4 ± 6.8 Pb: 16.4 ± 6.8 Pb: 12.0 ± 6.1

AbsAvg
5377 ± 124 N 5334 ± 211 N 5120 ± 159 N 5209 ± 403 N

C1W10 C1G10W10 C10W10 P0A.9B.1W10
Pb: 3.5 ± 1.7 Pb: 5.1 ± 4.0 Pb: 10.9 ± 3.6 Pb: 8.0 ± 12.4

NormAvg
4978 ± 705 5206 ± 168 5206 ± 169 ⋆ 5068 ± 257
C.5W100 C1G10W10 C1W10 P.05A.9B.9W10

Pb: 14.8 ± 20.5 Pb: 8.8 ± 3.2 Pb: 8.8 ± 3.2 Pb: 12.2 ± 6.1

AbsExt
5430 ± 132 ⋆ 5459 ± 142 ⋆ 4828 ± 614 N 5206 ± 402 N

C5W10 C1G1W10 C10W10 P0A.9B.1W10
Pb: 2.0 ± 1.1 Pb: 1.4 ± 0.4 Pb: 19.6 ± 19.5 Pb: 8.2 ± 12.4

NormExt
4604 ± 189 5023 ± 338 5013 ± 334 N 5070 ± 256
C10W10 C1G1W10 C1W10 P.05A.6B.9W10

Pb: 26.1 ± 2.4 Pb: 13.8 ± 8.3 Pb: 14.2 ± 8.6 Pb: 12.1 ± 6.1

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F )
5336 ± 158 ⋆ 5115 ± 156 5237 ± 157 N 5069 ± 149

C.1D1W50 C1D.75W50 C.01W50 C1W50
Pb: 4.8 ± 1.4 Pb: 11.0 ± 1.3 Pb: 7.8 ± 4.4 Pb: 12.3 ± 2.6

(a) Results ART (0.01, 101, 0.5, 10) scenario, for ∆T = 500 (Naive TCR: 4000, Optimal TCR: 6000)

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
21926 ± 320 N 21683 ± 650 N 21417 ± 373 ⋆ 21354 ± 1871 ⋆

C1W10 C1G100W1 C10W1 P0A.9B.1W1
Pb: 0.7 ± 0.4 Pb: 2.4 ± 3.6 Pb: 4.6 ± 2.0 Pb: 4.8 ± 13.4

NormIns
18714 ± 2678 19971 ± 449 19971 ± 449 21022 ± 353

C.5W500 C1G100W1 C1W1 P.05A.3B.1W1
Pb: 23.3 ± 19.0 Pb: 14.7 ± 1.2 Pb: 14.7 ± 1.2 Pb: 7.3 ± 1.1

AbsAvg
21904 ± 321 N 21705 ± 346 21344 ± 366 N 21322 ± 1861 N

C1W10 C1G10W50 C10W10 P0A.9B.1W10
Pb: 0.9 ± 0.5 Pb: 2.3 ± 1.0 Pb: 4.7 ± 1.6 Pb: 5.0 ± 13.4

NormAvg
20221 ± 3445 21057 ± 830 20994 ± 849 N 21010 ± 326

C.5W500 C1G.1W10 C1W10 P.05A.9B.9W10
Pb: 12.8 ± 24.4 Pb: 6.8 ± 5.3 Pb: 7.2 ± 4.7 Pb: 7.3 ± 1.5

AbsExt
21947 ± 326 ⋆ 21958 ± 360 ⋆ 19974 ± 2399 N 21317 ± 1860 N

C5W10 C1G10W10 C10W10 P0A.9B.1W10
Pb: 0.5 ± 0.4 Pb: 0.5 ± 0.6 Pb: 14.9 ± 18.7 Pb: 5.1 ± 13.4

NormExt
18490 ± 391 20806 ± 658 20480 ± 1173 21008 ± 326

C5W50 C1G.01W10 C1W10 P.05A.6B.9W10
Pb: 24.8 ± 3.5 Pb: 8.6 ± 3.9 Pb: 11.0 ± 8.3 Pb: 7.3 ± 1.5

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F )
21722 ± 371 ⋆ 21204 ± 388 21415 ± 310 21078 ± 509

C.5D1W500 C.5D.75W50 C.1W50 C.01W50
Pb: 2.1 ± 1.0 Pb: 5.7 ± 0.9 Pb: 4.3 ± 1.3 Pb: 6.5 ± 3.6

(b) Results ART (0.01, 101, 0.5, 10) scenario, for ∆T = 2000 (Naive TCR: 16000, Optimal TCR: 24000)

Table 6.12: Results ART (0.01, 101, 0.5, 10), 2 epochs for ∆T ∈ {500, 2000}
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Figure 6.8: Behavior of DMAB, SLMAB, RMAB and MAB, combined with their best
Credit Assignment schemes, on the ART (0.01, 101, 0.5, 10) scenario, for ∆T = 200 on the
left column, and ∆T = 2000 on the right column.
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High Average/High Variance vs. Low Average/Low Variance scenario

Oppositely to the previous ART scenario, the ART (0.1, 39, 0.5, 3) problem has a high
average/high variance (IE1 = 4.8, V1 = 130) and a low average/low variance (IE2 = 2 and
V2 = 1) operators. Detailed results are depicted in Tables 6.13 and 6.14, respectively, for
∆T ∈ {50, 200} and ∆T ∈ {500, 2000}.

This scenario is much more complex than the previous one, as the regularity of the
second operator might lead the AOS schemes to believe it is the best operator, while in
fact the best is the first one. This kind of situation was the main motivation for the
proposal of the Extreme-based Credit Assignment, as discussed in Section 5.2.2, which
indeed performs significantly better than all the other schemes for the three longest epoch
lengths, while also being the winner (but not significantly different from several others)
for ∆T = 50. As expected, the Instantaneous schemes achieve a much lower performance:
as they assign credit based on a single operator application, they need to be very lucky
in order to catch the outlier reward that is received only in 10% of the cases for the first
operator. This situation is alleviated by the Average Credit Assignment, but not enough
to provide good performance. As in the Outlier scenario, the Normalized variants of these
schemes do not work at all: the very different reward values of 3 and 39 given by each of
the operators result in the same credit value of 1 in different moments of the search, as
discussed in Section 5.2.4.

Surprisingly, the different AOS combinations involving the rank-based Credit Assign-
ment schemes with the RMAB Operator Selection technique do not work well at all in
this case, even when employing a strong decaying factor (what intuitively approaches it
to the behavior of the Extreme Credit Assignment scheme, as discussed in Section 5.2.4).
A tentative interpretation, based on the high variation of the instant selection rates de-
picted in Figures 6.10e and 6.10f, can be developed as follows. In the Extreme Credit
Assignment, when the outlier operator receives the high reward (R = 39 in this case),
a equivalent credit of 39 is assigned to this operator at least W times, no matter how
many bad rewards it receives during this period, and no matter how many times the other
(regular) operator is applied, as there is a separate window for the rewards received by
each operator. In the rank-based schemes, as there is only one sliding window for all
operators, this dominance is greatly reduced by two factors: (i) the applications of the
other operator, which, besides pushing the outlier reward out of the window, will always
reduce the overall quality estimate of the outlier operator; and (ii) the receiving of bad
rewards by the outlier operator (what happens in 90% of the times in this case), will also
affect its quality estimate, consequently promoting the exploration of the other operator.
And then, given the regularity of the other operator, one trial might be enough to start a
long period of dominance.

Anyway, as for the other scenarios, the longer the steady-state epoch, the better the
performance for all the techniques (even for the rank-based ones) with respect to the
Naive approach, as summarized in Figure 6.9. Notably, both DMAB and SLMAB reach a
quasi-perfect score when ∆T = 2000. The DMAB is once more the overall winner for all
epoch lengths, but not significantly different from the second and third best techniques,
namely, the SLMAB and the standard MAB, all of them combined with the AbsExt
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Figure 6.9: Scaling of mean performance (TCR above, and p(best) below) in relation to the
epoch length ∆T , for each Operator Selection technique with its best Credit Assignment
scheme, on the ART (0.1, 39, 0.5, 3) scenario.

Credit Assignment scheme. The baseline AP is significantly beaten by all the bandit-
based approaches, with the exception of RMAB, which performs equally bad, for the
reasons previously discussed. The behavior plots of all the winner configurations for the
bandit-based approaches are presented in Figure 6.10.
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Credit/OpSel SLMAB DMAB MAB AP

AbsIns
1843 ± 272 N 1864 ± 256 1862 ± 255 N 1737 ± 246 N

C10W10 C10G100W1 C10W1 P.1A.1B.3W1
Pb: 60.1 ± 7.1 Pb: 60.4 ± 7.3 Pb: 58.8 ± 7.8 Pb: 50.0 ± 9.1

NormIns
1720 ± 180 1714 ± 177 1687 ± 157 1718 ± 160 N

C100W10 C10G.01W1 C100W1 P0A.9B.1W1
Pb: 49.7 ± 1.8 Pb: 49.7 ± 0.6 Pb: 49.8 ± 0.2 Pb: 51.1 ± 3.4

AbsAvg
1927 ± 269 N 1946 ± 247 N 1894 ± 228 N 1761 ± 229 N

C10W10 C10G100W10 C10W10 P.1A.6B.6W50
Pb: 65.2 ± 7.1 Pb: 63.3 ± 6.2 Pb: 61.8 ± 6.5 Pb: 53.0 ± 8.0

NormAvg
1782 ± 202 1757 ± 194 1757 ± 194 1768 ± 213 N

C5W50 C10G100W10 C10W10 P.1A.9B.6W50
Pb: 54.4 ± 3.3 Pb: 51.8 ± 1.6 Pb: 51.8 ± 1.6 Pb: 53.0 ± 8.1

AbsExt
2012 ± 301 ⋆ 2040 ± 238 ⋆ 2036 ± 239 ⋆ 1793 ± 252 ⋆

C100W10 C100G1000W10 C100W10 P.1A.1B.6W10
Pb: 71.1 ± 5.9 Pb: 69.4 ± 4.5 Pb: 69.5 ± 4.5 Pb: 54.2 ± 9.1

NormExt
1772 ± 196 1758 ± 218 1758 ± 218 1743 ± 240 N

C5W50 C5G100W10 C5W10 P.05A.1B.1W10
Pb: 55.1 ± 5.2 Pb: 51.0 ± 3.5 Pb: 51.0 ± 3.5 Pb: 50.2 ± 9.5

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F )
1934 ± 245 ⋆ 1860 ± 199 N 1844 ± 241 N 1869 ± 227 N

C5D.9W100 C10D.5W100 C5W100 C5W100
Pb: 65.7 ± 6.8 Pb: 59.6 ± 3.0 Pb: 60.3 ± 6.8 Pb: 61.1 ± 8.3

(a) Results ART (0.1, 39, 0.5, 3) scenario, for ∆T = 50 (Naive TCR: 1700, Optimal TCR: 2400)

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
8337 ± 537 8232 ± 475 7996 ± 572 7277 ± 639
C10W50 C10G100W1 C10W1 P.2A.1B.1W1

Pb: 77.5 ± 3.8 Pb: 74.2 ± 3.0 Pb: 70.1 ± 7.2 Pb: 59.1 ± 5.0

NormIns
6961 ± 628 6830 ± 361 6792 ± 340 6820 ± 379

C1W50 C.1G.01W1 C.01W1 P0A.9B.6W1
Pb: 51.7 ± 8.8 Pb: 50.4 ± 1.7 Pb: 50.1 ± 0.1 Pb: 50.0 ± 0.1

AbsAvg
8522 ± 497 N 8344 ± 538 8160 ± 466 7795 ± 741 N

C10W50 C10G100W10 C10W10 P.1A.6B.3W50
Pb: 79.4 ± 3.3 Pb: 76.1 ± 3.7 Pb: 73.0 ± 4.3 Pb: 67.9 ± 7.4

NormAvg
7700 ± 450 8110 ± 581 7871 ± 790 7780 ± 526 N

C5W100 C1G.1W50 C1W50 P.2A.9B.6W50
Pb: 65.6 ± 2.6 Pb: 72.6 ± 6.0 Pb: 68.1 ± 9.9 Pb: 67.7 ± 3.9

AbsExt
8746 ± 511 ⋆ 8830 ± 478 ⋆ 8555 ± 530 ⋆ 7931 ± 606 ⋆

C100W50 C10G1W50 C100W10 P.1A.3B.6W50
Pb: 84.3 ± 2.9 Pb: 85.8 ± 1.6 Pb: 80.5 ± 3.3 Pb: 70.6 ± 5.3

NormExt
7944 ± 376 8046 ± 634 8046 ± 634 7830 ± 486 N

C5W50 C1G100W50 C1W50 P.2A.9B.6W50
Pb: 71.1 ± 2.1 Pb: 71.5 ± 8.9 Pb: 71.5 ± 8.9 Pb: 68.5 ± 2.9

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F )
8006 ± 667 ⋆ 7887 ± 433 N 7848 ± 701 N 7819 ± 428 N

C1D.9W100 C5D.25W100 C1W50 C5W100
Pb: 71.3 ± 8.3 Pb: 67.7 ± 1.4 Pb: 67.8 ± 7.6 Pb: 66.4 ± 1.7

(b) Results ART (0.1, 39, 0.5, 3) scenario, for ∆T = 200 (Naive TCR: 6800, Optimal TCR: 9600)

Table 6.13: Results ART (0.1, 39, 0.5, 3), 10 epochs for ∆T ∈ {50, 200}
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Credit/OpSel SLMAB DMAB MAB AP

AbsIns
4167 ± 342 4242 ± 421 4202 ± 431 3737 ± 402

C5W50 C5G100W1 C10W1 P.2A.1B.1W1
Pb: 77.0 ± 6.2 Pb: 79.2 ± 8.3 Pb: 77.2 ± 8.6 Pb: 61.6 ± 5.6

NormIns
3661 ± 650 3425 ± 291 3411 ± 240 3451 ± 239
C1W100 C.1G.1W1 C.01W1 P0A.3B.1W1

Pb: 58.3 ± 22.1 Pb: 51.1 ± 6.1 Pb: 50.1 ± 0.3 Pb: 50.8 ± 1.8

AbsAvg
4309 ± 371 N 4377 ± 366 N 4175 ± 400 4116 ± 481 N

C5W50 C5G100W10 C10W10 P.05A.6B.1W100
Pb: 80.7 ± 6.4 Pb: 83.6 ± 7.3 Pb: 76.5 ± 8.1 Pb: 74.7 ± 11.4

NormAvg
3775 ± 280 4241 ± 457 4215 ± 483 N 4122 ± 355 N

C5W100 C1G.01W100 C1W100 P.1A.9B.1W100
Pb: 63.9 ± 2.1 Pb: 79.4 ± 11.1 Pb: 78.8 ± 11.5 Pb: 75.4 ± 6.6

AbsExt
4500 ± 324 ⋆ 4595 ± 339 ⋆ 4421 ± 297 ⋆ 4148 ± 397 ⋆

C100W50 C10G1W50 C100W50 P.1A.1B.3W50
Pb: 88.2 ± 2.1 Pb: 92.2 ± 3.6 Pb: 85.8 ± 3.5 Pb: 76.1 ± 7.8

NormExt
3972 ± 281 4281 ± 444 4203 ± 519 N 4146 ± 422 N

C5W100 C1G.01W50 C1W50 P.1A.3B.3W50
Pb: 70.2 ± 1.9 Pb: 80.9 ± 12.1 Pb: 78.3 ± 13.2 Pb: 75.9 ± 8.3

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F )
4078 ± 437 N 4254 ± 298 ⋆ 4039 ± 478 N 4214 ± 293 N

C1D.25W50 C5D.25W500 C1W50 C5W500
Pb: 74.0 ± 11.3 Pb: 79.9 ± 3.2 Pb: 72.2 ± 12.7 Pb: 79.5 ± 3.4

(a) Results ART (0.1, 39, 0.5, 3) scenario, for ∆T = 500 (Naive TCR: 3400, Optimal TCR: 4800)

Credit/OpSel SLMAB DMAB MAB AP

AbsIns
17725 ± 835 18006 ± 842 17994 ± 848 15021 ± 860

C5W50 C10G1000W1 C10W1 P.2A.1B.1W1
Pb: 86.6 ± 3.6 Pb: 89.0 ± 4.0 Pb: 89.0 ± 4.1 Pb: 62.5 ± 3.4

NormIns
14622 ± 1443 13650 ± 489 13550 ± 477 13735 ± 504

C5W10 C100G.01W1 C.01W1 P0A.3B.1W1
Pb: 60.0 ± 11.6 Pb: 49.9 ± 0.2 Pb: 50.0 ± 0.1 Pb: 50.2 ± 0.4

AbsAvg
18169 ± 755 18299 ± 883 17962 ± 837 17873 ± 1272 N

C5W50 C5G100W100 C10W10 P.05A.9B.1W100
Pb: 90.4 ± 2.5 Pb: 91.9 ± 3.9 Pb: 88.7 ± 3.9 Pb: 87.7 ± 7.1

NormAvg
16185 ± 857 18172 ± 1121 18172 ± 1124 N 17932 ± 1264 N

C5W500 C1G1W100 C1W100 P.05A.9B.1W100
Pb: 73.0 ± 4.2 Pb: 90.6 ± 6.9 Pb: 90.8 ± 5.8 Pb: 88.1 ± 7.5

AbsExt
18838 ± 726 ⋆ 18960 ± 750 ⋆ 18606 ± 743 ⋆ 17976 ± 1053 N

C100W50 C10G1W50 C100W50 P.05A.1B.1W50
Pb: 96.4 ± 0.8 Pb: 97.6 ± 1.1 Pb: 94.4 ± 1.9 Pb: 88.7 ± 5.4

NormExt
17009 ± 598 17969 ± 665 17841 ± 712 17996 ± 967 ⋆

C5W100 C5G.01W100 C5W100 P.05A.9B.1W100
Pb: 80.7 ± 0.7 Pb: 88.2 ± 0.7 Pb: 87.6 ± 0.7 Pb: 88.7 ± 4.9

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F )
17921 ± 822 ⋆ 17866 ± 800 N 17911 ± 841 N 17795 ± 881 N

C1D.5W100 C1D.25W100 C1W100 C1W100
Pb: 88.2 ± 4.1 Pb: 87.7 ± 4.0 Pb: 88.1 ± 4.1 Pb: 86.8 ± 5.0

(b) Results ART (0.1, 39, 0.5, 3) scenario, for ∆T = 2000 (Naive TCR: 13600, Optimal TCR: 19200)

Table 6.14: Results ART (0.1, 39, 0.5, 3), 2 epochs for ∆T ∈ {500, 2000}
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Figure 6.10: Behavior of DMAB, SLMAB, RMAB and MAB, combined with their best
Credit Assignment schemes, on the ART (0.1, 39, 0.5, 3) scenario, for ∆T = 200 on the left
column, and ∆T = 2000 on the right column.
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6.3.4 Discussion

The problems used in this Section provided conditions that are very artificial, with abrupt
changes happening every ∆T time steps. In real optimization problems, these abrupt
changes in the rewards distribution might also occur (e.g., when escaping from a local
optima and reaching a new region of the search space); but globally, the dynamics of
the operator qualities tend to be much more complex and usually unpredictable (except
for the simple benchmark problems, such as the OneMax; see Section 6.4.2). However,
the initial motivation for using these artificial scenarios is confirmed by the experimental
findings: they enable the detailed analysis of the behavior of the AOS methods, and the
verification of their characteristics in practice. The results presented in this Section can
be summarized as follows.

