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Abstract

We address the problem of detecting actions, such as
drinking or opening a door, in hours of challenging video
data. We propose a model based on a sequence of atomic
action units, termed “actoms”, that are characteristic for
the action. Our model represents the temporal structure of
actions as a sequence of histograms of actom-anchored vi-
sual features. Our representation, which can be seen as
a temporally structured extension of the bag-of-features, is
flexible, sparse and discriminative. We refer to our model
as Actom Sequence Model (ASM). Training requires the an-
notation of actoms for action clips. At test time, actoms are
detected automatically, based on a non parametric model
of the distribution of actoms, which also acts as a prior on
an action’s temporal structure. We present experimental re-
sults on two recent benchmarks for temporal action detec-
tion, “Coffee and Cigarettes” [12] and the dataset of [3].
We show that our ASM method outperforms the current state
of the art in temporal action detection.

1. Introduction

We propose an approach for finding if and when an ac-
tion is performed in a large video database. We focus on
actions of short duration (typically a few seconds), like sit-
ting down or opening a door, and several hours of real-world
video data (e.g. movies). Our approach is based on decom-
posing actions into sequences of key atomic action units,
which we refer to as actoms.

Many actions can be naturally defined in terms of a com-
position of simpler blocks (see figure 1). We can observe
that the displayed actions are easy to recognize given such
a sequential description. Obtaining this decomposition of
actions in atomic units is challenging, especially in realistic
videos, due to viewpoint, pose, appearance and style vari-
ations. Furthermore, these atomic action units are action
dependent and can be motions, poses or other visual pat-
terns [20]. Therefore, many successful approaches for real-
world video data avoid this decomposition and model an ac-

Figure 1. Examples of actom annotations for two actions.

tion as a spatio-temporal cuboid represented with a global
bag-of-features (e.g. [3,11,19]). However, these models dis-
card the temporal information inherent to actions and are,
thus, not well adapted to distinguish actions with several
motion or posture changes (e.g. opening a door) and sym-
metric actions (e.g. sitting down vs. standing up). Discrimi-
native models are of particular importance in the context of
action detection, where searching through a large volume
of data for actions of short duration can result in many false
alarms.

Following recent work [17, 18, 20], we argue that ac-
tions are by essence temporal phenomena and modeling
their temporal structure leads to a more discriminative rep-
resentation. As observed by Schindler and Van Gool [20],
it is important to understand how actions can be decom-
posed into the right basic units. In this work, we propose
to model an action as a small sequence of actoms. These
action atoms are key components of short duration, whose
sequence is characteristic of the action.

We make the following contributions. First, we intro-
duce a temporally structured representation of actions in
videos, called Actom Sequence Model (ASM) (section 2).
Our representation encodes in a flexible way the temporal
ordering constraints between actoms. Actoms are specific
to each action class and obtained by manual annotation. We
observed that the annotation cost for actoms is comparable
to specifying beginning and end of a training clip. Note
that manual annotations are required at training time only.
Second, we propose a simple yet efficient parameter-free
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approach for multi-scale detection, based on a non para-
metric generative model of inter-actom spacings (section 3).
We show that our approach outperforms the state of the art
on two recent challenging benchmarks for action detection
from [3, 12] (section 4).

1.1. Related work

Previous work on incorporating temporal information
into action models have often focused on simple datasets
where the video conditions are controlled. Nowozin et
al. [18] use a sequence of individual local features which
are assigned to an arbitrarily fixed number of uniformly
sized temporal bins. Based on the popular work of Vi-
ola and Jones [24], Jung et al. [8] propose a two-stage
feature selection procedure using Adaboost to obtain lo-
cal spatio-temporal regions of interest. Schindler and Van
Gool [20] model actions as the concatenation of per-frame
shape and motion features and show that only a few con-
tiguous frames are necessary for recognition. These models
are not flexible and even in simple controlled video settings
(e.g. on KTH [21]), they only perform similarly or worse
than a global bag-of-features representation.

Some approaches deal with realistic video data, i.e. with
challenging uncontrolled video conditions. In Laptev et
al. [11] bag-of-features with spatio-temporal pyramids for
different, manually selected, regular spatial and temporal
grids are combined in a multi-channel Gaussian kernel.
Such an approach is shown to improve over the standard
bag-of-features, but the temporal structure of actions is not
explicitly modeled and, thus, not adapted to the action. In
Duchenne et al. [3] and Satkin and Hebert [19], it is ob-
served that temporal boundaries of actions are not precisely
defined in practice, whether they are obtained automatically
using “weak” supervision or by hand. Both of these works
deal with realistic data and improve the quality of annotated
action clips by automatically refining their temporal bound-
aries to obtain smaller sub-clips, which they represent using
an orderless bag-of-features. However, they only model the
temporal extent of actions, not their temporal structure.

