Researchers

Yves Bertot
INRIA Sophia Antipolis - Méditerranée
Presentation

My main research interest revolves around the formal description of algorithms and mathematical theories. By formal description, I mean descriptions that can be completely checked by computer programs: theorem proving tools.

We talk about theorem proving tools, because we try to prove every property that we state about algorithms. So each new algorithm that we study gives rise to a few theorems that need to be entirely verified on the computer. At least one theorem has the statement of the form, if we feed this algorithm inputs that satisfy property so and so, then the algorithm performs without error and returns outputs that satisfy such and such properties.

the long term dream is that this kind of technique could be used to develop all the software that we use in everyday life, so that bugs would be detected very early in the design process. A bug would appear when some algorithm requires that its input has a given property, but this algorithm receives its outputs from another algorithm which only ensures a weaker property. Checking that some property entails another one is also among the theorems that we need to prove.

Publications at the Joint Centre:

2013

Conference papers

titre
A Machine-Checked Proof of the Odd Order Theorem
auteur
Georges Gonthier, Andrea Asperti, Jeremy Avigad, Yves Bertot, Cyril Cohen, François Garillot, Stéphane Le Roux, Assia Mahboubi, Russell O’Connor, Sidi Ould Biha, Ioana Pasca, Laurence Rideau, Alexey Solovyev, Enrico Tassi, Laurent Théry
article
Sandrine Blazy and Christine Paulin and David Pichardie. ITP 2013, 4th Conference on Interactive Theorem Proving, Jul 2013, Rennes, France. Springer, 7998, pp.163-179, 2013, LNCS. <10.1007/978-3-642-39634-2_14>
Accès au texte intégral et bibtex
http://hal.inria.fr/hal-00816699/file/main.pdf BibTex

Books

titre
Homotopy Type Theory: Univalent Foundations of Mathematics
auteur
Peter Aczel, Benedikt Ahrens, Thorsten Altenkirch, Steve Awodey, Bruno Barras, Andrej Bauer, Yves Bertot, Marc Bezem, Thierry Coquand, Eric Finster, Daniel Grayson, Hugo Herbelin, André Joyal, Dan Licata, Peter Lumsdaine, Assia Mahboubi, Per Martin-Löf, Sergey Melikhov, Alvaro Pelayo, Andrew Polonsky, Michael Shulman, Matthieu Sozeau, Bas Spitters, Benno Van den Berg, Vladimir Voevodsky, Michael Warren, Carlo Angiuli, Anthony Bordg, Guillaume Brunerie, Chris Kapulkin, Egbert Rijke, Kristina Sojakova, Jeremy Avigad, Cyril Cohen, Robert Constable, Pierre-Louis Curien, Peter Dybjer, Martín Escardó, Kuen-Bang Hou, Nicola Gambino, Richard Garner, Georges Gonthier, Thomas Hales, Robert Harper, Martin Hofmann, Pieter Hofstra, Joachim Koch, Nicolai Kraus, Nuo Li, Zhaohui Luo, Michael Nahas, Erik Palmgren, Emily Riehl, Dana Scott, Philip Scott, Sergei Soloviev
article
Aucun, pp.448, 2013
Accès au bibtex
BibTex

2008

Conference papers

titre
Canonical Big Operators
auteur
Yves Bertot, Georges Gonthier, Sidi Ould Biha, Ioana Pasca
article
Theorem Proving in Higher Order Logics, Aug 2008, Montreal, Canada. 5170/2008, 2008, LNCS. <10.1007/978-3-540-71067-7>
Accès au texte intégral et bibtex
http://hal.inria.fr/inria-00331193/file/main.pdf BibTex