The baseline probability-based AP method, although systematically (and significantly)
outperforming the original Probability Matching (PM) method (results for PM are not
shown here), still provides a slow adaptation when compared to all proposed bandit-based
approaches. The main reason for this, in most cases, is the limitation provided by the
enforced minimal level of exploration pmin. But, even when pmin is set to zero, its two-
tiered update mechanism needs some time in order to start to efficiently exploit the new
best operator.

As for the bandit-based approaches, the standard MAB Operator Selection technique
is able to follow the dynamics in an efficient way when the changes happen smoothly, i.e.,
when the magnitude of the adaptation to be done is small (e.g., in the Uniform scenario,
when the second best operator becomes the best, or vice-versa). Whenever faster dynamics
are considered, the DMAB succeeds in adapting very quickly to new situations, supported
by its change-detection mechanism. Moreover, as originally expected, the SLMAB is able
to perform as efficiently as the DMAB in most cases, due to its parameterless window-
based relaxation mechanism.

The RMAB, using any of the proposed rank-based Credit Assignment schemes, out-
performs the baseline AP and performs equivalently to the standard MAB. But the main
benefit brought by these rank-based schemes (as well as by the Normalized versions of
the Instantaneous, Average and Extreme schemes) is a higher robustness with respect to:
(i) different values of rewards gathered in different stages of the search; and (ii) different
(unknown) fitness ranges provided by different problems. Both issues were not assessed
in this experimental set. Conversely, for each scenario, the same range of reward values
was considered during all the optimization process. Besides, each scenario/epoch length
was independently tackled after a preliminary off-line tuning phase, what explains why
the very sensitive and problem-dependent (assumed after discussion in Sections 5.2.3 and
5.3.3, and confirmed by the sensitivity analysis that will be presented in Section 6.7)
AbsExt-DMAB combination was found to be the winner in almost all the cases.

Indeed, the gain in robustness provided by RMAB results in a gain in performance,
in relation to the other AOS methods, when several problems are tackled using the same
hyper-parameter setting. This situation will be further stressed in the experiments that
will be analyzed in the following, specially in the hyper-parameter sensitivity and robust-
ness analysis considering different optimization benchmark problems (Section 6.7).
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6.4 On Boolean Benchmark Problems

Some EA boolean benchmark problems were also used to empirically compare the AOS
schemes, in situ, i.e., combined with an EA and selecting between actual evolutionary
operators on some (still artificial) fitness landscapes with different complexities and levels
of difficulty with respect to AOS. Needless to say, in these cases, the dynamics of the
performance of the operators are not deterministically switched after every epoch, but
rather depending on the search trajectory and on the fitness landscape.

Three different problems were considered, namely: the eternal OneMax problem, and
two harder problems, the Long k-Path and the Royal Road. The experimental settings, in
complement to the general settings presented in Section 6.2, will be described in Section
6.4.1. The problems will be presented, and the empirical results will be analyzed, in
Sections 6.4.2, 6.4.3 and 6.4.4, respectively, for the OneMax, Long k-Path, and Royal Road.
Finally, Section 6.4.5 will conclude this analysis with a discussion about the highlights of
these experiments. The results that will be analyzed here were partially published in
[Fialho et al., 2008; Fialho et al., 2009a; Fialho et al., 2010c].

6.4.1 Experimental Settings

The performance of the AOS schemes embedded within real EAs is assessed by the number
of generations needed to achieve the optimal solution, the lower the better. The resulting
total number of fitness evaluations can be roughly measured as the number of generations
times the size of the offspring population. Besides the presentation of the detailed Tables
with the average and standard deviation of the performance achieved by each of the
considered AOS methods (e.g., Table 6.15a), the ECDFs are also used to compare the
complete performance distribution for each of the winner techniques (e.g., Figure 6.15b).

The stopping criteria are: optimal solution found or maximum number of generations
attained. For this latter, a value of 15,000 is used for the OneMax and Long k-Path
problems, while 25,000 is used for the Royal Road problem. For the first two problems,
the unique solution maintained in the population is initialized to (0, . . . , 0), while for the
Royal Road, the population is uniformly initialized.

In addition to the AP Operator Selection technique, combined with all the Credit
Assignment schemes based on raw values of fitness improvements, the optimal Oracle,
the Naive uniform, and the off-line tuned Static operator selection strategies are used as
baseline for both, OneMax and Long k-Path problems. For the Royal Road problem, all
of them are used as well, except for the Oracle strategy: as the fitness landscape of this
problem includes many paths toward the optimal solution, the Oracle can not be easily
assessed.

More specific experimental settings, such as the definition of the EA used, as well as
the set of operators automatically controlled by the AOS schemes, will be described in the
following, together with the presentation of each problem.
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6.4.2 The OneMax Problem

The OneMax problem involves an unimodal fitness function that simply counts the number
of “1”s in the binary bit-string that represents the individual solution. The only difficulty
comes from the size of the problem; in the presented experiments, the size ℓ of the bit-
string is 10,000. Given its simplicity, it is often used to preliminary evaluate new empirical
or theoretical methods, being for this reason considered as the “Drosophila of EC”.

In order to be assessed on this problem, the AOS schemes are combined with a stan-
dard (1 + λ)-EA (λ offspring are created from the current parent; next parent is the
best among the current offspring and parent). Different values for λ were analyzed in
[Fialho et al., 2008], achieving similar conclusions; λ = 50 is used here. The objective is
to automatically select between some mutation operators, namely, the standard bit-flip
operator (every bit is flipped with probability 1/ℓ), and a set of b-bit mutations (flipping
exactly b randomly chosen bits) with b ∈ {1, 3, 5}.

In many respects, the considered setting is still far from being realistic evolutionarily
speaking: applying a (1 +λ)-EA, with λ > 1 and b-bit mutation operators, is meaningless
on the OneMax problem (though it might make more sense on multi-core architectures).
It nevertheless confronts the proposed and baseline approaches with the actual difficulties
of taming a dynamic system, where the decisions made at a given moment govern the
expected benefits of further decisions (the selected operators determine the position of the
population and hence the improvement expectation of the operators at further stages of
the search), as opposed to the artificial scenarios tackled in Section 6.3.

One main advantage of this kind of “sterile EC-like” environment is to enable the
assessment of the AOS approaches by comparison with the performance of the known
optimal operator selection. The optimal baseline is provided by the optimal behavior
of all operators (computed by means of Monte-Carlo simulations). Figure 6.11a depicts
the operator landscape from the perspective of a (1 + 50)-EA; for each fitness value of
the unique parental individual, we report the fitness gain for the best out of 50 offsprings
generated by each of the considered mutation operators, averaged over 100 runs. As can be
seen, the trajectory of evolution involves distinct phases with respect to operator dynamics.
In stable phases, the optimal operator remains the same (though its performance might
decrease). For instance, the 5-bit mutation dominates all other operators until around
F(x) = 6579, although its performance starts to gradually decrease after F(x) = 5300. In
transition phases, the established best operator becomes dominated by another one; the 3-
bit mutation outperforms the 5-bit after F(x) = 6579, and the 1-bit mutation outperforms
the 3-bit after F(x) = 8601. The last phase is a desert, where hardly any operator brings
any improvement; by being less disruptive, the 1-bit has higher chances of fine-tuning the
solution towards the optimum, being thus the preferred operator at this phase.

A clearer view of the optimal behavior with respect to Operator Selection is presented
in Figure 6.11b: at each stage of the search, according to the current fitness value of the
parent, one of the operators is the best one, and should thus be applied at a rate of 100%
(until the situation changes). This illustration indeed represents the behavior of the Oracle
strategy that was used to achieve the empirical results for the optimal baseline.

Although being a rather simplistic scenario, this operator landscape provided by the
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Figure 6.11: Different views of the Oracle on the OneMax problem

OneMax problem enables one to assess the basic skills of an AOS mechanism: the abilities
(i) to pick up the best operator and stick to it in stability phases; (ii) to swiftly switch to
the next best operator in transition phases; and (iii) to remain efficient during the desert
phases. An empirical analysis on this scenario will now be presented.

Empirical Results

The detailed results for the OneMax problem, with the average number of generations
(plus the standard deviation) to achieve the optimum, and the winner hyper-parameter
configuration for each AOS combination, are presented in Table 6.15a. Complementarily,
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Table 6.15b depicts the complete distribution of results for each Operator Selection tech-
nique, with its best Credit Assignment scheme and hyper-parameter configuration, in the
form of Empirical Cumulative Distribution Functions (ECDFs).

The complete Naive strategy, that uniformly selects between the four available mu-
tation operators, is able to find the optimum in 7955 generations in average. Another
common approach is to tune off-line the application rates of each operator: the best Static
strategy applies the 5-bit mutation operator at a rate of 20%, and the 1-bit at a rate of
80%, achieving the optimum in roughly 6206 generations. The Oracle strategy (depicted
in Figure 6.11b), which represents the complete knowledge about the operator landscape,
finds the optimum in 5136 generations in average.

The ECDF plot (Table 6.15b) is bounded on the right by the average performance
of the Naive uniform approach. As can be seen in this Figure, 100% of the runs of all
the winner AOS combinations achieve the optimum many generations before the Uniform
does, all being significantly better than it in average. Besides, with a few exceptions
(the combinations involving MAB and SLMAB), all the winner configurations for each
Operator Selection technique are also able to significantly outperform the baseline method
that employs off-line tuned Static probabilities.

Interestingly, several AOS methods are able to achieve a performance not significantly
different from the Oracle strategy, namely: AP with both Normalized and Absolute ver-
sions of the Extreme Credit Assignment ; and RMAB with any of the rank-based Credit
Assignment methods based on ranks over the fitness improvements. The only excep-
tion is the NDCG/AUC, which also performs very well, but significantly worse, due to
the tight standard deviations. In fact, as can be seen in the operator quality landscape
depicted in Figure 6.11a, the 5-bit, 3-bit and 1/ℓ bit-flip mutation operators are rather
equivalent, starting from fitness 7000 up to around 9000. This explains why these AOS
methods are able to achieve optimal performance by controlling the operator applications
in very different ways for the fitness values within the mentioned interval. The Normalized
Extreme (NormExt)-AP selects different operators in three very well-defined phases (Fig-
ure 6.12a), instead of four in the case of the Oracle, efficiently exploiting the 5-bit, then
the 3-bit, and finally the 1-bit. The Decay/AUC-RMAB (Figure 6.12e) achieves basically
the same performance by exploiting only the 5-bit mutation operator up to 100% at the
initial stages of the search, and the 1-bit at the final stages, while for the mentioned fitness
interval all the operators are equally explored to some extent. The best configuration for
DMAB, implementing the AbsExt Credit Assignment, also achieves good performance,
although significantly worse than the overall winner. As shown in Figure 6.12b, it also
exploits the 5-bit in the initial stages, and then the 5-bit, 3-bit and bit-flip operators in
the middle stages, by means of restarts; however, its performance is degraded by the fact
that it is not able to maintain an optimal level of exploitation for the 1-bit operator during
the final stages of the search. The MAB with NormExt is also able to efficiently follow the
changes; but, in the same way as the DMAB, it gets lost during the final desert phase. A
big deception in this scenario is the performance of all the AOS combinations considering
the SLMAB Operator Selection technique, which shows rather poor performance: a tenta-
tive explanation is that it is designed to react very quickly to abrupt changes with respect
to the operator qualities (as empirically verified in Section 6.3), while in the OneMax
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problem the operator qualities tend to gradually decrease as the search goes on (Figure
6.11a).

It is also worth noticing that the best results are attained by AOS combinations using
rather the NormExt or one of the rank-based Credit Assignment schemes. This empirical
finding clearly confirms that, even in such a simplistic scenario as the OneMax problem,
a robust Credit Assignment is important in order to achieve good performance: as dis-
cussed in Section 5.2.3, it prevents the AOS mechanism from the need of tackling an
extra problem, the gradual reduction of the magnitude of the credits, that might greatly
affect the performance of the AOS schemes (not to mention its robustness with respect
to its hyper-parameters, that will be separately analyzed in Section 6.7). However, the
comparison-based Credit Assignment schemes, i.e., the rank-based methods that assign
ranks over the fitness values (F ) instead of fitness improvements (Section 5.2.5), which
are expected to be the most robust schemes over all, achieve a rather regular performance
in this experimental scenario, although still significantly outperforming both Naive and
Static baseline approaches. Figure 6.12f depicts the behavior of RMAB with the FAUC
scheme. As can be seen, surprisingly, there are big variations (in both senses) in the oper-
ator selection rates; a tentative interpretation for this very noisy behavior goes as follows.
Firstly, the fact that a (1 + 50)-EA setting is being used implies that even an improve-
ment of 1 bit will generate a fitness value higher than all the values attained during the
previous generation: if this happens in the beginning of the generation, such fitness value
will be top-ranked in the Credit Assignment sliding window (what does not happen when
considering fitness improvements), consequently leading to further trials for the operator
used to generate it, being it really the best operator or not. Given the dynamics of the
underlying algorithm, this situation, i.e., the exploration of a sub-optimal operator in the
first trials of a new generation, could be considered to be rare. The problem in this case
lies in the fact that the RMAB, in the way it is conceived (Section 5.3.4), enforces at least
one application of each operator every W trials1. Hence, all k operators are explored in
the initial k steps and once every W steps: as W = 100 and the offspring population size
λ = 50, the initial k steps of every 2 generations will always be (coincidentally) exploration
trials in this case, consequently leading to the noisy variations presented in the behavior
plot roughly every 100 steps.

Finally, this experimental setting was also used to empirically compare the current
version of the AUC method with the preliminary one (referred to as AUCv1). As discussed
in Section 5.2.4, AUCv1 has normalization issues when considering several operators, and
this results in a degraded performance, as presented in the last line of Table 6.15a; while
the current version achieves optimal performance, as previously discussed. The behavior
plots of RMAB with AUCv1 and FAUCv1 are presented, respectively, in Figures 6.12g
and 6.12h: the former erroneously exploits the 1/ℓ bit-flip during its desert phase, while
the latter is totally lost with respect to the Operator Selection task.

1RMAB does not consider the n term in the MAB formula (Equation 5.11) as the total number of
times each operator was applied since the beginning of the search, but rather as the number of times each
operator appears in the current sliding window of the Credit Assignment scheme. Hence, by doing so, the
exploration term will always ensure that there is at least one application of each operator every W trials.
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Credit/OpSel SLMAB DMAB MAB AP

AbsIns
6576 ± 705 N 5480 ± 276 N 8369 ± 891 5718 ± 239

C.01W500 C.5G.1W1 C100W1 P.05A.6B.1W1

NormIns
6662 ± 961 5444 ± 252 N 8013 ± 671 5728 ± 204
C.01W500 C.1G.001W1 C100W1 P.05A.9B.1W1

AbsAvg
8347 ± 596 7494 ± 611 8198 ± 683 5750 ± 251
C.1W500 C.5G.001W10 C100W50 P.05A.3B.3W10

NormAvg
8463 ± 818 7193 ± 1614 7903 ± 638 5790 ± 226
C1W100 C.1G.1W10 C100W10 P.05A.1B.1W10

AbsExt
6059 ± 667 ⋆ 5376 ± 285 ⋆ 9044 ± 840 5123 ± 218 N

C.5W500 C1G100W50 C100W50 P0A.9B.1W500

NormExt
6427 ± 597 N 5508 ± 823 N 5997 ± 593 ⋆ 5097 ± 230 ⋆

C.1W500 C.01G1000W50 C1W500 P0A.9B.6W100

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F )
5103 ± 427 ⋆ 5215 ± 374 N 5366 ± 478 5231 ± 503 N

C.01D.9W500 C1D.5W500 C.01W500 C.1W100

RMAB (F )
5726 ± 399 5652 ± 644 5796 ± 420 5667 ± 729

C.01D.75W100 C.01D.5W500 C.1W100 C.01W500

OpSel/Credit AUCv1 (Decay) AUCv1 (NDCG) FAUCv1(Decay) FAUCv1(NDCG)

RMAB (v1)
6664 ± 631 6741 ± 587 6811 ± 742 6907 ± 708
C.1D.9W500 C.01W500 C.01D.25W500 C.1W500

(a) Average and standard deviation of the number of generations to achieve the optimum

 0

 25

 50

 75

 100

 4500  5000  5500  6000  6500  7000  7500

Decay/AUC RMAB: 5103 427
AbsExt SlMAB: 6059 667
AbsExt DMAB: 5376 285
NormExt MAB: 5997 593

NormExt AP: 5097 230
Naive: 7955 634

Best Static: 6206 326
Oracle: 5134 291

(b) Comparison of Empirical Cumulative Distribution Functions, for each Operator Selection

technique with its best Credit Assignment scheme

Table 6.15: Results on the 10k-bits OneMax problem: objective is to minimize number of
generations to achieve the optimum, selecting between 1-bit, 3-bit, 5-bit and 1/ℓ bit-flip
mutation operators within a (1+50)-EA. Baseline performances: Optimal (5134 ± 291),
Best Static (1-bit 80% + 5-bit 20% : 6206 ± 326), Naive (7955 ± 634). For the sake of
comparison, the performance of the preliminary version of AUC (AUCv1) is also presented.138
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Figure 6.12: Behavior of AP, DMAB, SLMAB, MAB and RMAB, combined with their
best Credit Assignment schemes, on the 10k-bits OneMax problem. For the sake of com-
parison, the behavior of the preliminary version of AUC (AUCv1) is also plotted.
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6.4.3 The Long k-Path Problem

Proposed by [Horn et al., 1994], Long Paths are unimodal problems designed to challenge
local search algorithms. The optimum can be found by following a path in the fitness
landscape, the length of which increases exponentially with respect to the bit-string length
ℓ. Accordingly, solving the Long Path using the 1-bit mutation requires a computational
time that increases exponentially with ℓ; efficient optimization relies on taking shortcuts
on this path.