Related to our work, Niebles et al. [17] observe that tem-
poral information is important to understand motion and
discover motion parts based on a latent model [6]. Their
model is tailored to the classification of long duration ac-
tivities (e.g. “triple-jump”), represented by a composition
of actions described with a bag-of-features. In contrast to
our model, their representation is not sequential, but they
only induce a loose hierarchical structure by introducing a
temporal displacement penalization factor in part compar-
isons. Such an approach is not well adapted to short ac-
tions, as illustrated by their results. Also dealing with long-
term activities, Laxton et al. [13] use dynamic Bayesian net-
works with a Viterbi-like inference algorithm on manually
designed, complex, per-activity hierarchies of predefined

contextual cues and object detectors to recognize complex
interactions with objects.

The majority of the existing approaches focus on the
problem of classification of already temporally segmented
video clips. However, detection algorithms are more rele-
vant for many applications (e.g. robotics, retrieval, video-
surveillance) [9, 19]. This is a more challenging problem
and current state-of-the-art methods [3, 9, 12] use sliding
window approaches, which rely on multi-scale heuristics.
In contrast, our method proposes a principled and efficient
solution by marginalizing over all possible actom sequences
for a given test video.

Our method is similar in spirit to state-of-the-art ap-
proaches for facial expression recognition from videos. Fa-
cial expression recognition is currently performed using la-
bel information defined by the Facial Action Coding System
(FACS) [4], which segments facial expressions into prede-
fined “action units”, complemented with temporal annota-
tions such as onset, peak, offset. However, except e.g. [23],
most approaches only use “peak” frames for classifica-
tion [1]. We propose here a principled framework to handle
class labels as well as temporal labels for action recognition.

2. Modeling actions as sequences of actoms
An action is decomposed into a small, temporally or-

dered sequence of category specific actoms. An actom is
a short atomic action, identified by its central temporal lo-
cation around which discriminative visual information is
present. It is represented by a temporally weighted aggre-
gation mechanism (described in section 2.1) of temporally-
localized features (see section 2.2). We model an action as
a sequence of actoms by concatenating the per-actom rep-
resentations in temporal order to form our sparse sequential
model, called Actom Sequence Model (ASM), see Figure 2
for an illustration. We explain how we obtain training data
for the ASM in section 2.3.

2.1. The Actom Sequence Model

We define the time-span of an actom with a radius, mea-
sured in number of frames around its temporal location. We
propose an adaptive radius that depends on the relative po-
sition of the actom in the video sequence. The adaptive ra-
dius ri for the actom at temporal location ti in the sequence
s = (t1, · · · , tn) with n ≥ 2 is parametrized by the amount
of overlap ρ ∈ [0, 1], between adjacent actoms:

ri =
di

2− ρ
(1)

where di is the distance (in frames) to the closest actom:

di =

 t2 − t1 if i = 1
tn − tn−1 if i = n
min(ti − ti−1, ti+1 − ti) if 1 < i < n
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Figure 2. Construction of our ASM action model using actom-
based annotations and a temporal weighting scheme for aggregat-
ing local features in a sparse temporally structured bag-of-features.

This defines a symmetric neighborhood around each tem-
poral location that is specific to each actom of each action.
Visual features are computed only within the forward and
backward time range defined by the actom’s radius. They
are, then, accumulated in per-actom histograms of visual
words, similar to the traditional bag-of-features approach
(see section 2.2 for more details).

Defining the actom’s time-span relatively to its closest
neighbour has the advantage of either (i) allowing adja-
cent actoms to overlap and share features while ensuring
the temporal order, which makes the model robust to inac-
curate temporal localization of actoms, or (ii) to have gaps
between actoms, which allows to represent non-continuous
actions. An adaptive time-span makes the model naturally
robust to variable action duration and speed as well as to
temporal discontinuities. The only assumption we make is
with respect to the temporal ordering of the actoms.