A generalization of Long Path problems was proposed by [Rudolph, 1997], referred
to as Long k-Path, where k is the minimal number of bits to be simultaneously flipped
in order to take a shortcut on the path. Formally, the Long k-Path can be described as
follows [Garnier and Kallel, 2000]:

• The path starts at point 0, . . . , 0, with fitness ℓ; the fitness of any point not on the
path is the number of its 0 bits;

• Any point on the path has exactly 2 neighbors with Hamming distance 1 on the
path; consequently, two consecutive points on the path have a fitness difference of 1;

• Mutating i < k bits of a point on the path leads to a point which is either off the
path (hence with a very low fitness), or on the path but only i positions away from
the parent point;

• A shortcut is found by mutating the correct k bits (or more), thus with probability
at most pk(1− p)ℓ−k.

• The length of the path is calculated as (k + 1)2(ℓ−1)/k − k + 1;

Long k-Path problems are defined by recurrence on ℓ. Starting from the problem
P (k, ℓ), the path associated to problem P (k, ℓ + k) is built as the sequence of (xi, 0k),
where xi belongs to P (k, ℓ) and 0k is the k-length vector made of 0s. This initial sequence
is then linked by a “bridge” to the sequence (xL−i, 1k), where xL−i ranges in inverse order
in P (k, ℓ) and 1k is the k-length vector made of 1s. The bridge is the sequence of (xL, yz)
where xL is the last point of path P (k, ℓ) and yz is the k-length vector made of z 0s fol-
lowed by k − z 1s. To exemplify, the construction of the path P (3, 10) is done as follows.
Starting from P (3, 1) = {0, 1}, the sequence P (3, 4) is created:

00001; 00012
︸ ︷︷ ︸

S0

; 00113; 01114
︸ ︷︷ ︸

Bridge

; 11115; 11106
︸ ︷︷ ︸

S1

from which the path P (3, 7) is constructed (Table 6.16a); and finally we arrive to P (3, 10)
(Table 6.16b). Going on three more steps with these recursive construction, we arrive to
P (3, 19), represented in Figure 6.16c as the number of ones (unitation) versus fitness (red
part of the path represents S0, blue is the Bridge, and green is the final sequence S1).

It turns out that the path length decreases as k increases (the original Long Path
corresponds to k = 2). Nevertheless, the probability of finding a shortcut decreases ex-
ponentially with k, and the fastest strategy for k >

√
ℓ is to simply follow the path.
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00000001 00111107 11111109

00000012 01111108 111111110

00000113 111011111

00001114 111001112

00011115 111000113

00011106 111000014

S0 Bridge S1

(a) Path P (3, 7)

00000000001 001111000015 111111000017

00000000012 011111000016 111111000118

00000000113 111111001119

00000001114 111111011120

00000011115 111111111121

00000011106 111111111022

00000111107 111011111023

00001111108 111001111024

00011111109 111000111025

000111111110 111000111126

000111011111 111000011127

000111001112 111000001128

000111000113 111000000129

000111000014 111000000030

S0 Bridge S1

(b) Path P (3, 10)
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Long 3-Path, L=19

(c) Path P (3, 19)

Table 6.16: Examples of Long 3-Paths of different length.

Otherwise (k ≤
√

l), optimization should provably strive to find the shortcuts; in such
cases, exceptional properties of operators are more relevant to EAs behavior than their
average properties [Garnier and Kallel, 2000].

Along the same lines than the ART instances analyzed in Section 6.3.3, thus, Long
k-Path problems can be seen as yet another case in which one operator constantly gives
a small reward (when the parent individual belongs to the path, the 1-bit mutation im-
proves the fitness by 1 with probability 1/ℓ), while all other mutation operators will fail to
improve the fitness in most cases, but possibly achieving very high outlier fitness improve-
ments (shortcuts in the path) with a very small probability. This possibility of having
outlier fitness improvements was the main motivation for the use of such a scenario in
the assessment of AOS schemes by the time we proposed the Extreme Credit Assignment
[Fialho et al., 2009a; Fialho et al., 2009b] (see Section 5.2.2), which indeed showed to per-
form better than the Average one for most of the Operator Selection techniques considered.
These results will be presented in the following, together with the most recently proposed
AOS schemes.

The reported experiments consider k = 3 with ℓ = 49. Other problem sizes were also
tried, with ℓ ∈ {19, 31, 43, 55, 61}; they are omitted here, mainly because the conclusions
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attained on all of them were roughly the same (except for ℓ = 61, in which none of the
methods was found to be effective, due to the very low probability of finding shortcuts).
A (1+50)-EA is used here again, with the AOS schemes selecting between some mutation
operators. The same operator set used in the OneMax problem (1-bit, 3-bit, 5-bit and
1/ℓ bit-flip) is considered here, with one additional mutation operator, the k/ℓ bit-flip
(flipping each bit with probability k/ℓ = 3/49 in this case), which is the best operator in
this scenario according to theoretical studies [Garnier and Kallel, 2000].

In the same way as for the OneMax problem, the benefit of using this benchmark
setting is that it enables the identification of the optimal operator at each point of the
path, by means of intensive Monte-Carlo simulations, in order to further compare the AOS
approaches with the resulting optimal Oracle strategy. Figure 6.13 shows the average
fitness improvement achieved by each of the considered operators, starting from each
fitness point on the P (3, 49) path, calculated as for the OneMax problem (best gain out
of 50 trials for each operator, averaged over 100 runs).
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Figure 6.13: Average fitness gain of mutation operators with respect to the fitness of the
parent, within a (1 + 50)-EA applied to the Long 3-Path problem with ℓ = 49, averaged
over 100 trials. The optimum fitness value in this case is F = 262142.

From this Figure, it can be seen that the 3-bit (or k-bit) operator is the one that
receives the highest gains during almost all the path, as it deterministically flips k bits
every time it is applied, thus having higher chances of taking a shortcut. For the same
reason, the k/n bit-flip comes next, flipping k bits in average. The k-bit operator, however,
is able to achieve the optimum just in case it succeeds in taking a shortcut, while the k/n
bit-flip can manage to succeed in either cases: this empirically confirms the theoretical
findings presented in [Garnier and Kallel, 2000]. It is also important to note that there are
two factors controlling the variance of the gains brought by taking shortcuts: the distance
to the optimum, and the distance to some transition points found in the path. The Oracle
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Operator Selection strategy was implemented following the results presented in this Figure:
the 3-bit is mostly applied, and the 1-bit is used in a few short transition phases and in
the final fine-tuning phase, while the other operators are also very occasionally applied.

Empirical Results

By construction, some runs on the Long k-Path problem can be “lucky” and discover
shortcuts in the path, thus yielding large standard deviations in the performance, as shown
in the detailed results presented in Table 6.17a. This is true even for the Oracle strategy,
which achieves the optimum in 2821 generations in average, but with a standard deviation
of 2496. In this case, the ECDFs, shown in Table 6.17b, are much more informative for the
analysis of the empirical comparison. As can be seen, for all the considered techniques,
there are runs reaching the optimum in the very early steps (close to 0), while many
others are not able to achieve the optimum before the average performance of the Naive
uniform strategy, which bounds the plot at 5815 generations. With such a big variance, the
behavior plots become meaningless: the instant selection rates are averaged over 50 runs,
but the good runs attain the optimum very early by taking shortcuts; thus, a behavior
plot would be averaging only the longer (hence bad) runs, what does not correspond to
the mean behavior of the method.

Interestingly, the off-line tuned approach using Static probabilities, which applies the
1-bit at 20% of the trials and the 3-bit at a rate of 80%, is able to outperform the Oracle
strategy. The Oracle explores mostly the same operators, but in a fixed manner: the 3-bit
is used for some fitness ranges due to its high probability of finding a shortcut, while the
1-bit is used only in transition phases where no shortcut is possible. In practice, however,
it seems that using the 1-bit at a fixed small rate is more beneficial: although providing
very small improvements (1 by 1 in fact), its probability to improve the fitness is high
(1/ℓ) when compared to the probability of taking outlier shortcuts in the path.

The winner AOS combination in this case is the MAB, which, in the ECDF plot
(Table 6.17b) is the only method able to follow the performance of both Oracle and
Static baseline methods. As previously discussed, the MAB (as well as the other bandit-
based approaches) does some averaging on the update of the empirical quality estimates
(Equation 5.12) for each operator. Thus, even when using the AbsIns Credit Assignment, it
takes into account some history of the operator performance, consequently not forgetting
it very quickly in such a noisy environment. Additionally, it is known that MAB is
the slowest Operator Selection technique with respect to adaptation between the bandit-
based methods considered here (as verified in Section 6.3); this seems to be a beneficial
characteristic in this case: the 3-bit should continue to be exploited as much as possible
even if some other operator appears to be very good from time to time, because it has a
much higher probability of taking shortcuts in a Long k-Path with k = 3, as previously
pointed out. The RMAB with FAUC (fitness values, comparison-based) follows the same
trend in around 40% of the runs, but its global picture is rather similar to both AbsExt-
DMAB and AbsIns-SLMAB. Lastly, the AP is not able to cope well with Long k-Paths:
its best results are obtained with pmin = 0.2, what is equivalent to the Naive uniform
selection of operators in this case, as 5 operators are considered.
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Credit/OpSel SLMAB DMAB MAB AP

AbsIns
4742 ± 3304 ⋆ 4680 ± 3714 N 3046 ± 2043 ⋆ 6133 ± 4035 N

C.5W500 C100G100W1 C100W1 P.2A.1B.1W1

NormIns
5601 ± 3161 N 5355 ± 3880 N 5429 ± 3912 N 6133 ± 4035 N

C100W500 C100G.001W1 C100W1 P.2A.1B.1W1

AbsAvg
4985 ± 2942 N 5509 ± 3180 N 4564 ± 3004 N 8303 ± 5242 N

C1W10 C1G.1W10 C10W10 P.1A.1B.1W50

NormAvg
5337 ± 3120 N 4829 ± 3218 N 4851 ± 3219 N 7430 ± 5152 N

C5W500 C.01G1W10 C.01W10 P.1A.1B.1W50

AbsExt
4828 ± 3520 N 4429 ± 2788 ⋆ 4596 ± 3034 N 6133 ± 4035 ⋆

C100W500 C100G100W100 C100W10 P.2A.1B.1W100

NormExt
5442 ± 3662 N 4505 ± 3349 N 5529 ± 3273 6133 ± 4035 N

C100W500 C10G.1W50 C100W10 P.2A.1B.1W100

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F )
5005 ± 3723 N 4931 ± 3307 N 5018 ± 3413 N 5032 ± 3751 N

C5D.75W100 C10D.5W500 C100W50 C100W500

RMAB (F )
4138 ± 3328 ⋆ 4139 ± 3328 N 4723 ± 3820 N 5071 ± 4152 N

C10D.9W50 C100D.75W50 C100W50 C100W50

(a) Average and standard deviation of the number of generations to achieve the optimum
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Decay/FAUC RMAB: 4138 3328
AbsIns SlMAB: 4742 3304
AbsExt DMAB: 4429 2788

AbsIns MAB: 3046 2043
AbsExt AP: 6133 4035

Naive: 5815 3884
Best Static: 2354 1400

Oracle: 2821 2496

(b) Comparison of Empirical Cumulative Distribution Functions, for each Operator Selection

technique with its best Credit Assignment scheme

Table 6.17: Results on the Long 3-Path (ℓ = 49) problem: objective is to minimize number
of generations to achieve the optimum, selecting between 1-bit, 3-bit, 5-bit, 1/ℓ bit-flip
and 3/ℓ bit-flip mutation operators within a (1+50)-EA. Baseline performances: Oracle
(2821 ± 2496), Naive (5815 ± 3884), Best Static (1-bit 20% + 3-bit 80% : 2354 ± 1400)
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6.4.4 The Royal Road Problem

The Royal Road (RR) is an optimization problem that was intentionally created to be
easy for GAs [Mitchell et al., 1992] (with the crossover operators exploring the “building
blocks” of the function), while being difficult for hill-climbing algorithms. Due to un-
expected difficulties (the so-called hitch-hiking phenomenon), a revised version was later
proposed in [Holland, 1993] and analyzed in [Jones, 1994]. The revised version is the one
considered in this work.

The solutions are represented as bit-strings. Each bit-string is composed of 2k regions,
referred to as lower-level (or level 0) schemata. Higher level schemata are formed by
combining pairs of lower-level ones, as shown in Table 6.18.

Level 0: {B0}, {B1}, {B2}, {B3}, {B4}, {B5}, {B6}, . . . , {B12}, {B13}, {B14}, {B15}
Level 1: {B0, B1}, {B2, B3}, {B4, B5}, . . . , {B10, B11}, {B12, B13}, {B14, B15}
Level 2: {B0, B1, B2, B3}, {B4, B5, B6, B7}, . . . , {B12, B13, B14, B15}
Level 3: {B0, B1, . . . , B7}, {B8, B9, . . . , B15}
Level 4: {B0, B1, . . . , B15}

Table 6.18: Example of constructions of higher order schemata from lower order ones on
the Royal Road problem

Formally, a higher level L has 2k−L schemata composed by 2L first-level ones (the
building-blocks, supposedly defining a crossover-friendly landscape). Each first-level
schema is further divided into a block and a gap string, of respective lengths b and g.
A bit-string is thus represented by 2k · (b + g) bits.

For the calculation of the fitness of a candidate solution (bit-string), each first-level
schema is independently evaluated, with the fitness resulting in the sum of the evaluations
of all the schemata. Only the block region of each low level schema is considered, the gap
region is completely ignored. The fitness is measured by the PART function or by the
BONUS function, as follows. The PART function computes the number z of correct bits
in the b-length block, resulting in a function value of (z · v) if (z < m) and ((b− z) · v) for
(m < z < b), where m is a threshold that tunes the level of local deception in the function
(see Figure 6.14). The completed blocks in the bit-string, i.e., the ones that have z = b,
are evaluated by the BONUS function instead, which accounts a score of u∗ for the first
block to be completed, and u for the additional ones.

The Royal Road was found to be another interesting scenario to empirically an-
alyze the AOS combinations within a real evolutionary algorithm as, by considering
common crossover operators, the following can be stated (intuitively, and confirmed in
[Quick et al., 1996]): the uniform crossover is the best operator during the initial evolu-
tion stages (exploration), 1-point crossover is the best in the final stages (exploitation),
while the 4-point crossover is the best in-between. This operator set was used for the
experiments that will be presented in the following, with the addition of two other oper-
ators, the 2-point crossover, and a disruptive bit-flip mutation operator that flips 8 bits
on average (and hence possibly one block). After every crossover application, a mutation
operator was also systematically applied, flipping each bit with a probability of 1%. These
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operators were applied within a (100,100)-GA with weak elitism, i.e., at every generation,
the entire population of 100 individuals is completely replaced by the newly generated
100 offspring, with the possible exception of the best parent, which is maintained (and
the worst offspring is removed) if better than the best offspring. The parental selection
mechanism used was the tournament one, with size 2.

The problem function was defined using the default parameter values proposed in
[Holland, 1993]: k = 4, b = 8, g = 7, m = 4, v = 0.02, u∗ = 1.0 and u = 0.3. The
parameter m = 4 defines a medium level of deception; the fully deceptive case (m = 1)
and the not deceptive one (m = 7) were also investigated, but the former was found too
difficult to be solved within the given budget of 25,000 generations, while the latter was
too easy, thus not enabling any distinction to be made between the AOS schemes. Figure
6.14 illustrates a comparison of these 3 different levels of deceptiveness for the first 30 bits
of this problem setting, on a unitation (number of 1s) versus fitness plot. With 2k regions
involving (b + g) bits, the total dimension of the considered search space accounts to 240
bits.
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Figure 6.14: Different levels of deceptiveness on the Royal Road problem, varying m and
using the default values for the other parameters.

Empirical Results

The behavior of each operator is very difficult to be guessed on the Royal Road problem.
Despite the 1/30 mutation operator, the other 4 crossover operators (specially the x-
points ones) tend to present a similar behavior, all exploring the building blocks of the
intentionally designed search space. Besides, there is no “fine-tuning operator” between
them: even the 1-point crossover substantially modifies the solution to which it is applied
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to, making it easier to miss the target, thus explaining the high variance of the detailed
performance results shown in Table 6.19a. As can be seen, almost all AOS combinations
are not significantly different with respect to the best. For this reason, as for the Long
k-Path problem, ECDFs (Table 6.19b) are used in order to have a more complete view of
the performance distribution for each Operator Selection technique with its better Credit
Assignment scheme.

Despite the big variance, all methods achieve the optimum faster than the average
performance of the Naive uniform selection strategy in at least 80% of the cases. Notably,
the best Static strategy found for this problem is the use of a single operator at a rate of
100%, the 4-point crossover, which achieves the optimum in 6244 generations in average.
Several other configurations using different combinations of the 1-point, 2-point and 4-
point operators are also able to achieve equivalent performance; for instance, 1-point at
20%, 2-point at 20% and 4-point at 60% achieves the optimum in 6679 ± 4278 generations.
Hence, in order to achieve reasonable performance on this experimental setting, an AOS
method should “simply” be capable of discarding the 1/30 mutation and the uniform
crossover operators; the way the other three operators are used does not matter much. To
confirm this assumption, additional experiments were done for the Naive uniform strategy
considering only these 3 operators: the optimum is found in 7066 ± 4215 generations,
a performance better than (although not significantly different from) those obtained by
most of the AOS methods.

The only AOS combination able to closely follow the performance of the Static base-
line up to 100% of the trials is the DMAB with, surprisingly, the Normalized Average
(NormAvg) Credit Assignment. It is worth noting that here, again, the Normalized out-
perform the Absolute for the different kinds of Credit Assignment in most cases, with the
rank-based schemes also presenting reasonable performance. This is also the first case in
which the RMAB with the rank-based SR outperforms (but not significantly) its combina-
tion with the AUC Credit Assignment, with both versions based on fitness improvements
and on fitness values (FSR) achieving similar performance.