We also introduce a temporally weighted assignment
scheme. As opposed to the usual time-independent bin-
ning process, we propose to aggregate weighted contribu-
tions of per-actom features, where each feature at temporal
location t falling in the vicinity of actom ai = (ti, ri) (i.e.
if |t − ti| ≤ ri) is weighted by its temporal distance to the
actom:

w(t) =
1

σ
√
2π

exp

(
−|t− ti|

2

2σ2

)
(2)

Hence, the more the time-stamp of a feature is remote from
the time-stamp of its corresponding actom, the more its
weight in the soft assignment scheme decreases.

This scheme offers an intuitive way to tune the band-
width σ of the weighting window, through a coefficient 0 <
p < 1, which can be interpreted as a probability using the
Chebyshev inequality for a random variable X of mean µ
and finite standard deviation σ: P(|X − µ| ≥ kσ) ≤ 1/k2,
for any k > 0. Rewriting this equation with X = t, µ = ti
and ri = kσ, we obtain:

P(|t− ti| < ri) ≤ p = 1− σ2

r2i
(3)

The parameter p can be interpreted as the “peakyness” of
our soft-assignment scheme. It allows to encode a prior on
the amount in % of probability mass of features falling in
the actom time range. Thus, the larger p, the smaller the
σ values will be, i.e. the more centered the weighting will
be, while smaller p means “flatter” Gaussians for the soft
voting scheme in Equation 2.

To summarize, from a sequence of actom locations
s = (t1, · · · , tn), we derive our ASM representation
by (i) computing visual features only in the time-span of
those actoms (defined by their radii parametrized by the ρ
parameter in Equation. 1), (ii) then computing their contri-
butions (defined by Equation. 2 and the parameter p) to per-
actom temporally weighted histograms and (iii) append-
ing these histograms into a temporally ordered sequence
which is our ASM representation of videos (cf. Figure 2):
x = (x1,1, · · · , x1,k, · · · , xn,1, · · · , xn,k), where

xi,j =

ti+ri∑
t=ti−ri

w(t)cj(t) (4)

is the sum over the ith actom’s time-span [ti − ri, ti + ri]
of the weighted number cj(t) of local features of frame t
assigned to visual word j. The ASM vector x is then L1-
normalized. In the following section, we describe the local
features we use to represent visual information inside ac-
toms.

2.2. Local visual information in actoms

Following recent results on action recognition in chal-
lenging video conditions [3, 11], we use sparse space-time
features [10] to represent local motion and dynamic appear-
ance. Using a multi-scale space-time extension of the Harris
operator, we detect spatio-temporal interest points (STIPs),
that we represent with a concatenation of coarse histograms
of oriented gradient (HoG) and optical flow (HoF). The pa-
rameters we use are similar to the settings of [25].

Once a set of local features has been extracted, we quan-
tize them using a visual vocabulary. In our experiments, we
cluster a subset of 100, 000 features randomly sampled from
the training videos. Similar to [3], we use the k-means al-
gorithm with a number of clusters set to k = 1000. We then
assign each feature to the closest (using Euclidean distance)
visual vocabulary word.

3203



2.3. Actom annotations

Actoms are action specific and it is therefore impossible
to build an a priori universal vocabulary of actoms. Here,
actoms are annotated manually for a set of training actions1.
An actom is annotated by a timestamp in the corresponding
video. This temporal location is selected such that it con-
tains, in the time range defined by its surrounding frames,
static visual information (e.g. pose or object appearance)
and/or dynamic information (motion) that is representative
of a part of the action. Annotations are manually obtained
only for the positive training examples. See Figure 1 for
examples of actom frames. During the annotation process,
we ensure a semantic consistency in the choice of actoms
across different scenes where the same action is observed.
This means that the n-th actom of an action has exactly one
interpretation, like “recipient containing liquid coming into
contact with lips” for the drinking action. The definition
of actoms given as annotation guidelines can be obtained
either from a dictionary or from an expert (e.g. for a sport
action like a tennis serve). Note that an actom is a visual
phenomenon that is semantically relevant and not a learned
discriminative part of the action. It is therefore possible to
interpret a predicted actom sequence.

Such annotations have the following practical advan-
tages. First, we observed that only a few actoms are nec-
essary to characterize an action. We used three actoms per
action example in our experiments. Second, these annota-
tions can be obtained in the same amount of time (linear in
the number of frames) as temporal boundaries. Third, it is
easier to obtain consistent actom annotations than precise
action boundaries. Indeed, the temporal extent of actions
is generally difficult to determine precisely. For instance,
a person walking towards a door before opening it may or
may not be considered as a part of the action “Open Door”.
In addition, inaccurate boundary annotations significantly
degrade the recognition performance (as outlined by [3] for
detection and [19] for classification). On the contrary, ac-
tom annotations are well defined as a few frames of precise
atomic events. Consequently, annotating actoms leads to
smaller annotation variability.

Figure 3 quantitatively illustrates this claim by show-
ing that the ground truth annotations for the action “sitting
down” have a smaller variance, with respect to action dura-
tion, when actoms are annotated instead of beginning and
end frames. In addition, we observed that the distribution
of actoms are much more similar between the training and
test sets. Note, that we annotated ground truth test actoms
only to compute detection performance in terms of actoms
detected (c.f . section 4). As described in the following sec-
tion, our detection algorithm does not require manually an-
notated test actoms, but automatically detects them.

1Annotations available at http://lear.inrialpes.fr/data.

Figure 3. Frequencies of action durations obtained from manual
annotations for the action “sitting down”. “Actom-cropped” rep-
resents the durations when cropped according to actoms. “Bound-
aries” depict the duration of ground truth annotations from [3],
obtained by labeling beginning and end frames of the action.

3. Temporal action detection framework

In order to detect if and when a target action is performed
in hours of video, we train an action classifier for our ASM
descriptor (described in section 3.1) and detect actions in
test video sequences by using automatically generated test
actom sequences as explained below (section 3.2).

3.1. Action classifier

Binary action classification consists of classifying de-
scriptions of videos as belonging to an action category or
not. A state-of-the-art machine learning tool to solve this
problem efficiently is Support Vector Machines (SVMs).
We use the LIBSVM library with appropriate class balanc-
ing [15] and probability outputs [14].

Kernels on actions. In conjunction with SVMs, we
use the intersection kernel between histograms [16], de-
fined for any x = (x1, . . . , xN ) and x′ = (x′1, . . . , x

′
N )

as K(x, x′) =
∑N

j=1 min(xj , x
′
j).

Negative training examples. As mentioned previously,
positive training examples for an action are obtained by
manual annotation. Recent experimental results, e.g. in [7],
suggest that rather than using positive examples only, it is
beneficial to use “weak” negative training examples for bet-
ter discriminative performance. We adopt here the simple
strategy of [7], which consists in randomly sampling clips
of temporal extent comparable to the positive training ex-
amples. Though we exclude the annotated training posi-
tives, this strategy might still generate a significant number
of false negatives as (i) we are interested in common actions
that might frequently occur in the training videos, (ii) only
a few of these samples are annotated as training positives
in order to limit the annotation effort (the rest is missed).
Hence, in contrast to the usual approach (see [3]), we pro-
pose to sample only a few random negative clips. This pre-
vents the dataset from including too many false negative
examples which could harm the recognition performance,
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while also leading to a smaller computation cost. In prac-
tice, we observed that 300 negative examples, that is be-
tween 3 and 6 times the number of positive examples, gave
good results for all of our experiments. Note, that this rules
out the possibility to mine so-called “hard negative” exam-
ples for a re-training stage [2], as we do not know before-
hand which examples are truly negative.

3.2. Detection with actoms

To detect actions in a test sequence, we apply our SVM
classifier in a sliding window manner. However, instead
of sliding a temporal window of some fixed scale, we
shift the temporal location of the middle actom tm, where
m = bn/2c and n is the number of actoms for the action
category. As an action is of short duration w.r.t. the whole
duration of the test sequence, we use a small temporal shift
(5 frames in our experiments). We, then, build our ASM
representation by automatically generating candidate actom
sequences centered on tm.

Generative temporal model. We first learn a generative
model of the temporal structure by estimating the distribu-
tion of relative actom spacings from the training sequences:
{∆i = (ti,2−ti,1, . . . , ti,n−ti,n−1), i = 1 . . . N+}, where
n is the number of actoms of the action category and N+ is
the number of positive localized training actom sequences
(ti,1, . . . , ti,n). We use a non-parametric kernel density es-
timation algorithm with Gaussian kernels whose bandwidth
h is automatically set according to Scott’s factor [22]. We
choose this method instead of histograms because it has
the advantage of yielding a smooth estimate, and instead of
Gaussian mixture models, which require parameter tuning.
We obtain a multivariate continuous distribution of density:

D ∼ 1

Nhn−1

N∑
i=1

1√
2π

exp

(
−||∆−∆i||2

2h2

)
(5)

over inter-actom distances ∆ = (t2−t1, . . . , tn−tn−1). As
we deal with discrete time steps (frames), we then discretize
this distribution in the following way. We first sample
10,000 points from our estimated density. We, then, quan-
tize them, using a quantization step equivalent to our slid-
ing window step-size. We compute the corresponding dis-
crete multi-variate distribution by using histograms, trun-
cate its support by removing outliers (points with a proba-
bility smaller than 2%) and re-normalize the probability es-
timates. This results in a discrete multi-variate distribution

D̂ = {(∆̂j , p̂j) , j = 1 · · ·K}, p̂j = P(∆̂j) (6)

with a support limited to only a few likely candidate actom
spacings ∆̂j = (t̂j,2 − t̂j,1, · · · , t̂j,n − t̂j,n−1). In practice,
we obtain K ≈ 10.

This distribution D̂ is learned at training time and is used
to generate candidate actom sequences at test time. For

a given central actom location tm, we use our generative
model of inter-actom spacings D̂ to compute the probability
of an action occurring at this temporal location by marginal-
izing over all candidate actom sequences:

P(action at tm)

=
∑K

j=1 P(action at tm | x̂j) P(x̂j) (7)

=
∑K

j=1 fASM(t̂j,1, . . . , tm, t̂j,n) p̂j

where fASM is the a posteriori probability estimate returned
by our SVM classifier trained on ASM models. This mech-
anism provides a principled solution to perform multi-scale
detection, instead of the usual multi-scale sampling heuris-
tic [12]. Furthermore, it can be used to detect not only an
action, but also its actoms, by simply taking the maximum
a posteriori argmaxj fASM(t̂j,1, . . . , t̂j,n)p̂j .

Detection window. When a time-range and not just a
temporal location is required (e.g. for evaluation), we define
a detection window centered on a detection at frame tm. As
we marginalize over D̂, we consider a window encompass-
ing all frames used in the score computation. This defines a
single scale per action category, which only depends on the
largest actom spacings from D̂.

Non-maxima suppression. As the temporal shift be-
tween two detections is small in practice, we use a non-
maxima suppression algorithm to remove close detections.
We recursively (i) find the maximum of the scores and
(ii) delete detection windows with lower scores, that tem-
porally overlap with this maximum. Windows are consid-
ered as overlapping if the intersection over the union of the
frames is larger than 20%.

4. Experiments
4.1. Datasets

We use two challenging movie datasets for action de-
tection: the “Coffee and Cigarettes” dataset [12] and the
“DLSBP” dataset [3].

The “Coffee and Cigarettes” dataset consists of a sin-
gle movie composed of 11 short stories, each with dif-
ferent scenes and actors. The dataset was introduced by
Laptev and Pérez [12]. They evaluated action localization
for “drinking”. Evaluation for “smoking” was later added
by [9]. The training sets consists of 41 drinking and 70
smoking examples, from six different short stories of the
“Coffee and Cigarettes” movie, 32 drinking and 8 smoking
clips from the movie “Sea of love” and 33 drinking exam-
ples recorded in a lab. The test sets are two short stories
(approx. 36,000 frames) for drinking, with a total of 38
drinking actions, and three short stories (approx. 32,000
frames) for smoking, with a total of 42 positive samples.
Note that there is no overlap between the training and test
sets, both in terms of scenes and actors.
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The “DLSBP” dataset, introduced by Duchenne et
al. [3], consists of two action categories “OpenDoor” and
“SitDown”. The training sets includes 38 “OpenDoor” and
51 “SitDown” actions sequences obtained from 15 movies.
Three movies are used as test set, containing a total number
of 91 “OpenDoor” actions and 86 “SitDown” ones.

All examples for both datasets are manually annotated
with temporal boundaries. However, as previously men-
tioned in section 2.3, the annotations are often slightly inac-
curate, generally beginning before the action and ending af-
ter it happened. Note that the chance level, i.e. the probabil-
ity of randomly finding the positives, is of approximatively
0.1% for the “Coffee and Cigarettes” dataset, and 0.01% for
the “DLSBP” dataset.

4.2. Evaluation framework

We use two evaluation criteria to determine if a test win-
dow is matching a ground truth action. We first consider
the most commonly used criterion [3, 9, 12], referred to as
OV20, which states that a window matches a ground truth
action, if they overlap (intersection over union) by more
than 20%. Note that it is the same as our overlap ratio
for non-maxima suppression. We use the original ground
truth annotations (beginning and end frames) provided by
the dataset authors.