Concerning specifically the Operator Selection techniques, the DMAB and RMAB,
with their corresponding best Credit Assignment schemes, greatly outperform in terms
of average performance (but not significantly due to the mentioned high variance) all the
combinations involving MAB, SLMAB and AP. It is important to note that for most
of the winner configurations of the bandit-based approaches, a very small value is used
for the scaling factor C; accordingly, very small values are used for the adaptation and
learning rates of AP. This indicates that these techniques are rarely adapting to exploit
other operators, mostly exploiting the first operator that they found to be the best. As
previously discussed, if this operator is one of the x-point crossover operators, this choice
will not greatly affect their performances.
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Credit/OpSel SLMAB DMAB MAB AP

AbsIns
10385 ± 4989 N 8762 ± 5750 N 11211 ± 8198 N 10681 ± 7048 N

C5W500 C.01G.01W1 C.01W1 P.05A.9B.1W1

NormIns
9021 ± 6783 ⋆ 8538 ± 5388 N 9548 ± 6485 N 10492 ± 6327 N

C.01W50 C.1G1W1 C.1W1 P0A.3B.3W1

AbsAvg
10612 ± 5266 N 12220 ± 7113 11511 ± 8233 N 8886 ± 5361 ⋆

C1W10 C.5G1000W10 C.01W10 P0A.1B.1W10

NormAvg
11241 ± 7182 N 6201 ± 3094 ⋆ 9062 ± 6708 ⋆ 9117 ± 5490 N

C.01W10 C.01G.001W10 C.01W10 P.05A.1B.9W10

AbsExt
9790 ± 6019 N 10120 ± 6781 N 10219 ± 7866 N 10860 ± 6428 N

C.01W50 C.01G.01W50 C.1W50 P.05A.1B.9W50

NormExt
9780 ± 6359 N 8699 ± 5260 N 9830 ± 5557 N 9709 ± 7079 N

C.1W50 C10G1000W10 C1W100 P0A.1B.9W50

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F )
8749 ± 4640 N 7506 ± 4179 ⋆ 9568 ± 5367 N 10346 ± 6200 N

C.01D1W100 C1D1W500 C.1W100 C.1W50

RMAB (F )
8206 ± 4057 N 7564 ± 4282 N 8129 ± 4453 N 8508 ± 5595 N

C.01D.5W100 C1D1W500 C.1W100 C.5W500

(a) Average and standard deviation of the number of generations to achieve the optimum
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Decay/SR RMAB: 7506 4179
NormIns SlMAB: 9021 6783
NormAvg DMAB: 6201 3094

NormAvg MAB: 9062 6708
AbsAvg AP: 8886 5361

Naive: 15940 6928
Best Static: 6244 3037

(b) Comparison of Empirical Cumulative Distribution Functions, for each Operator Selection

technique with its best Credit Assignment scheme

Table 6.19: Results on the Royal Road (m = 4) problem: objective is to minimize number
of generations to achieve the optimum, selecting between 1-point, 2-point, 4-point and
uniform crossover operators, and 1/30 bit-flip mutation operator, within a (100,100)-EA
with weak elitism. Baseline performances: Oracle not available, Naive (15940 ± 6928),
Best Static (4-point 100% : 6244 ± 3037).

148



6.4 On Boolean Benchmark Problems

6.4.5 Discussion

The benchmark optimization problems considered in this Section enabled a preliminary
analysis of the AOS methods in practice, selecting between real evolutionary operators,
based on the feedback given by real (although still artificially created) fitness landscapes
and by the trajectory taken by the EA in the search space. The OneMax is a very simple
problem, but its use in this experimental setting was of great value, as it provided a very
detailed and complete behavioral analysis of each AOS method. The empirical analyses on
the Long k-Path and Royal Road problems did not provide the same level of information,
but they challenged the AOS methods in different situations that might happen in real
cases. In the Long k-Path case, only one operator should be mostly exploited at any time,
in order to possibly take very rewarding shortcuts in the path; while in the Royal Road
two out of five operators should be discarded, the other three being equally beneficial.

For each of these problems, the AOS methods were compared to three non-adaptive
baseline approaches, namely, the Naive, the Oracle, and the Static strategies, defining three
different levels of available knowledge. The Naive strategy, as its name says, represents
the situation in which nothing is known about the performance of the operators on the
problem at hand; the Oracle represents the complete detailed information about their
performances with respect to each fitness value. While the former strategy is a rather
straightforward choice when there is no time for a deeper analysis, the latter strategy
can be precisely assessed only in simple problems such as the OneMax one; hence, it is
not a valid choice in the real world. It is also worth noting that the Oracle strategy is
defined based on statistics over several runs of the underlying EA with its corresponding
operators, i.e., based on results of stochastic nature; this explains why sometimes the
adaptive methods were able to outperform it. In the middle of these two approaches,
there is the Static strategy, which is the approach most commonly used since the very
early days of applied research in the area; it requires a reasonable level of knowledge that
can be gathered whenever a few runs are affordable, in order to find the best off-line tuned
static approach.

Although requiring a preliminary off-line tuning of their hyper-parameters, compared
to these baseline approaches, the best AOS methods were able to achieve performance
equivalent to the Oracle behavior on both OneMax and Long k-Path problems. They also
showed to be able to significantly outperform the Naive approach on all the problems,
although the high variance of the results found for the Long k-Path and the Royal Road
problems. And concerning the Static strategy, it was also significantly outperformed on the
OneMax scenario; but in the Long k-Path, the Static strategy surprisingly outperformed
the Oracle strategy, significantly outperforming all the AOS methods by using only two
out of the four available operators; while for the Royal Road, the best Static strategy
found uses only one out of five operators, with some AOS methods being able to show
similar performance.

In what concerns the Operator Selection techniques, the DMAB and RMAB showed
to efficiently and consistently improve over the standard MAB approach, except for the
outlier Long k-Path scenario, in which the standard MAB is surprisingly the winner: its
slower adaptation seems to be beneficial in such a noisy scenario. The SLMAB, however,
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was not able to outperform the standard MAB in any of the cases, while in the ART
scenarios it was always between the overall winners. A tentative of explanation for this
deception is that its update mechanism is designed to adapt quickly to very abrupt changes
in the operator qualities, what is not the case in these experimental settings. The last
Operator Selection technique, the baseline AP, is top-ranked only on the OneMax scenario;
on the Long k-Path its best performance is equivalent to the Naive approach, and on the
Royal Road it is also outperformed by all bandit-based approaches.

Finally, in these problems, differently from the ART scenarios, the benefits brought
by the use of more robust Credit Assignment schemes could be better highlighted. On
the OneMax and Royal Road problems, the Normalized versions of the Credit Assignment
schemes based on the raw values of fitness improvements outperformed the Absolute ver-
sions in most cases. On the Long k-Path, the situation is the opposite, as in this scenario
the magnitude of the outlier improvements achieved are very important. In either cases,
most of the several available options for the rank-based Credit Assignment schemes were
top-ranked, performing not significantly different from the winner configurations. Still, as
for the ART problems, such analysis compared the performance of each AOS combination
with its best hyper-parameter setting found by a preliminary off-line tuning procedure for
each problem. Thus, this gain in performance provided by the rank-based and normalized
schemes were attained only by the minimization of one of the issues that motivated their
proposal, that of providing rewards at the same value range during all the search process,
as discussed in Section 5.2.3. The second and consequent benefit, that of providing a ro-
bust behavior with respect to the hyper-parameters of the AOS method, will be separately
analyzed in Section 6.7.

6.5 Collaboration On Satisfiability Problems

The preliminary complete AOS combination proposed in our work involves the Abso-
lute Extreme (AbsExt) Credit Assignment scheme (Section 5.2.2) with the Dynamic
Multi-Armed Bandit (DMAB) Operator Selection technique (Section 5.3.2), which will
be simply referred to as Ex-DMAB in this Section, for the sake of brevity. While
working on its further assessment on different benchmark scenarios, we established a
collaboration with Université d’Angers, France, published in [Maturana et al., 2009a;
Maturana et al., 2010a], whose results will be surveyed in this Section.

The combination of Ex-DMAB with the Compass Credit Assignment (Section 4.3.4)
will be described in Section 6.5.1. This AOS combination was assessed in the light of
Boolean Satisfiability (SAT) problems, which will be presented in Section 6.5.2. Sections
6.5.3 and 6.5.4 will describe, respectively, the specific experimental settings and the off-
line tuning procedure used in this work. Finally, the empirical results will be presented in
Section 6.5.5, with a concluding discussion in Section 6.5.6.

6.5.1 Compass + Ex-DMAB = ExCoDyMAB

The Compass-based AOS technique, proposed in [Maturana and Saubion, 2008a], is in fact
the combination of an engineered Credit Assignment mechanism referred to as Compass,
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which measures the effect of operators application taking into account fitness, diversity and
CPU time, with a rather simple Operator Selection mechanism, the Probability Matching
(PM). At the same time, the Ex-DMAB AOS technique is the combination of a simple
Credit Assignment scheme, the Extreme value out of the recent fitness improvements
achieved by the operator, with an efficient Operator Selection mechanism, the DMAB.

From this brief review, it becomes clear that both AOS approaches have complemen-
tary strengths and weaknesses: Compass might enable DMAB to be efficiently applied to
multi-modal problems, while Ex-DMAB might provide to Compass a more efficient Op-
erator Selection mechanism, while also improving it by the use of the Extreme paradigm.
However, even though merging both modules can be done in a straightforward manner,
some important issues need to be further explored:

• Compass uses sliding windows in the “impact evaluation” stage (see Figure 4.1),
outputting a unique value; while Ex-DMAB keeps a sliding window in the Credit
Assignment stage, from which it extracts the maximum or Extreme values. Should
we keep both windows, or would it degrade or disappear with the interesting char-
acteristics provided by Compass? And if only one of these windows is kept, which
one should it be? From here on, these two windows will be respectively referred to
as W1 and W2.

• Another issue concerning the sliding windows is that of what should be their output.
Originally, the output of Compass W1 is the Average over the impacts measured af-
ter the most recent applications [Maturana and Saubion, 2008a]; a simpler approach
would be the Instantaneous value, i.e., no window at all. Ex-DMAB uses the Ex-
treme Credit Assignment, which was successfully validated in the scope of different
artificial (Section 6.3) and unimodal (Section 6.4) benchmark problems. But would
these results also hold in such a completely different setting?

• The last issue concerns the other hyper-parameters. Besides the size and type of
W1 and W2, we need to tune the values of the angle Θ in Compass, and the scaling
factor C and change detection threshold γ in DMAB. Since the idea is not to simply
replace some parameters (the operator application probabilities) by other ones, even
if at a higher level of abstraction, we need to better understand their effects. One
way to do so is to experimentally study their influence on the performance of the
AOS in situation, and to propose some robust default values.

The resulting combination of Ex-DMAB and Compass is referred to as Extreme Com-
pass - DMAB (ExCoDyMAB). An empirical analysis of the discussed issues will be pre-
sented in the following.

6.5.2 Boolean Satisfiability Problems

The ExCoDyMAB AOS method has been assessed within an EA applied to the well-
known combinatorial Boolean Satisfiability (SAT) problem [Cook, 1971], which consists
in assigning values to binary variables in order to satisfy a Boolean formula.
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Formally, an instance of the SAT problem is defined by a set of Boolean variables
X = {x1, . . . , xn} and a Boolean formula F : {0, 1}n → {0, 1}. The formula is said to
be satisfiable if there exists an assignment v : X → {0, 1}n satisfying F , unsatisfiable
otherwise. Instances are classically formulated in conjunctive normal form (conjunctions
of clauses) and one thus has to satisfy all these clauses. Given that SAT was the first
problem to be proved NP-complete, and also due to its very general boolean (bit-string)
representation, many different problems from both real-world and theoretical background
have been expressed as SAT instances. So, by tackling such problem, we can deal with a
very diverse set of fitness landscapes with different characteristics.

Table 6.20 shows the instances used here, extracted from the SATLIB
[Hoos and Stützle, 2000] and from the SAT-Race 2006 [Sinz et al., 2006]. It also points
out whether the instances are satisfiable or not, their family, and the number of variables
and clauses they involve.

Problem Sat? # Vars. # Clauses Family

S
A
T

L
IB

4blocks Yes 758 47820 Blocks World Problem
aim Yes 200 320 Random-3-SAT
f1000 Yes 1000 4250 Random-3-SAT
CBS Yes 100 449 Controlled Backbone
flat200 Yes 600 2237 Flat Graph Coloring
logistics Yes 828 6718 Logistics Planning
medium Yes 116 953 Randomly Generated
par16 Yes 1015 3310 Parity Learning Problem
sw100-p0 Yes 500 3100 Morphed Graph Coloring
sw100-p1 Yes 500 3100 Morphed Graph Coloring
uf250 Yes 250 1065 Phase Transition Region
uuf250 No 250 1065 Phase Transition Region

S
A
T

-R
ac

e’
06

Color* No 1444 119491 Chessboard Coloring
G125* Yes 2125 66272 Graph Coloring
Goldb-heqc* No 5980 35229 Randomly Generated
Grieu-vmpc Yes 729 96849 Randomly Generated
Hoons-vbmc* No 8503 25116 Randomly Generated
Schup No 14809 48483 Randomly Generated
Simon* No 2424 14812 Randomly Generated
Manol-pipe Yes 14052 41596 Pipelined Machine Verification
Velev-eng* No 6944 66654 Pipelined Machine Verification
Velev-sss* No 1453 12531 Pipelined Machine Verification

Table 6.20: SAT instances used in the empirical assessment of ExCoDyMAB

6.5.3 Experimental Settings

The ExCoDyMAB is applied to an EA that uses a standard binary representation (one bit
per boolean variable) to represent each solution. As in [Maturana and Saubion, 2008a],

152



6.5 Collaboration On Satisfiability Problems

the purpose here is not to use state-of-the-art SAT operators, but rather to manage a set
of completely unknown operators, as a naive user would do when facing a new problem.
Desirably, the AOS mechanism should then be able to autonomously discriminate good
from bad operators at any given time of the search, further exploiting the best operator.
The very heterogeneous operator set is constituted by the following operators:

• 1-point Crossover randomly chooses two individuals and a random position, and
exchanges their first and second parts.

• Contagion randomly chooses two individuals and sets the variables in all false clauses
of the worst individual to the values they have in the best one.

• Hill Climbing checks all neighbors at Hamming distance 1 and moves to the best
one, repeating the process as long as it improves the fitness. It is important to note
that this is a local search operator, which has been included here for the sake of
diversity of variation operators.

• Tunneling swaps variables without decreasing the number of true clauses, according
to a tabu list of length equal to 1

4 of the number of variables (it can be seen, again,
as a local search operator).

• Bad Swap swaps all variables that appear in false clauses, whatever their values are.

• Wave swaps the values of the variable that appears in the highest number of false
clauses and in the minimum number of clauses only supported by it; the process is
repeated at most 1

2 times the number of variables, while improvements can be found.

The parental selection mechanism is the steady-state, defined in Section 2.3.3: after
the generation of each offspring, the worst individual in the population is immediately
replaced (except when the 1-point Crossover operator is applied, in which case the best
out of the two generated offspring replaces the worst parent). The population size (3)
and maximum number of generations (5000 – the only stopping criterion) were arbitrarily
fixed.

6.5.4 Architecture definition and tuning of hyper-parameters

In order to efficiently integrate Compass and Ex-DMAB, some open issues were discussed
in Section 6.5.1. The definition of these components, as well as the off-line tuning of the
other hyper-parameters, will be now analyzed in turn.

The first decision concerns whether to include or not the sliding windows W1 and/or
W2, and which should be their outputs. The following possible output policies were tried
for each window (note that the Normalized versions were not considered in this work):

• Instantaneous (I) value, i.e., no sliding window.

• Average (A) value from stored measures;
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• Extreme (E) value (maximum) from stored values (except for the execution time,
kept in W1, as the extreme of this measure would not make sense);

Besides, the following hyper-parameters also need to be analyzed and tuned:

• The size of Compass window of impact measures W1, and the size of the sliding
window of the outputs of the Credit Assignment scheme W2.

• The Compass angle Θ, that defines the tradeoff between the exploration and ex-
ploitation at the Credit Assignment level.

• The DMAB scaling C parameter, that defines the tradeoff between exploration and
exploitation at the Operator Selection level.

• The DMAB γ parameter, the threshold of the change detection test that triggers
the restarts.

The range of values tried for the different hyper-parameters are defined as fol-
lows: C ∈ {5, 7, 10}; γ ∈ {1, 3, 5}; and the windows type(size) combinations ∈
{A(10), A(50), E(10), E(50), I(1)} for both W1 and W2. Thus, the initial number of
possible configurations is 225.

The angle Θ for Compass was set to π/4, as preliminary experiments have shown that a
different value causes a positive-feedback phenomenon2, that moves the EA to an extreme
behavior. For instance, Figure 6.15 shows the curve of the best fitness found, with respect
to the number of time steps elapsed, when using different values of Θ for the original
Compass AOS combination applied to the par16-1 instance, averaged over 50 runs. Note
that all values below 0.25π tend to produce a similar erratic behavior, while values above
0.25 have a poor improvement rate.

The same F-Race off-line tuning procedure was used for the tuning of these hyper-
parameters. The stopping criteria for the Racing was set to 80 runs over all the instances,
with eliminations taking place after each run, starting from the 11th. All 22 SAT instances
listed in Table 6.20 have been considered for the final empirical comparison, but only 7 of
them were taken into account for this off-line tuning phase. This sub-set, marked with an
asterisk in Table 6.20, was chosen among the hardest instances with short enough running
times, reducing the experimental cost for the platform definition. Tuning the hyper-
parameters on a small set of instances and testing them further on “unseen” instances
witnesses the generality of the tuned parameters.

6.5.5 Empirical Results

At the end of the Racing, 4 configurations were still active in the process, which are
presented in Table 6.21. These results clearly indicate that the most important sliding
window is W1, i.e., the Compass window for the impact measures, and it should be used in
its Extreme configuration with a size of 10 (i.e., taking as Compass inputs the maximum

2In systems theory, positive feedback is a process in which a system responds to a perturbation in the
same sense of the perturbation, thus distancing the system from its original state.
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Figure 6.15: Curve of the best fitness found in relation to the number of time steps elapsed,
for different values of Θ on Compass applied to the par16-1 instance, averaged over 50
runs.

Name W1 type, size W2 type, size C γ

A Extreme, 10 Instantaneous 7 1
B Extreme, 10 Average, 10 7 1
C Extreme, 10 Average, 50 7 1
D Extreme, 10 Extreme, 10 7 3

Table 6.21: Racing survivors after ExCoDyMAB hyper-parameters tuning

of the last 10 assessed impact measures), not matter which kind/size of W2 is used.
This fact emphasizes the need to identify rare-but-good improvements, greatly supporting
the idea raised by the proposal of the Extreme Credit Assignment, described in Section
5.2.2. Besides, the size of 10 for W1 could be interpreted by the following reasoning.
With the Extreme policy, a larger W1 would produce a long perdurability of the extreme
values, even when the behavior of the operator has already changed. In the other hand, a
shorter value, up to W1 = 1 (i.e., the same as choosing the Instantaneous policy) would
quickly forget these “rare-but-good” cases. One could suppose that an optimal size for
W1 depends on the fitness landscape and the operators used - further research is needed
to better understand the setting of this hyper-parameter.

To check the generality of those parameters, 50 runs were performed on the 22 SAT
instances with each of the 4 configurations, promoting an empirical comparison between
them, and also verifying their performance in relation to the baseline methods: the original
combinations of Compass and Ex-DMAB (including a Racing phase for Ex-DMAB similar
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to that of ExCoDyMAB), and the Naive uniform selection of operators. The results of
this comparison are summarized in Table 6.22. Each cell value represents the number of
problems in which one architecture is significantly better than the other (using a Student
T-test with 95% confidence). For example, in the lower left corner, “18-2” means that
D outperformed Compass on 18 instances, while the opposite happened only 2 times.
Finally, the rightmost column shows the number of times that an architecture wins, minus
the times that it loses, as a global measure of comparative quality.

Compass Ex-DMAB Naive A B C D
∑

dom

Compass – 9-9 22-0 4-18 2-17 2-18 2-18 -39
Ex-DMAB 9-9 – 22-0 0-18 0-21 0-21 0-21 -59

Naive 0-22 0-22 – 0-22 0-22 0-22 0-22 -132

A 18-4 18-0 22-0 – 0-1 0-5 0-2 46
B 17-2 21-0 22-0 1-0 – 0-2 3-1 59
C 18-2 21-0 22-0 5-0 2-0 – 4-0 70
D 18-2 21-0 22-0 2-0 1-3 0-4 – 55

Table 6.22: Comparative results on the 22 SAT instances: each cell indicates the number
of times the row-algorithm is better than the column-algorithm according to a Student
T-test with 95% confidence.

After this analysis, between all the four survivors of the Racing procedure, the con-
figuration “C” was found to be the best for ExCoDyMAB, and was thus used for further
empirical comparison with the baseline techniques, namely, the original Compass-PM and
Ex-DMAB AOS combinations, and the Naive uniform choice. The results are presented
in Table 6.23. The columns show the mean number of false clauses after 5000 function
evaluations, averaged over 50 runs, and the standard deviation between parentheses. The
best results for each instance are highlighted in bold-face. As can be seen, ExCoDyMAB
outperforms the other techniques in the vast majority of the cases. These results will be
further discussed in the following.

6.5.6 Discussion

The dominance of ExCoDyMAB is overwhelming, and confirms the hypothesis that moti-
vated the combination of both Compass and DMAB approaches. These latter approaches
alone, within their respective original combinations, present a performance roughly equiv-
alent between each other on this experimental setting, and clearly inferior to the newly
combined one, ExCoDyMAB – though still outperforming in turn the Naive uniform se-
lection policy.

Another interesting point is the seemingly good generalization capacity of
ExCoDyMAB with respect to its hyper-parameters: the best configurations found by
F-Race on the 7 “training” instances showed to perform also very well when solving the
other 15 unseen instances. Moreover, the credits assigned by Compass are normalized
by construction, and this might result into a more robust technique with respect to the
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Method ExCoDyMAB Compass Ex-DMAB Naive
Problem (C)

S
A
T

L
IB

4blocks 2.8 (0.9) 6 (0.9) 6.2 (0.9) 13.4 (0.6)
aim 1 (0) 1 (0) 1.2 (0.3) 3.6 (1.8)
f1000 10.3 (2.3) 30.9 (6.2) 16.4 (2.6) 55.8 (8.6)
CBS 0.6 (0.6) 0.4 (0.5) 1 (0.9) 7 (2.7)
flat200 7.2 (1.7) 10.6 (2.1) 10.7 (2.2) 37.7 (5.5)
logistics 6.5 (1.3) 7.6 (0.5) 8.8 (1.5) 17.9 (4.1)
medium 1.5 (1.5) 0 (0) 1.8 (1.6) 8.8 (3.4)
par16 15.2 (3.1) 64 (10.2) 24.1 (5.7) 131.1 (14.5)
sw100-p0 9.2 (1.2) 12.8 (1.4) 12.5 (1.7) 25.9 (3.4)
sw100-p1 0 (0) 0.5 (0.6) 1.1 (0.8) 11.3 (3.5)
uf250 0.9 (0.7) 1.8 (0.9) 1.7 (0.8) 9.1 (3.3)
uuf250 2.5 (1) 4.5 (1.2) 3.1 (1.1) 12.7 (3.2)

S
A
T

-R
ac

e’
06

Color 48 (2.5) 61.3 (2.2) 49.3 (3.4) 80.4 (6.6)
G125 8.8 (1.3) 20.6 (2) 13.5 (1.7) 28.8 (4.6)
Goldb-heqc 72.9 (8.5) 112.2 (15.2) 133.2 (15.9) 609.7 (96.2)
Grieu-vmpc 16.7 (1.7) 15.2 (1.7) 19.6 (1.8) 24.1 (3.3)
Hoons-vbmc 69.7 (14.5) 268.1 (44.6) 248.3 (24.1) 784.5 (91.9)
Manol-pipe 163 (18.9) 389.6 (37.2) 321 (38.1) 1482.4 (181.5)
Schup 306.6 (26.9) 807.9 (81.8) 623.7 (48.5) 1639.5 (169.9)
Simon 29.6 (3.3) 43.5 (2.7) 35.3 (6.3) 72.6 (11.3)
Velev-eng 18.3 (5.2) 29.5 (7.3) 118 (37.1) 394 (75.8)
Velev-sss 2 (0.6) 4.6 (1) 5.9 (3.9) 62.7 (25.2)

Table 6.23: Comparative results on the 22 SAT instances: average (std dev.) number of
false clauses (over 50 runs)

configuration of its hyper-parameters. But this deserves further analysis; in the meantime,
the main drawback of this combination is still that of needing to count with a preliminary
expensive off-line tuning phase in order to achieve reasonable performance, specially in
what concerns the DMAB hyper-parameters.

Note that this work was done before the proposal by us of the more robust rank-based
AOS approaches. In the same way, the Compass authors have come up with more efficient
Credit Assignment schemes that also integrate both impact measures, based on the Pareto
Front paradigm [Maturana et al., 2010b]. As a further work, a combination of these newly
proposed components will be analyzed on this scenario, hopefully achieving better results
while showing to be more robust with respect to its hyper-parameters (or at least cheaper
in relation to their off-line tuning).

It is also important to remember, as previously mentioned, that the purpose of this
work was not to build an overwhelming SAT solver, but rather to experiment and validate
the ExCoDyMAB as an AOS technique with an EA solving a general difficult and highly
multi-modal combinatorial problem. The main interesting result is that this set of bench-
marks was difficult enough to highlight the benefits of using the proposed combination of
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Compass and Ex-DMAB rather than either separately – or than the naive blind choice.
The deliberate choice of several non-specialized operators was also an important point
to validate the control ability of ExCoDyMAB when facing variation operators of very
different efficiencies.

Finally, although the results presented in Table 6.23 show that a basic EA using rather
naive operators can indeed solve some instances, competing for SAT Race implies us-
ing highly specialized operators, and possibly problem-dependent knowledge, as done in
[Wei et al., 2008]. We are currently working on this in collaboration with University of
British Columbia, the AOS schemes choosing between state-of-the-art heuristics for vari-
able selection; but by the time this manuscript is being written, there are no conclusive
results yet.

6.6 On Continuous Benchmark Problems

The experimental results surveyed so far in this Chapter considered the AOS schemes
coupled with a Genetic Algorithm, and applied to artificial, boolean benchmark, and SAT
problems. In order to analyze the applicability of such methods in a totally different
context, we will present in this Section an empirical analysis of AOS schemes selecting
between some mutation strategies within a different EA, the Differential Evolution (DE)
algorithm (described in Section 2.4.5), applied to continuous optimization problems. In
this context, AOS is also sometimes referred to as Adaptive Strategy Selection (AdapSS)
[Gong et al., 2010; Fialho et al., 2010b].

The experimental framework used in these experiments will be introduced in Sec-
tion 6.6.1. The specific experimental settings will be presented in Section 6.6.2. Section
6.6.3 will describe the PM-AdapSS-DE, a different AOS method used as baseline for com-
parison. The empirical results will be depicted and analyzed in Section 6.6.4. Finally,
Section 6.6.5 will discuss the findings and point out possible directions for further work.
The results that will be analyzed here were partially published in [Fialho et al., 2010b;
Fialho and Ros, 2010].

6.6.1 Black-Box Optimization Benchmarking

The Black-Box Optimization Benchmarking (BBOB) is a workshop that was held during
the 2009 and 2010 editions of the ACM Genetic and Evolutionary Computation Conference
(GECCO) [Hansen et al., 2010b]. Partly organized by some members of the Project-team
TAO, INRIA Saclay - Île-de-France, the main objective of this workshop was to present
and discuss empirical comparisons of different optimization algorithms in the continuous
domain, using a common experimental framework.

As a result of this initiative, important contributions have been made to the research
field of empirical analysis of continuous optimizers. Firstly, the BBOB framework provides:
two well-defined and documented sets of benchmark functions, a noiseless and a noisy
one; an experimental set-up [Hansen et al., 2010a] for analyzing the algorithms in several
dimensions and function classes; and some post-processing scripts to generate graphs and
tables to assist the user into the analysis of the performance data. Thus, in case one wants
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to empirically assess a given optimization algorithm, this task is greatly facilitated by the
use of the BBOB framework: the user only needs to interface his optimization algorithm
with the framework, allocate some CPU-time, launch some runs, and finally do the post-
processing with the aid of the available scripts. Accordingly, this experimental framework
can be (and should be) seen as a standard for the empirical analysis of optimization
algorithms: by using it, newly proposed algorithms, or new improvements to existing
algorithms, can be easily compared to state-of-the-art methods in a rigorous scientific
manner.

The empirical analysis that will be presented in this Section has greatly benefited from
the use of this experimental framework. More details will be given in the following.

6.6.2 Experimental Settings

The goal of the experiments that will be presented here is to assess the comparative per-
formances of the AOS schemes when coupled with the standard version of the Differential
Evolution algorithm [Storn and Price, 1997]. The only difference between the considered
methods regards the way in which they control the use of the mutation strategies. As
described in Section 2.4.5, the DE algorithm is governed by three parameters: NP , F
and CR, respectively denoting the population size, the mutation scaling factor and the
crossover rate. It must be emphasized that our goal is not to compete with state-of-the-art
continuous optimizers, but rather to provide another proof-of-concept of the possible ben-
efits brought by the AOS paradigm, in a totally different context in relation to both, the
underlying EA (just GAs were considered in the previous empirical analyses) and problem
domain (continuous in lieu of boolean/combinatorial). Hence, no specific effort was put
on tuning the DE parameters with respect to the problem at hand. Population size NP is
set to 10 · d (as recommended by [Storn and Price, 2008]), where d denotes the dimension
of the search space; mutation scaling factor F is set to .5, and crossover rate CR is set
to 1. This latter choice provides to DE the invariance property with respect to rotation,
while stressing the impact of the application of the mutation strategies (although being
counter-intuitive, CR = 1 means no crossover at all, only mutation strategies are applied),
consequently emphasizing the gain brought by each AOS scheme on their control.

The set of variation operators is composed of four standard mutation strategies, re-
taining the same set as in [Gong et al., 2010] for the sake of comparative evaluation:

1. “DE/rand/1”: vi = xr1
+ F ·

(
xr2
− xr3

)

2. “DE/rand/2”: vi = xr1
+ F ·

(
xr2
− xr3

)
+ F ·

(
xr4
− xr5

)

3. “DE/rand-to-best/2”: vi = xr1
+ F ·

(
xbest−xr1

)
+ F ·

(
xr2
− xr3

)
+ F ·

(
xr4
− xr5

)

4. “DE/current-to-rand/1”: vi = xi + F ·
(
xr1
− xi

)
+ F ·

(
xr2
− xr3

)

where xi is the current (or target) individual, xbest is the current best one, and
xr1

,xr2
,xr3

,xr4
and xr5

are individuals uniformly drawn from the population.
As mentioned before, two benchmark sets of single-objective continuous functions

are available in the BBOB framework, a noiseless [Hansen et al., 2009a] and a noisy
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[Hansen et al., 2009b] one. Only the noiseless test-bed will be considered here. It involves
24 functions divided into 5 classes, according to their most relevant characteristics:

• 5 separable functions;

• 4 functions with low or moderate conditioning;

• 5 unimodal functions with high conditioning;

• 5 multi-modal functions with adequate global structure;

• and 5 multi-modal functions with weak global structure.

Additionally, for each of these 24 functions, there are 15 instances defined by different
translation and rotation transformations over the original function. The noiseless test-bed,
described in detail in [Hansen et al., 2009a], totalizes thus 360 different function instances.

The BBOB framework enables experimentation on different dimensions (although the
post-processing scripts, by default, consider only d ∈ {2, 3, 5, 10, 20, 40}). As a representa-
tive set, experiments were done for d ∈ {5, 20}. But for the shorter dimension, the results
attained are much less interesting: the problems are too quickly solved; consequently, not
much significant difference can be observed between the performance of the different AOS
schemes. For this reason, only the results for d = 20 will be reported here; the results on
d = 5 can be found in [Fialho and Ros, 2010]. The stopping conditions of each optimiza-
tion run are: the achievement of the optimum solution fopt (with a tolerance of 10−8), or
the maximum number of function evaluations attained, this latter being fixed to 105 · d.

An informative measure of performance used in this experimental framework is the
so-called Expected Running Time (ERT), which can be defined as follows: given a target
function value, ERT is the empirical expected number of function evaluations for achieving
a fitness value below the target. Formally, it is measured as the ratio of the number of
function evaluations for reaching the target value over successful trials, plus the maximum
number of evaluations for unsuccessful trials, divided by the number of successful trials.
In addition to the standard ECDF plots used throughout this Chapter, a different kind
of plot will be used here, the ECDF-ratio, which clearly depicts the speed-up ratio of one
technique with respect to the others.

All the combinations involving rank-based and Extreme-based Credit Assignment
schemes were tried on this experimental setting and will be compared in the follow-
ing. Besides, the PM Operator Selection technique (Section 4.4.1) will also be considered
here, but combined with a different Credit Assignment scheme, the average of relative
fitness improvements. This combination, proposed in [Gong et al., 2010] and referred to
as PM-AdapSS-DE, is a preliminary outcome of our on-going collaboration with the China
University of Geosciences, which later motivated the assessment of the bandit-based ap-
proaches on this domain [Fialho et al., 2010b]. For the sake of self-containedness, the
PM-AdapSS-DE method will be reminded in Section 6.6.3.

As done for the other empirical analyses presented in this Chapter, each AOS combi-
nation had its hyper-parameters tuned off-line prior to the experiments used to gather the
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comparative results. The same tuning procedure defined in Section 6.2.2 was used, inde-
pendently for each dimension. The only difference is that each elimination round happens
after one run over all the function instances, what in fact corresponds to 360 performance
results for each of the AOS schemes under comparison, up to 11 runs over all instances
or one configuration left. The best hyper-parameter configuration found on dimension 20
for each AOS combination is presented in Table 6.24.

Credit/OpSel SLMAB DMAB MAB AP

AbsExt C100W500 C100G.1W10 C100W500 P.2A.1B.3W500

OpSel/Credit AUC (Decay) SR (Decay) AUC (NDCG) SR (NDCG)

RMAB (∆F ) C.5D1W100 C.5D.75W50 C.5W50 C.5W50

RMAB (F ) C.5D.9W50 C.5D.5W50 C.5W50 C.5W50

Table 6.24: Hyper-parameter configurations used on BBOB dimension 20

Besides the comparison between the different AOS methods proposed here, the best
AOS combination will be further compared with some different baseline approaches,
namely, the Naive uniform selection between the same four strategies, and four variants
of DE, each one applying only one of the considered strategies.

Besides, two different off-line tuned Static strategies will also be considered: the
“global” one, which was tuned according to the performance over all problems; and the
“local” one, which was independently tuned for each of the different function classes. The
respective configurations found after the off-line tuning phase are presented in Table 6.25.

tuning DE1 DE2 DE3 DE4
scenario rand/1 rand/2 rand-to-best current-to-rand

separable 0 0 40% 60%

moderate 0 0 60% 40%

ill-condition. 0 0 40% 60%

multi-modal 20% 0 20% 60%

weak-struct. 0 0 20% 80%

all functions 0 0 40% 60%

Table 6.25: Off-line tuned application rates for each mutation strategy on different tuning
scenarios for BBOB with dimension 20.

Finally, a kind of optimal baseline is defined by a state-of-the-art continuous opti-
mizer, the CMA-ES with an Increasing POPulation size restart strategy (IPOP-CMA-ES)
[Auger and Hansen, 2005]. This algorithm was tested with the same parameter tuning as
used in [Hansen, 2009a].

It is important to note that, differently from the boolean benchmark problems, in this
experimental setting the fitness function should be minimized.
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6.6.3 The PM-AdapSS-DE Method

The PM-AdapSS-DE AOS method uses as Operator Selection mechanism the Probability
Matching (PM), described in Section 4.4.1. Equally motivated by the need of a higher
robustness in order to be efficient in a variety of different problems with the same hyper-
parameter configuration, its Credit Assignment employs a different kind of normalization
scheme, that takes place on the impact measurement level; while our Normalized schemes
(Section 5.2.3) do so in the Credit Assignment output level.

The relative fitness improvement ηi, proposed in [Ong and Keane, 2004], measures the
impact of an operator application as:

ηi =
δ

cfi

· |pfi − cfi| (6.1)

where i = {1, · · · , NP} refers to each individual of the population of size NP , δ is the
fitness of the best-so-far solution in the population, and pfi and cfi represent, respectively,
the fitnesses of the target parent and of the generated offspring. In case of no improvement
(i.e., the offspring is worse than or equal to its target parent), the impact is assessed as
being null. Finally, the credit assigned to each strategy is the Absolute Average value of
these impact measures.

Besides the relative measure, a main difference of this AOS method with respect to
the other methods tried in this thesis is that it assigns credit to the operators and updates
their empirical estimates only once per generation, based on their production during the
given generation. Hence, there is no hyper-parameter W on the Credit Assignment side;
the only hyper-parameters that remain to be tuned are the ones from PM: the minimal
probability of selecting each operator pmin, and the adaptation rate α. These hyper-
parameters were also off-line tuned, in the same way as for the other methods, using the
ranges of values defined for AP in Table 6.4. The best configuration found by F-Race uses
pmin = 0 and α = 0.6.

Although being a quite simple method, a good performance is achieved mainly due
to its robust Credit Assignment. However, as discussed in Section 5.2.4, it is still based
on the raw values of the fitness improvements, thus not being as robust as our proposed
rank-based Credit Assignment schemes, as shown in the empirical comparison that will be
presented in the following.

6.6.4 Empirical Results

As previously mentioned, a complete set of experiments on this scenario involves 1 run
on each of the 15 instances for each of the 24 functions, thus summing up to 360 results
for each technique. Given this huge quantity of numerical data, it would be meaningless
to present the detailed results for each function in the form of Tables, as done for the
previous benchmark scenarios. Standard ECDFs and ECDF speed-up ratio plots are used
instead, summarizing the results for the functions altogether, and for each function class.

The main objective of these experiments is to confirm the expectation that, based on
the very robust rank-based Credit Assignment and on the optimal EvE balance provided by
the bandit-based Operator Selection, the combinations involving RMAB and the different
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versions of AUC and SR should perform better than all the other considered methods on
such an heterogeneous scenario. In this way, thus, both the performance and the robustness
are jointly assessed, as all methods will use a single hyper-parameter configuration over
all functions.

This empirical comparison will be performed in four different steps, as follows. Firstly,
a representative configuration for the rank-based AOS schemes will be chosen; then it will
be compared with the variants of DE using a single mutation strategy; also with other AOS
schemes considered in this thesis; and finally with further baseline approaches. Results
for each of these steps are summarized, respectively, in Figures 6.16, 6.17, 6.18, and 6.19;
they will be now discussed in turn.

Selection of a Representative for the Rank-based Methods

Different alternatives for rank-based Credit Assignment were proposed in Sections 5.2.4
and 5.2.5, namely, Area-Under-Curve (AUC) and Sum-of-Ranks (SR), assigning ranks
over fitness improvements, and Fitness-based Area-Under-Curve (FAUC) and Fitness-
based Sum-of-Ranks (FSR), which are comparison-based methods that use ranks over
fitness values. For each of them, there are still two options for the decaying mechanism,
the parameterized one, referred to as Decay, and the parameter-less NDCG, which is
equivalent to Decay with d = 0.4. The total number of possibilities proposed and tried
in this thesis, always in combination with the RMAB Operator Selection technique, thus
sums up to 8. All of them were compared with one another. The ECDF for each of them,
for all results over all functions, and separately for each function class, are presented in
Figure 6.16. As can be seen from these aggregated results, their behavior is rather the
same; the choice of the method to be compared with the other baseline approaches is thus
determined by convenience, as follows.

Firstly, the comparison-based feature provided by the methods that use ranks over
the fitness values (FAUC, FSR) can not be precisely assessed on this scenario, as there
are no instances being defined by monotonous transformations over the original function
[Hansen et al., 2009a]. Therefore, it becomes interesting to note that, although provid-
ing such extra level of robustness, these methods still perform equivalently to the other
versions that use ranks over fitness improvements (AUC and SR), while in the previous
experimental scenarios the latter frequently outperformed the former. Hence, it is pre-
ferred to keep the comparison-based ones. Then, between FAUC and FSR, the first is
chosen, by having shown a better performance on a couple of scenarios, although not be-
ing significantly different in most cases. Finally, the NDCG version is preferred, by being
parameter-less. The chosen rank-based AOS combination is thus NDCG/FAUC-RMAB,
which will be referred to as FAUC-B in the following, for the sake of brevity.

Comparison of FAUC-B with DE using a Single Strategy

FAUC-B is firstly compared with the standard DE algorithm using a single strategy, with
four variants (DE1 . . . DE4), each one using one of the four mutation strategies considered
by the AOS schemes, as defined in Section 6.6.2.
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(d) ill-conditioned functions
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Figure 6.16: Standard ECDF plots of the distribution of ERT over dimension for combi-
nations of RMAB with all the rank-based credit assignment schemes, for all functions and
sub-groups with d = 20 and target 10−8.
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Figure 6.17: ECDFs of the speed-up ratios in dimension d = 20 for the FAUC-B compared
with the DE using only one out of the four available mutation strategies. The speed-up
ratios are the pairwise ratios of the number of function evaluations for FAUC-B to surpass
the target function value 10−8, over the one of the baseline techniques, over all trials for
each function. Pairs where both trials failed are disregarded, pairs where one trial failed
are visible in the limits being > 0 or < 1 (for this reason, some lines are not visible, as
they coincide with the axes). The legends also indicate the number of functions that were
solved in at least one trial (FAUC-B first).
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The global picture (Figure 6.17a) shows in the legends that FAUC-B, DE1 and DE3
are able to solve at least one instance for 15 functions out of 24, while DE2 solves 12.
DE4 shows unable to solve any of the functions on this dimension; interestingly, it is the
mutation strategy mostly used by the off-line tuned Static strategies (see Table 6.25). A
tentative explanation for this is that DE4 is a local search operator (current-to-rand; the
base vector is the current individual), which tends to get trapped in local optima more
easily; but it becomes efficient when mixed with a diversification operator, such as DE3
(rand-to-best; the base vector is a random one). The DE4 strategy will hence be neglected
in the remainder of this analysis.

Compared with DE1, FAUC-B shows to be around 3 times faster in approximately 90%
of all the considered cases. DE2 is around 20 times slower than FAUC-B on around 65%,
50%, 80% and 40% of the trials, respectively, for the separable, moderate, ill-conditioned
and weak-structure function classes, while not solving any instance for the multi-modal
class. DE3 is the best one out of the single strategies, performing roughly 10 times faster
than DE2; overall, it is around 2 times slower than FAUC-B.

It is worth noting that all the schemes failed on most multi-modal functions. Two out
of the five separable functions are multi-modal and were not solved by any of the schemes.
In the multi-modal class, only two out of five functions were solved by some of the schemes.
And in the weak-structure class, only one out of five functions were solved in at least one
trial.

Comparison of FAUC-B with other AOS Schemes

The second series of experiments compare FAUC-B with the other bandit-based approaches
proposed in this thesis, namely, MAB, DMAB, and SLMAB, and with the baseline AP, all
using the Absolute Extreme Credit Assignment. It is also compared with PM-AdapSS-DE,
the method that uses PM being fed by Absolute Average of relative fitness improvements,
detailed in Section 6.6.3.

Globally speaking (Figure 6.18a), FAUC-B is approximately 1.5 times faster than most
of the other AOS schemes in around 90% of the trials, except for the PM-AdapSS-DE,
which is outperformed in approximately half of the trials, performing faster than FAUC-B
in around 15% of the function trials. More specifically, FAUC-B is up to 10 times faster
than the standard MAB in half of the trials, while being 2 times faster than DMAB and
SLMAB in around 75% of the trials.

This global assessment corresponds roughly to the speed-up ratios attained on the
separable, moderate and ill-conditioned function classes. Again, none of the schemes are
able to perform well on multi-modal functions, with only 2 functions being solved by all
schemes in the multi-modal class, and only 1 in the harder weak-structure class. Although
the low number of successful trials on these latter classes, FAUC-B still outperforms all
the schemes in most trials.
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Figure 6.18: ECDFs of the speed-up ratios in dimension d = 20 for the FAUC-B compared
with other AOS combinations. The speed-up ratios are the pairwise ratios of the number
of function evaluations for FAUC-B to surpass the target function value 10−8, over the
one of the baseline techniques, over all trials for each function. The legends indicate the
number of functions that were solved in at least one trial (FAUC-B first). 167
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Comparison of FAUC-B with further Baseline Approaches

The last empirical comparison, whose results are illustrated in Figure 6.19, considers three
different situations. On one side, there is the Naive uniform operator selection. FAUC-
B shows to be around 1.5 times faster than Naive-DE on around 80% of the trials for
all unimodal functions in the separable, moderate and ill-conditioned function classes. It
attains the same speed-up ratio on approximately 65% and 55% of the trials, respectively,
for the multi-modal and weak-structure function classes.

On the other side, there is the state-of-the-art continuous optimizer IPOP-CMA-ES
[Auger and Hansen, 2005], which significantly outperforms FAUC-B in around 90% of the
trials for all cases. Besides, it succeeds in solving all the 5 functions for the multi-modal
class, while FAUC-B and all the other schemes previously considered solve only 2; and it
also solves 2 functions for the weak structure class, one more than all the other schemes.

In the middle, there are the two off-line tuned Static strategies. The best static set
of application rates for each case is presented in Table 6.25. As can be seen, both, the
globally (StAll) and the locally (StEach) tuned variants, perform rather equivalently to
FAUC-B in all cases.

6.6.5 Discussion

Differently from the other scenarios previously analyzed in this Chapter, the use of the
BBOB experimental framework enabled a much broader and realistic assessment of the
proposed AOS schemes. By the evaluation of the methods on the many functions with
different characteristics and levels of difficulty, treated as black-boxes, it showed to be an
ideal scenario in order to depict the gain in robustness brought by the use of rank-based
Credit Assignment schemes.

And indeed, the NDCG/FAUC-RMAB (simply referred to as FAUC-B) AOS method,
a representative of all the proposed rank-based methods, succeeded in outperforming the
baseline approaches in the vast majority of the cases: the standard DE using each of
the considered mutation strategies, the Naive uniform strategy selection, all the other
bandit-based approaches, as well as two other baseline adaptive schemes, Adaptive Pursuit
and PM-AdapSS-DE. This performance improvement of the FAUC-B with respect to the
others, in terms of Expected Running Time (ERT) to achieve a given function target
value, is attributed mostly to: (i) the use of a rank-based Credit Assignment, which is
robust with respect to the very different situations tackled within this benchmark suite,
while being able to efficiently follow the changes in the qualities of the strategies; and
to (ii) the use of a bandit-based Operator Selection, which has already shown to be very
efficient in the other experimental settings. FAUC-B, as well as the other methods using
ranks over the fitness values instead of fitness improvements, still provide an extra layer
of robustness that was not challenged in this scenario, that of being comparison-based:
in case there were instances derived by monotonous transformations over the original
functions, the performance gap could be even bigger, possibly with the comparison-based
methods (FAUC and FSR) significantly outperforming the simply rank-based methods
(AUC and SR). This situation should be further addressed in the near future.
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Figure 6.19: ECDFs of the speed-up ratios in dimension d = 20 for the FAUC-B compared
with the Naive uniform operator selection, the off-line tuned Static strategies (stAll tuned
over all functions, stEach tuned over each function class), and the state-of-the-art IPOP-
CMA-ES optimizer. The speed-up ratios are the pairwise ratios of the number of function
evaluations for FAUC-B to surpass the target function value 10−8, over the one of the
baseline techniques, over all trials for each function. The legends also indicate the number
of functions that were solved in at least one trial (FAUC-B first).
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Moreover, PM-AdapSS-DE [Gong et al., 2010] (Section 6.6.3), showed to be the best
out of the four other adaptive schemes, what confirms the gain in robustness achieved by
the use of a relative instead of a raw reward. It is also worth noticing that, as for the other
simpler benchmark scenarios, DMAB greatly outperformed the standard MAB by the use
of its change-detection test, while SLMAB was able to closely follow its performance,
both of them performing very similarly to AP. But, although improving over MAB, both
DMAB, SLMAB and AP techniques performed rather equivalently to the Naive uniform
strategy, and this puts into question their efficiency in this experimental setting.

Compared to the Naive uniform approach, it is true that the efficiency gain presented
by FAUC-B seems to be moderate in relation to the price to pay for an adaptive scheme
in terms of computational complexity. Nevertheless, it should be observed that the Naive
uniform strategy considers here a small number of strategies, most of which performing
well: DE1 and DE3 perform quite well; although much slower, DE2 still reaches the
target; the only inefficient strategy (when applied alone) is DE4. Along the same line, the
performance of FAUC-B was found to be comparable to the off-line tuned Static strate-
gies, which indeed perform very well by mixing two very complementary operators: the
local search DE4 (current-to-rand), which performs random variations over the current
vector (what explains its poor performance when applied alone), and the DE3 (rand-to-
best) operator, which provides enough level of diversity, while still moving towards the
best solution. In the general case, however, the performance and the characteristics of
each strategy alone, and of all the possible static combinations, are unknown; they were
assessed here through extensive experiments, while FAUC-B used only the information of
the current run to adapt its behavior while solving the problem. And even if the com-
putational effort spent on their off-line tuning is considered, FAUC-B remains a superior
choice when compared to the given Static strategies: in this case, 28 configurations were
tried for the AOS method (although much fewer could have been considered) while 56
configurations were tried for the off-line tuning of the Static strategies. The use of an
AOS scheme remains thus relevant in the general case.

Additionally, though much improved over the results of all mentioned approaches used
within DE, the best results of the FAUC-B +DE algorithm remains far below those of the
state-of-the-art optimizer IPOP-CMA-ES. But the DE algorithm that FAUC-B has been
applied to is the very standard one; several improvements have been recently proposed to it,
e.g., adding adaptive parameter control for F and CR [Qin et al., 2009]. The applicability
of FAUC-B in DE framework opens the path for fruitful research using the numerous recent
DE variants.

Another further work is to address the multi-modality issue: all tested algorithms failed
on most multi-modal functions (40% of the separable class, plus all the functions for the
multi-modal and weak structure classes). In the same way as for the work on SAT problems
(Section 6.5), in order to efficiently tackle multi-modal problems, the maintenance of some
level of diversity in the population should also be accounted somehow for the rewarding
of operator applications, as discussed in Section 4.5.2.
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6.7 Hyper-Parameters Analysis

As discussed in Section 6.2.1, the AOS mechanisms analyzed in this work have their own
hyper-parameters (Table 6.2), whose values might critically impact their performances.
This issue has been addressed using the F-Race, and the best hyper-parameter configura-
tion for each considered AOS has been determined and further used on each of the different
empirical comparisons presented in this Chapter. It is, however, important to study the
hyper-parameters, in order to identify which of them should receive more attention during
the tuning process when addressing a new problem. An analysis of their sensitivity will
be presented in Section 6.7.1.

Another important aspect concerning the hyper-parameter configuration of the AOS
schemes is how robust they are when tackling different problems. Ideally, every time a
new problem needs to be tackled, the AOS method under consideration should be able
to deliver reasonable performance without requiring off-line tuning. The methods based
on the raw values of fitness improvements are expected to be very problem-dependent, as
discussed in Section 5.2.3, while the rank-based methods are expected to be more robust
to different situations. An analysis of their robustness will be presented in Section 6.7.2.

The results that will be analyzed here were partially published in [Fialho et al., 2010a;
Fialho et al., 2010c; Fialho and Ros, 2010].

6.7.1 On the Sensitivity of the Hyper-Parameters

When only 1 or 2 hyper-parameters are concerned, a 3-D plot of the response surface
of these parameters gives a clear picture (as has been done in [Da Costa et al., 2008] for
AP and DMAB on some artificial scenarios, for instance). However, for each AOS tech-
nique, there are the hyper-parameters of both Operator Selection and Credit Assignment
schemes: only MAB and SLMAB combined with the Extreme or Average Credit Assign-
ment schemes have 2 hyper-parameters; DMAB and AP, combined with the same Credit
Assignment schemes, have respectively 3 and 4 hyper-parameters; and RMAB with any of
the rank-based schemes has 3 (see the list in Table 6.2). This is why ECDF plots will also
be used for this analysis, as described in the following. Another alternative could have been
to use some parameter setting procedure like REVAC [Nannen and Eiben, 2007] (Section
3.3.2), that gives an idea of the sensitivity of all parameters it optimizes while finding its
optimal value.

ECDF Sensitivity Plots

Though ECDF sensitivity plots have been generated for all AOS schemes and all scenarios
previously presented, only a few series of plots offering typical behavior will be depicted and
analyzed in detail here. All the non rank-based methods are considered with the AbsExt
Credit Assignment. This scheme was chosen because it performs best in most cases; for a
few exceptions, the Instantaneous performed slightly better, but the corresponding ECDF
plots looked rather similar, though involving one less hyper-parameter, the size W of
the rewards window (expect for SLMAB, which needs W anyway). For the rank-based
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methods, the RMAB with the Decay/AUC Credit Assignment is considered. Accordingly,
the other alternatives could have been tried, but they present rather similar performance
in most scenarios; between Decay and NDCG, the former is preferred so as to be able to
also analyze the decay factor D.

For each of these AOS combinations, its sensitivity with respect to its hyper-parameters
will be analyzed on four benchmark problems, a kind of representative set of all the
different problems considered in this thesis: the Uniform scenario with ∆T = 500, the
ART (0.1, 39, 0.5, 3) with ∆T = 200, and the OneMax and Royal Road boolean benchmark
problems.

All figures display a number of ECDF curves representing the results of the same AOS
method on the same scenario. For the artificial scenarios, the x-axis represents the TCR,
ranging from the value of the optimal strategy (i.e., the highest possible value on average
for any AOS) down to the value that would, on average, be gathered by the Naive uniform
strategy (hopefully the lowest possible value on average for any AOS). For the OneMax
and Royal Road cases, the x axis represents the number of generations to achieve the
optimum, starting from 4500 for the former and zero for the latter problem, up to the
average number of generations taken by the Naive uniform choice. The y-axis shows the
proportion of runs that reached the corresponding x value, out of the total number of runs
considered.

For each benchmark problem, a large amount of experimental results have been gath-
ered during the Racing procedure, and at least 11 runs have been performed for all hyper-
parameter combinations of the factorial design sketched by the values in Table 6.4. The
results over these 11 runs will be used for the analysis on the OneMax and Royal Road
problems; this explains possible divergences between the best configurations considered
here and the ones presented in the tables of results corresponding to each scenario. Ex-
periments on the Uniform and ART artificial scenarios are significantly cheaper, in terms
of computational time; hence, for these scenarios, even the parameter configurations that
did not make it through the end of the Racing procedure have been run 50 times for the
sake of the sensitivity analysis.

Two lines are given as references on each plot: the top-left-most line (continuous,
and green on color printouts), labeled with a “**” and referred to as “Best/All”, repre-
sents the overall best results, in terms of average TCR (or number of generations to the
optimum in the OneMax and Royal Road cases), obtained on this scenario by a single
hyper-parameter configuration, between all the AOS combinations, after the number of
runs considered for each scenario. The next line going down/right, labeled with a “*”
and referred to as “Best/This”, represents the results obtained by the best configuration
of hyper-parameters for the AOS scheme named on the caption of the sub-figure, under
the plot. The discrepancy between both lines shows in detail how different are the per-
formances of the considered AOS and of that of the method that performed best on this
scenario.

At the other extreme of each sub-figure, the bottom-right-most line (solid, red on color
printouts) represents the ECDF of all runs for the particular AOS, i.e., for all hyper-
parameter configurations ever tried (the average performance of the complete factorial
design from values given on Table 6.4). The lines in-between represent partial aggregations
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of these runs. More precisely, if the best results have been obtained for a given set of hyper-
parameters (recalled in the legend), each line represents the ECDF obtained when one
hyper-parameter is varied over all its values used in the Racing procedure, while all others
are kept to the optimal value found. If a line corresponding to a given parameter is close
to the line of the best configuration, it is a clear indication that the results are not very
sensitive to this hyper-parameter. Oppositely, a high difference indicates a high sensitivity.
Besides the ECDF curve, the average and standard deviation of the performance are also
presented in the legends of the plots for each of the different aggregations considered.

Sensitivity Analysis

In order to facilitate the comparison of the impact of the hyper-parameters on the per-
formance of each AOS technique on the different benchmark problems, and possibly find
common sensitivity hints for their tuning, the plots are grouped by technique. Figure
6.20 presents the ECDF sensitivity plots for the baseline AbsExt-AP method, for the sake
of comparison. Figure 6.21 depicts in each column the plots for both AbsExt-MAB and
AbsExt-SLMAB, while Figure 6.22 shows the plots for AbsExt-DMAB on the right and
Decay/AUC-RMAB on the left column.

Starting with the combination of Adaptive Pursuit (AP) Operator Selection and Abso-
lute Extreme (AbsExt) Credit Assignment, the global picture with respect to sensitivity is
rather clear. The adaptation rate α and the learning rate β are very robust indeed: their
aggregated ECDF plots are very close to the curves representing the best configuration
for this technique on all problems. The minimal probability pmin is a much more sensitive
parameter, as expected (and as discussed in Section 4.4.2). But its sensitivity clearly (and
intuitively) depends on the number of operators and on the maximum value tried for it:
on the ART scenario it seems to be as insensitive as α and β (Figure 6.20b); however,
only two operators are considered in this case, thus the total exploration when using the
maximum value tried for pmin (= 0.2) sums up to “only” 40% of exploration; while on the
Royal Road scenario, which has 5 operators, pmin=0.2 refers to a complete Naive uniform
behavior. The window size W is the most sensitive parameter on all cases. Altogether, AP
seems to be quite robust with respect to its hyper-parameters, but its global performance,
when compared to the bandit-based approaches on most benchmark scenarios considered
in this thesis, make it a poor choice anyway.

The scaling factor C and the sliding window size W are common hyper-parameters for
all bandit-based AOS combinations. Starting with C, for MAB, SLMAB and DMAB, it
is definitely a very sensitive parameter. As discussed in Section 5.3.4, when using Credit
Assignment schemes based on the raw values of fitness improvements, C has a double role
on the bandit-based approaches: besides controlling the Exploration versus Exploitation
balance of the Operator Selection, it needs to account for the different ranges of fitness
improvements (which tend to vary as the search goes on, and according to the problem
at hand). For RMAB, C still seems to be a sensitive hyper-parameter; however, as can
be seen in the captions of the respective plots, the winner configurations for the different
problems all use C ≤ 1, while values up to 100 are being considered in the corresponding
(dark blue) curve, consequently greatly degrading its aggregated performance. From this
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Figure 6.20: ECDF sensitivity plots for AbsExt-AP

alternative analysis, thus, it can be said that the use of a rank-based scheme fulfills its
original motivation, that of providing an invariant range of rewards during all the search
process on a given problem, and over different problems, what reflects in similar C values
being used by the winner configurations. Conversely, the winner configurations of the
other bandit-based approaches use very different values for C on the different problems.
For instance, SLMAB uses C = 0.01 on the OneMax problem, and C = 100 on the ART
problem. More on this will be discussed in the robustness analysis presented in Section
6.7.2.

The window size W also seems to be very sensitive for the bandit-based approaches,
specially on the Uniform and ART scenarios, in which there is a strong link between W
and ∆T : for values of W larger than the epoch size, the frequency of the changes will result
in using too old information. This issue becomes even more important for the approaches
other than RMAB, in which there is one window for each operator: in the worst case,
a window might contain rewards as old as K ·W iterations ago, K being the number of
operators. For instance, the “steps” shown in the corresponding ECDF curves for MAB,
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Figure 6.21: ECDF sensitivity plots for AbsExt-MAB and AbsExt-SLMAB
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DMAB and RMAB on the Uniform scenario (respectively, on Figures 6.21a, 6.22a and
6.22b), clearly depict how large values for W are hindering the overall performance of
the aggregated distribution in this case. This hyper-parameter becomes less sensitive in
the more realistic OneMax and Royal Road scenarios, in which there is no clear relation
between operators qualities and time. For SLMAB, the W hyper-parameter has a double
role: it controls both the size of the sliding window and the size of the intrinsic memory of
the relaxation update rule used on the Operator Selection side; for this reason, it seems to
be much more sensitive to this hyper-parameter than the other bandit-based approaches
on three out of the four cases (except for the ART , in which it is as sensitive as for the
other approaches). More specifically, in the case of RMAB, as there is only one window
for all operators, (intuitively) larger window sizes are preferred.

The DMAB change-detection threshold γ shows not to be sensitive on the Uniform and
ART scenarios. A tentative interpretation goes as follows. As the range of rewards for
the best operator are the same during the whole search process, on the Uniform scenario it
seems that 3/4 of values tried for DMAB γ perform well (see again the “step” on around
75% of the cyan-colored distribution in Figure 6.22a). Indeed, in this case, from the
values explored, only λ ∈ {100, 1000} achieve a TCR much worse than the others, as these
thresholds are too big in relation to the actual changes in the reward distributions, thus
not triggering any restart. Along the same lines, on the ART scenario, whenever there is
an exchange in the reward distributions, i.e., whenever an outlier reward (of value 39 in
this case) is received, as it is much higher than the expectation of the previous distribution
(= 3), most values tried will succeed in detecting the change. For the OneMax and Royal
Road problems, the best operator might present very different expected reward during the
search process, thus there is no value for γ that works optimally during all the search; for
this reason, in these cases, the γ threshold appears to be as sensitive as the very sensitive
scaling factor C. In more realistic scenarios, having different reward ranges during the
search is very likely to be the case. Hence, this hyper-parameter tends to hinder the
performance of DMAB (although still outperforming the standard MAB in most cases),
while requiring a considerable amount of computational time for its off-line tuning when
compared to the other methods.

Accordingly, the RMAB ranking decay factor D is also much less sensitive on the
Uniform scenario: as the rewards received are always already ranked somehow according
to the quality of the operator (despite some overlap between subsequent operators), the
operator qualities are already ranked by construction, thus not needing an extra decaying
factor in order to efficiently differ between them. Anyway, even for the other scenarios, it
does not seem to be as sensitive as the other hyper-parameters; expect for the Royal Road
case, in which it is surprisingly more sensitive than W , although much less sensitive than
the scaling factor C. Another empirical proof of the non-sensitivity of this hyper-parameter
is related to the fact that, in most empirical performance comparisons presented in this
Chapter, the Decay version using some high value for D showed equivalent performance
to the NDCG version, which is basically the same as using Decay with D = 0.4, as shown
in Figure 5.1. It is also worth noticing that the fact that this hyper-parameter is always
bounded between 0 and 1 results in a much easier and cheaper off-line tuning than those of
the scaling factor C and the change-detection threshold γ, which have no known bounds.
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Figure 6.22: ECDF sensitivity plots for AbsExt-DMAB and Decay/AUC-RMAB
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6.7.2 On the Robustness of the Hyper-Parameters

The sensitivity of a given hyper-parameter might be alleviated by the robustness of the
method with respect to many different problems, i.e., even if a lot of effort is needed for
the preliminary off-line tuning of this parameter, in case the configuration found by the
off-line tuning performs reasonably well for several different problems, the computational
budget spent on this initial effort might become worth the expense.

In this Section, the robustness of the AOS schemes with respect to their hyper-
parameters is analyzed on two experimental scenarios: firstly, on the OneMax problem
and on 3 other problems defined by monotonous transformations of OneMax; then, on the
very heterogeneous set of functions provided by BBOB.

Robustness on Transformations over the OneMax Problem

A first series of experiments was conducted, based on the OneMax problem, to analyze
the expected gain in robustness provided by the use of the rank-based Credit Assignment
schemes and, specially, the invariance with respect to monotonous transformations (leading
to the so-called comparison-based property) featured by the schemes using ranks over the
fitness values instead of ranks over the fitness improvements.

As presented in Section 6.4.2 (and as done for every performance benchmarking sce-
nario considered in this Chapter), the F-Race procedure was first used to tune the hyper-
parameters of all the AOS schemes prior to the comparison of their average empirical
performance on the OneMax problem. For the robustness analysis that will be presented
here, this same hyper-parameter configuration found to be the best on the OneMax prob-
lem for each AOS method, was used for assessing it on functions defined by monotonous
non-linear transformations over the original OneMax function F , namely, log(F), exp(F),
and F2.

The complete results, gathered with the same experimental setting used in the original
performance comparison presented in Section 6.4.2, can be found in Table 6.26. The
average performance (number of generations to optimum) on the original and on the three
transformed functions are presented for each AOS scheme. These performance measures
are ranked independently for each function, and the first column of the Table summarizes
these ranks, by presenting their sum. The Table is sorted by this column: the more
robust technique is the one with lowest values for

∑
r. Additionally, the second column

presents the gap between the worst and the best performance achieved by each AOS scheme
over all four functions, what can be seen as a complementary view of their robustness
with respect to this experimental scenario. Finally, as done in the previously analyzed
performance comparisons, the best result for each function is highlighted with bold-face
and grey background, like this , and the results which are not significantly different
(according to the same statistical tests) are displayed with a grey background.

These results empirically confirm several expectations. Firstly, the rank-based meth-
ods that use the rank of the fitness improvements, AUC-RMAB and SR-RMAB, achieve
an overall better performance, while showing to be quite robust with respect to the
monotonous transformations. Although the comparison-based counterparts FAUC-RMAB
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∑
r (h-l) F =

∑
bi log(F) exp(F) (F2) AOS technique

12 485 5103 427 5195 430 5562 950 5588 950 Decay/AUC-RMAB
13 244 5231 503 5421 524 5475 422 5475 422 NDCG/SR-RMAB
15 362 5215 374 5347 547 5577 634 5575 534 Decay/SR-RMAB
18 1321 5097 230 6295 1176 4974 201 4984 184 NormExt-AP
19 108 5444 252 5458 382 5511 347 5403 332 NormIns-DMAB
24 300 5366 478 5434 596 5650 887 5666 881 NDCG/AUC-RMAB
31 0 5652 644 5652 644 5652 644 5652 644 Decay/FSR-RMAB
31 807 5123 218 5431 223 5930 334 5792 382 AbsExt-AP
36 0 5667 729 5667 729 5667 729 5667 729 NDCG/FSR-RMAB
41 0 5726 399 5726 399 5726 399 5726 399 Decay/FAUC-RMAB
46 54 5728 204 5767 312 5780 329 5726 263 NormIns-AP
50 172 5718 239 5805 279 5748 227 5890 386 AbsIns-AP
54 0 5796 420 5796 420 5796 420 5796 420 NDCG/FAUC-RMAB
54 186 5750 251 5782 251 5936 277 5875 287 AbsAvg-AP
62 355 5790 226 5910 271 6048 337 6145 319 NormAvg-AP
65 2591 5376 285 7967 718 7722 2151 6138 516 AbsExt-DMAB
74 706 6427 597 6956 784 7133 866 6808 691 NormExt-SLMAB
77 3310 5508 823 8818 3653 7173 3288 6865 2861 NormExt-DMAB
80 2673 5480 276 8079 743 7961 653 8153 684 AbsIns-DMAB
80 502 7193 1614 6890 1294 7370 1033 7392 1117 NormAvg-DMAB
81 2285 5997 593 6345 644 8282 2044 7639 1807 NormExt-MAB
83 1905 6662 961 8277 1553 6507 839 6372 786 NormIns-SLMAB
92 225 8013 671 7893 681 8021 582 8118 738 NormIns-MAB
96 365 7903 638 8023 716 8268 949 8008 874 NormAvg-MAB
97 631 7494 611 8122 724 8125 1159 8075 740 AbsAvg-DMAB
108 6971 6059 667 8863 694 13030 3053 12136 949 AbsExt-SLMAB
111 7089 8198 683 7910 549 14999 0 14999 0 AbsAvg-MAB
111 8423 6576 705 8721 695 14999 0 9838 1430 AbsIns-SLMAB
112 182 8463 818 8593 753 8577 737 8645 862 NormAvg-SLMAB
112 7083 8369 891 7916 635 14999 0 14999 0 AbsIns-MAB
113 7052 9044 840 7947 1267 14999 0 14999 0 AbsExt-MAB
114 845 8347 596 8899 808 9192 862 8395 721 AbsAvg-SLMAB

Table 6.26: Results of each AOS scheme on the original OneMax function and on three
other functions defined by monotonous transformations over it. The schemes were ranked
on each function, and the first column presents the sum of their ranks, which defines the
order of their presentation in the table. The second column depicts the difference between
the highest and the lowest average performance of each AOS scheme over all the four
functions.
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and FSR-RMAB are less competitive, their invariance property is verified (exactly the
same performance on all the functions, (h− l)=0); this might show to be more beneficial
in a bigger and more difficult class of problems. For all the other approaches, the best
results in terms of robustness are achieved using Normalized versions of the Extreme (or
Instantaneous for DMAB) Credit Assignment schemes; this also confirms the expectations
after discussion in Section 5.2.3.

Between the Operator Selection techniques other than RMAB, the baseline probability-
based AP approach is the most robust: all its combinations are ranked in the first half of
the Table. Its best combination in terms of performance, the NormExt-AP, achieves the
best result in three out of four functions; however, it does not cope well with such a simple
transformation as the logarithmic one. This result clearly demonstrates that the lack of
invariance under simple nonlinear transformation could eventually cause some serious loss
of efficiency for more difficult problems.

In what concerns the other bandit-based approaches using Credit Assignment schemes
based on the raw values of fitness improvements, only the NormIns-DMAB is surprisingly
able to perform well on this experimental scenario. A huge variance is shown in the
results of the other combinations involving DMAB and MAB. Although presenting a
smaller variance, SLMAB is still a bad choice, due to its non-competitive performance,
populating mostly the bottom of the ranked Table, together with MAB.

Robustness on the BBOB Functions

An alternative analysis of the robustness of each AOS technique with respect to its hyper-
parameters was done in the context of the BBOB benchmark scenario. Here, instead
of using the same hyper-parameter configuration over different problems, the opposite
approach is taken: different off-line tuning procedures were done, considering different
groups of functions, and the best hyper-parameter configurations found for each of them
are compared. A robust technique should present similar best hyper-parameter setting on
most of the different cases, while still presenting competitive performance.

In the same way as for the empirical performance analysis presented in Section 6.6, the
NDCG/FAUC-RMAB is used here as a representative of all the rank-based AOS schemes,
being simply referred to as FAUC-B. MAB and SLMAB are disregarded here, due to
their poor performance. The robustness of FAUC-B is compared to those of PM-AdapSS-
DE, AP and DMAB, these two latter being coupled with the AbsExt Credit Assignment
scheme.

Six different tuning procedures were performed for each dimension d ∈ {5, 20}, which
are: tuning considering independently each of the 5 function classes; and tuning consider-
ing all functions. The best configuration found for each technique on each of the analyzed
cases is presented in Table 6.27.

This tuning experiment confirms again the higher robustness of FAUC-B: {C = .5,W =
50} is always the best configuration; except for the multi-modal and weak-structure class
functions, in which none of the techniques was able to perform well, as discussed in Section
6.6. For the PM-AdapSS-DE, the benefits of using a relative instead of a raw reward are
also shown on dimension 20, with always a very low value for pmin, and a high one for the
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d = 5 FAUC-B PM-AdapSS-DE AbsExt-AP AbsExt-DMAB
separable C.5W50 P.05α.9 P.2α.6β.6W500 C10γ.01W100
moderate C.5W50 P.05α.3 P.2α.9β.3W50 C.01G100W50

ill-conditioned C.5W50 P0α.9 P.2α.6β.3W500 C100G1000W500
multi-modal C.5W50 P.05α.9 P.2α.9β.3W500 C100G1W50

weak-structure C1W500 P.05α.1 P.2α.9β.6W50 C100γ.1W50
all functions C.5W50 P0α.9 P.2α.3β.6W500 C100γ.1W50

d = 20 FAUC-B PM-AdapSS-DE AbsExt-AP AbsExt-DMAB
separable C.5W50 P0α.9 P.2α.3β.1W500 C100γ.01W50
moderate C.5W50 P0α.9 P.2α.9β.3W500 C100γ.01W50

ill-conditioned C.5W50 P0α.9 P.2α.6β.3W500 C100γ.01W50
multi-modal C1W50 P0α.3 P.2α.3β.1W100 C100γ.01W50

weak-structure C.01W50 P0α.9 P.2α.3β.3W100 C100γ.01W50
all functions C.5W50 P0α.6 P.2α.1β.1W500 C100γ.1W50

Table 6.27: Robustness analysis: best hyper-parameters configuration found for each tech-
nique on the BBOB benchmark set for dimensions 5 and 20, off-line tuned under different
conditions.

adaptation rate α.

For AP, however, several configurations reached the end of the Racing process, all of
them sharing P.2 and W500, but presenting all possible combinations for the adaptation
rate α and the learning rate β. This could be seen as a good sign, possibly showing
the robustness of this AOS combination. However, the use of pmin=0.2 in fact confirms
that the method is presenting a behavior very close to the Naive uniform approach: as 4
mutation strategies are considered in this experimental scenario, the completely uniform
behavior would be achieved with pmin=0.25, regardless the other parameters.

The same kind of conclusions can be drawn for the tuning experiments of DMAB. The
configurations found for the different situations were all quite similar, with C100, γ ≤ .1
and W50. However, a very high scaling factor C was found to be the best; this means that
much more weight was given to the exploration term of the UCB formula, i.e., although
knowing which is the current best strategy, the algorithm prefers to explore the others.
Besides, a very low value for the Page-Hinkley change detection threshold γ was chosen in
most cases; this means that the probability of having restarts during the search is really
high, also favoring the exploration, consequently dramatically degrading the performance
of the method.

After all, the single fact that the same hyper-parameter tuning is found to be the
best on different situations is not sufficient to conclude that a given technique is robust.
Intuitively, if the final performance is as good as the uniform one, the configurations
found are meaningless. The FAUC-B and the PM-AdapSS-DE, while presenting similar
configurations for different situations, also perform very well, as shown in the empirical
comparison presented in Section 6.6.
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6.8 General Discussion

The use of so many and distinct benchmark scenarios was motivated by the possibility
of analyzing different properties of the AOS schemes. On the artificial scenarios (Section
6.3), for instance, the agility to adapt to completely different situations was assessed under
different conditions with respect to the definition of the artificial reward distributions and
to the level of informativeness of the received rewards. On the other hand, the results
on the boolean benchmark problems (Section 6.4) represent the preliminary experiments
in which the AOS schemes were analyzed in situ, selecting between different evolutionary
operators within a real EA, applied to fitness landscapes with very different characteristics
and levels of complexity. Additionally, in Section 6.5, the DMAB Operator Selection
technique was evaluated in the light of the hard combinatorial Boolean Satisfiability (SAT)
problems, by using a third party Credit Assignment scheme that aggregates both fitness
and diversity. Finally, on the Black-Box Optimization Benchmarking (BBOB) scenario,
not only the performance of the techniques was assessed, but also their robustness, given
the very heterogeneous benchmark function set provided by it. Besides, in this case, yet
another problem domain was tackled, the continuous one, by coupling the AOS schemes
with a Differential Evolution (DE) algorithm.

After the description of the contributions for AOS in Chapter 5, these experiments
provided enough empirical evidence to draw, under different benchmarking conditions,
the following conclusions, which match most of our expectations:

1. DMAB Operator Selection technique performs better than MAB, AP, Naive uniform,
and possibly equivalently to Oracle whenever available:
True. Indeed, DMAB is the overall winner technique in most cases. The price to
pay for this gain in performance with respect to the standard MAB is the need to
tune two very sensitive and problem-dependent hyper-parameters, the scaling factor
C and the change-detection threshold γ. Given this mentioned problem-dependency,
DMAB consequently does not perform well on scenarios considering many different
problems, such as BBOB.

2. SLMAB Operator Selection technique performs equivalently or better than DMAB,
while having one hyper-parameter less:
False. This is the only notable deception with respect to the original expectation.
In fact, SLMAB performed equivalently or better than DMAB only in some artificial
scenarios (Section 6.3), and on the experiments within BBOB, in which both DMAB
and SLMAB performed rather poorly. In the other cases using real EAs, however,
SLMAB was not able to efficiently follow the dynamics of the operator qualities (see,
e.g., its behavior plot on the OneMax problem, in Figure 6.12d), being outperformed
even by the standard MAB in some cases. Besides, as for the other bandit-based
approaches, there is still the need to tune the (still very sensitive) scaling factor C.

3. Extreme Credit Assignment scheme performs better than the Instantaneous and Av-
erage ones:
True. Except for the artificial scenarios with small ∆T , in which more up-to-date
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information is needed in order to follow the very quick abrupt changes (thus prefer-
ring the Instantaneous scheme), Extreme performs better in most cases, including
the boolean benchmark and the SAT problems. On the BBOB scenario, however,
only Extreme was tried to date; the evaluation of the Average and Instantaneous
counterparts is left for further work.

4. Normalized versions perform equivalently or better than the Absolute versions of the
Credit Assignment schemes, while being more robust with respect to their hyper-
parameters:
True. In terms of performance, on the analyzed scenarios, they performed equiv-
alently in most cases, while being better in a few cases. The gain in robustness by
the use of this simple normalization scheme is clearly shown in the analysis on the
transformed OneMax functions, presented in Section 6.7.2. However, it can be said
to be significantly outperformed, in terms of robustness, by the rank-based schemes,
which should thus be preferred, as discussed in the following.

5. RMAB Operator Selection with the rank-based Credit Assignment schemes perform
equivalently or better than the other AOS combinations and naive strategies, while
being very robust with respect to their hyper-parameters:
True. Even in the artificial and boolean benchmark problems, in which the meth-
ods were off-line tuned for each problem (thus hindering the effects of the higher
robustness), the different combinations of RMAB showed to be able of following
closely the performance of the best AOS combinations in most cases. And, intu-
itively, the more heterogeneous the scenario, i.e., the more different problems need
to be tackled by the same hyper-parameter configuration, the clearer the benefits
brought by the higher robustness, as shown in the BBOB scenario, in which RMAB
is the clear winner. It is important to note that, besides the robustness, most of
the efficiency in adaptation is also due to the Credit Assignment schemes in this
case, while the RMAB technique is responsible for controlling the EvE balance with
respect to Operator Selection. Furthermore, between the AUC and SR, the former
showed to outperform the latter in the vast majority of the cases, being equivalent
otherwise. Finally, between the AUC and the FAUC, the latter should be preferred
just in case the robustness with respect to monotonous transformations is needed,
otherwise the AUC should be employed.

Summarizing all these empirical evidences, to date, the AUC-RMAB remains as the
recommended technique in case one wants to employ the AOS paradigm on his own al-
gorithm. The last choice that needs to be made, between the Decay and the NDCG
alternatives, is not critical and depends on whether there is some available budget for
the tuning of the decay factor D or not, as the NDCG has shown to present similar but
slightly inferior performance in most cases.
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Chapter 7

Final Considerations

Evolutionary Algorithms (EAs) are stochastic algorithms that tackle search and optimiza-
tion problems based on the Darwinian evolution paradigm. EAs have already shown to
perform well in many different domains of application that are not tractable by standard
methods, mainly because they do not make any strong assumption about the problem to be
solved, and also due to the many parameters that enable the user to adapt the algorithm
to the problem at hand, as discussed in Chapter 2. These many parameters, although
providing the mentioned flexibility, are the main responsible factor for the fact that EAs
are rarely used by researchers from other domains, as there are no general guidelines for
their setting.

After the survey on parameter setting in EAs presented in Chapter 3, instead of using
an off-line tuning technique (that would provide a static strategy), the behavior of the
algorithm should be rather adapted while solving the problem, according to the current
needs of the search with respect to the Exploration versus Exploitation (EvE) balance.
Taking as an example the choice of which operator should be applied, more disruptive
operators should be used to explore the search space in the initial stages of the search (or
when there is the need of escaping from stagnation), while fine-tuning operators should
be preferred whenever there are promising regions that need to be further verified.

The use of feedback from the search to adapt on-line the selection of the operator to be
applied is commonly referred to as Adaptive Operator Selection (AOS). In this work, we
proposed different contributions to AOS, which will be summarized in Section 7.1. Section
7.2 will conclude this manuscript by sketching possible directions for further work.

7.1 Summary of Contributions

In order to perform AOS, one needs to define two elements, as described in Chapter 4
and depicted in Figure 4.1. After an operator application, the Credit Assignment scheme
transforms its impact on the search process into a numerical reward, which is used to
maintain an up-to-date estimation of the performance of this operator. Based on these
empirical estimates, the Operator Selection mechanism selects the next operator to be
applied.
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Different approaches for both Credit Assignment and Operator Selection components
have been proposed in this thesis, resulting in novel AOS methods. These contributions
are detailed in Chapter 5, and can be briefly summarized as follows.

The proposed Credit Assignment schemes use as a measure of impact the fitness im-
provement of the offspring with respect to its parent (or to the best of its parents in the
case of crossover operators). The first proposal, referred to as Extreme Credit Assign-
ment, rewards the operator with the maximum fitness improvement recently achieved by
it, based on the assumption that outlier high improvements might be equally or more im-
portant than frequent but moderate ones. Although showing to be efficient, this scheme
provides a very problem-dependent behavior to the AOS methods implementing it. This
happens mainly due to the fact that (i) different problems have different fitness ranges,
consequently reward ranges; and (ii) the magnitude of the fitness improvements tends to
vary as the search advances (the closer to the optimum, usually the rarer and smaller the
improvements). In the quest for a higher robustness, a simple normalization scheme was
proposed, and this alleviated, but not eliminated the problem-dependency. This led us
to further propose two Credit Assignment schemes based on ranks over the fitness im-
provements, which showed to be very robust: the first method is inspired by a Machine
Learning paradigm, referred to as Area-Under-Curve (AUC), while the second simply uses
the Sum-of-Ranks (SR) to evaluate the operator qualities. An extra level of robustness
(with a small price to pay in terms of efficiency) was further achieved by the use of ranks
over fitness values instead of ranks over fitness improvements: the resulting algorithms
are totally comparison-based, i.e., invariant with respect to monotonous transformations
over the original fitness function. The respective methods are referred to as Fitness-based
Area-Under-Curve (FAUC) and Fitness-based Sum-of-Ranks (FSR).

The Operator Selection issue was tackled as another instance of the Exploration versus
Exploitation (EvE) dilemma: the operator that is found to perform better than the others
should be used as much as possible (exploitation), while other operators should also be
tried from time to time (exploration), as one of them might become the new best one at a
further (unknown) instant of the search. This dilemma has been intensively studied in the
context of yet another Machine Learning paradigm (more specifically in Game Theory), the
Multi-Armed Bandit (MAB). A first tentative application of this paradigm to the Operator
Selection problem used the Upper Confidence Bound (UCB) algorithm [Auer et al., 2002],
which provides asymptotic optimality guarantees with respect to total cumulative reward.
But these guarantees hold only in the original and stationary context of MAB problems,
while the AOS context is very dynamic: the performance of the operators continuously
vary as the search goes on. As a consequence, different proposals were made in order to be
able to efficiently use the MAB paradigm in the AOS context. The first proposal on this
direction, referred to as Dynamic Multi-Armed Bandit (DMAB), uses a statistical test to
trigger a restart of the MAB process whenever a change on the operator quality distribution
is detected. This method has shown to be very efficient, but different problems have fitness
landscapes with different dynamics, what makes its restarting mechanism to be also highly
problem-dependent. This led us to propose the Sliding Multi-Armed Bandit (SLMAB),
which accounts for the AOS dynamics by continuously adapting the weight of the received
rewards, according to how frequent each operator has been applied: the less frequent,
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the more outdated is its corresponding empirical estimate, consequently the higher should
be the weight of the instant reward received, and vice-versa. In practice, however, this
mechanism did not show to perform as good as expected. The last proposal, referred to as
RMAB, is indeed the simplest one. In this method, the AOS dynamics are in fact handled
on the Credit Assignment side by the rank-based schemes in a transparent way: as the
ranking considers the rewards received by all operators, the application of one operator
affects the perceived quality of all the others; in this way, their quality estimates are always
sufficiently up-to-date by construction.

A last contribution concerns the empirical assessment of the resulting AOS methods.
Firstly, some artificial scenarios were proposed to analyze their behavior on different con-
trolled environments. And secondly, a very extensive empirical analysis of all the proposed
AOS methods, also compared with some baseline methods, was performed. They were as-
sessed within a Genetic Algorithm applied to the proposed artificial scenarios, to other
boolean benchmark problems, as well as to the hard Boolean Satisfiability problems; and
within a Differential Evolution algorithm applied to a comprehensive benchmark set of
continuous functions.

Based on the evidences gathered from the extensive empirical analysis done, in case one
wants to apply the AOS paradigm to his own algorithm/problem, the recommended AOS
method as of today is the combination of the AUC Credit Assignment scheme with the
RMAB Operator Selection mechanism. Compared to other adaptive and naive methods,
it achieves state-of-the-art or comparable performance, while also being very robust with
respect to its hyper-parameters when applied to different problems.

It is worth noting that the use of off-line tuning prior to every experiment was motivated
by the intention of comparing the different AOS methods at their best. But, ideally,
whenever a new problem needs to be tackled, no off-line tuning should be required –
this is why so much effort was put towards achieving higher robustness. In the case of the
recommended AOS method, the same hyper-parameter configuration (C.5W50) was found
to be the best over very different problem classes in the context of the BBOB framework,
and neighboring values (considering the range of values tried) were used by the winner
configurations on the OneMax and Royal Road problems (C.1W100) and on most of
the artificially generated problems (C ∈ {.1, .5, 1},W ∈ {50, 100}). The employment of
prior off-line tuning remains thus as an optional step, as reasonable performance can be
achieved by the recommended AOS method when using hyper-parameter values around
the mentioned configurations. And even if one opts for off-line tuning, the given AOS
method has only two hyper-parameters that will enable it to efficiently follow the best
operator during the search process; while the Static off-line tuned case1 needs the setting
of the application rate for each operator (i.e., the number of parameters to be set are a
multiple of the number of considered operators), besides providing, as its name says, a
strategy that remains static during all the optimization run.

1We consider here only the parameters related to the variation operators, although many other pa-
rameters could be set by the same tuning procedure, or controlled at the same time by other adaptive
schemes.
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7.2 Further Work

A major drawback of the final recommended AOS method is that its remarkable robust-
ness and its state-of-the-art performance remain limited, mostly, to unimodal problems.
In order to efficiently tackle multi-modal problems, the impact of the operator applica-
tion with relation to the population diversity should also be considered somehow, while
only the fitness is being currently regarded. This explains why none of the methods
were able to perform well on the multi-modal functions of the BBOB test-bed. Some
preliminary work has been done on this direction, using the Compass method from Uni-
versité d’Angers as Credit Assignment, assessed within a GA in the context of Boolean
Satisfiability (SAT) problems (see Section 6.5). But in this work, only the very sensi-
tive and problem-dependent DMAB technique was used for Operator Selection. Further
work should concern the preservation of the achieved level of robustness and efficiency
in the framework of the Pareto Dominance-based Credit Assignment scheme proposed in
[Maturana et al., 2010b], which is a follow-up of the Compass method.

An alternative approach for tackling multi-modal problems can be found in the state-of-
the-art optimizer IPOP-CMA-ES [Auger and Hansen, 2005], which was used as a baseline
for comparison on the experiments within BBOB. Instead of modifying its adaptive mech-
anism, it uses a deterministic parameter control of the population size: after some number
of generations, if no improvement has been achieved, the size of the population is doubled
and the search is restarted from scratch. Bigger the population, higher are the chances
of finding the global optimum, as it enables a better parallel exploration of the multiple
peaks of the fitness landscape. This approach should be tried in the near future, by incor-
porating the restarting/population size control mechanism into the underlying algorithms
that were tried with the AOS schemes, namely, GAs and DE.

Coming back to the work on SAT problems, the AOS methods were used to select
between rather naive operators, thus not achieving competitive performance. In order
to possibly take part in SAT races, further work should concern, thus, the autonomous
selection between state-of-the-art operators for SAT. Indeed, we are currently working in
collaboration with University of British Columbia on this topic; but, as of today, there are
no conclusive results yet.

Along the same line, in the work within the DE algorithm applied to continu-
ous problems, the AOS methods were combined with the very standard version of
DE. Several more efficient DE variants exist nowadays, such as the JADE algorithm
[Zhang and Sanderson, 2009], which, besides using improved mutation strategies, also em-
ploys the on-line adaptation of some of the DE parameters, namely, the mutation scaling
factor F and the crossover rate CR. As a continuation of the collaboration work with the
China University of Geosciences, the PM-AdapSS-DE method (Section 6.6.3) was tried
within JADE, achieving significantly better results than when combined with the standard
algorithm [Gong et al., 2011]. A natural next step in this case would be to try our rank-
based AOS methods with JADE, in order to possibly achieve more competitive results
when compared to state-of-the-art optimizers.

Another path for further work, that is also being currently explored in the scope of a
collaboration, this time with the City University of Hong Kong, involves the DE algorithm
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again, but applied to multi-objective problems. This work is still in a very preliminary
stage, as acknowledged in [Li et al., 2011]. The main difficulty for the time being is (as
in the standard non-adaptive framework) to define how to efficiently evaluate the quality
of the solutions (and consequently the impact of the operator application) with respect to
the different objectives.

As can be seen from all these on-going collaborations, the AOS paradigm is indeed
very useful and general enough to be applied to many different contexts. But up to now,
we have considered their application only to the selection of operators within EAs. The
developed AOS methods should also be further assessed within different kinds of meta-
heuristics and stochastic algorithms; and at a higher level of abstraction, selecting between
heuristics instead of operators, what is commonly referred to as Hyper-Heuristics. For
instance, the upcoming “International Cross-Domain Heuristic Search Challenge”2 seems
to be an interesting experimental framework to evaluate the AOS mechanisms at the level
of Hyper-Heuristics: there is a set of low-level heuristics defined for each problem domain
(including MAX-SAT, bin-packing, flow-shop and scheduling), and the task consists into
automatically managing their use, in an efficient way, over all the problem domains.

A different issue concerns the scalability of the AOS methods with respect to the
number of operators being controlled. In the experimental settings used in this work,
there were at most six operators. Ideally, the same level of performance should be attained
no matter the number of operators. In practice, the more operators are considered, the
more exploration is needed, consequently degrading the performance of the algorithm.
A recently proposed approach, referred to as Adaptive Operator Management (AOM)
[Maturana et al., 2010b], tackles this problem by adapting on-line the list of variation
operators that are available to the AOS method: operators found to be inefficient are
momentarily disabled, while others are included in the active operator set. This seems to
be a prominent and complementary research direction, which could be further investigated.

On the application side, it is true that the gain brought by the use of AOS, in terms
of number of fitness function evaluations, might become more “valuable” in real-world
problems, in which the fitness evaluation is usually very expensive. During the next year,
we intend to apply the developed adaptive mechanisms to problems linked to sustainable
development. More specifically, we are currently starting to work on the optimization of
the design and materials used in the construction of buildings, aiming at a better energy
efficiency. This is a multi-objective problem by definition, with many degrees of freedom
resulting in a huge search space, and the evaluation of a solution requires the execution of
a complete energy consumption simulation, which might take up to several minutes.

Finally, many research colleagues have been recently demonstrating interest on the
code of the proposed AOS methods. These requests are being made mainly (i) to employ
the AOS paradigm on their own optimization algorithm/problem, and/or (ii) to use our
AOS methods as baseline to compare with their own methods (e.g., [Verel et al., 2010]).
In order to “complete” the scientific contributions proposed in this thesis, we intend to
prepare and make freely available a well-documented package containing the source code
of the proposed methods.

2http://www.asap.cs.nott.ac.uk/chesc2011

191

http://www.asap.cs.nott.ac.uk/chesc2011




Bibliography

[Abdullah et al., 2007] cited page(s) 25

S. Abdullah, E.K. Burke, and B. McCollum. A hybrid evolutionary approach to the
university course timetabling problem. In Proc. IEEE Congress on Evolutionary Com-
putation (CEC), pages 1764–1768, 2007.

[Anderson et al., 2000] cited page(s) 15

D. Anderson, E. Anderson, N. Lesh, J. Marks, B. Mirtich, D. Ratajczak, and K. Ryall.
Human-guided simple search. In Proc. of the Seventeenth National Conference on Ar-
tificial Intelligence and Twelfth Conference on Innovative Applications of Artificial In-
telligence, pages 209–216. AAAI Press, 2000.

[Angeline, 1995] cited page(s) 40

P.J. Angeline. Adaptive and self-adaptive evolutionary computations. In Computational
Intelligence: A Dynamic Systems Perspective, pages 152–161. IEEE, 1995.

[Angelov et al., 2003] cited page(s) 26

P.P. Angelov, Y. Zhang, J.A. Wright, V.I. Hanby, and R.A. Buswell. Automatic design
synthesis and optimization of component-based systems by evolutionary algorithms. In
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Á. Fialho and R. Ros. Analysis of adaptive strategy selection within differential evo-
lution on the BBOB-2010 noiseless benchmark. Research Report RR-7259, INRIA,
2010.

[Fialho et al., 2008] cited page(s) xi, 6, 50, 68, 69, 71, 85, 133, 134
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