However, this criterion is loose and as temporal bound-
aries are imprecise, it might quantify how well the temporal
context is learned, instead of the action itself. Therefore,
in conjunction to the previous one, we used a complemen-
tary, more restrictive matching criterion based on ground
truth actom annotations. Referred to as OVAA (for “overlap
all actoms”), it states that a test window matches a ground
truth test action, only if it contains the central frames of all
ground truth actoms. Consequently, we also annotated ac-
toms for the test positives to assess ground truth according
to OVAA. These annotations are not used at test time.

Similarly to [3, 9, 12], temporal detection performance
is measured in terms of precision and recall by computing
the Average Precision (AP). Note, that if after non-maxima
suppression, there are multiple windows matching the same
ground truth action, we only consider the one with the max-
imal score as a true positive, the others are considered as
false positives, similarly as for object detection (e.g. in the
Pascal VOC challenge [5]).

Regarding our model hyper-parameters, we used the
same voting parameter value p = 75% and the same actom
overlap ratio value ρ = 75% for our ASM models in all
of our experiments (for all datasets and all actions). These
values yield good results in practice and show the flexibility
of our model, which can be discriminative, even though its
parameters are not specifically tuned for each action.

4.3. Bag-of-features baselines

We compare our approach to two baseline models: the
standard bag-of-features, and its extension with a regular
temporal grid, both described below.

To make the results comparable, we use the same visual
features, vocabularies and kernel as the ones used for our
ASM model (c.f . section 2.2). For the positive training sam-
ples, we crop the original annotations around the training
actoms, which we extend by a small offset (half the inter-
actom distances for each sequence). This step was shown to
improve performance by Satkin and Hebert [19]. Further-
more, we use the same random training negative samples
(300 in total) as the ones used by our ASM approach.

At test time, bag-of-features-based sliding window ap-
proaches require the a priori definition of multiple tempo-
ral scales. Similarly to our generative model of actom lo-
cations, we learned the scales from the training set. We
obtained the following scales: {20, 40, · · · , 100} for drink-
ing and smoking, and {20, 40, · · · , 140} for both opening
a door and sitting down. Regarding the step-size by which
the windows are translated, we used 5 frames for all of our
experiments, including for our ASM-based approach. We
finally apply a non-maxima suppression post-processing to
the windows, similar to the one described in section 3.2 and
commonly used in the literature (e.g. in [9]).

In addition to the global bag-of-features baseline (re-
ferred to as “BOF”), we evaluate an extension with regular
temporal grids [11]. We use a fixed grid of three equally-
sized temporal bins, which in practice gave good results and
is consistent with our number of actoms. First, the video is
cut in three parts (beginning, middle and end) of equal dura-
tion. Then, a “BOF” is computed for each part and the three
histograms are concatenated. In the following, this method
is referred to as “BOF T3”.

4.4. Detection results

Detection results are reported in table 1 for the “Cof-
fee and Cigarettes” dataset and in table 2 for the “DLSBP”
dataset. We report detection results for our method (ASM),
the two baselines (BOF and BOF T3) and recent state-of-
the-art results. Figure 4 shows frames of the top 5 results
for “drinking” and “Open Door” obtained with our method.
Some examples of automatically detected actoms with our
ASM method are depicted in figure 5.

For the “Coffee and Cigarettes” dataset, the method of
Laptev and Pérez [12] (referred to as LP) is trained for
spatio-temporal localization with stronger supervision in
the form of spatially and temporally localized actions. We
compare to the interpolation of spatio-temporal detection
results obtained by Laptev and Pérez [12] to the temporal
domain, as reported in [3]. These results are only available
for the drinking action. Kläser et al. [9] additionally publish
results for the smoking action. The method of [9], referred

3206



Figure 4. Frames of the top 5 actions detected with our ASM method for the “drinking” (top row) and “Open Door” (bottom row) actions.

Method “Drinking” “Smoking”
matching criterion: OV20

DLSBP [3] 40 NA
LP [12] 49 NA
KMSZ [9] 54.1 24.5
BOF 36 (±1) 19 (±1)

BOF T3 44 (±2) 23 (±3)

ASM 57 (±3) 31 (±2)

matching criterion: OVAA
BOF 11 (±2) 1 (±0)

BOF T3 18 (±3) 4 (±1)

ASM 50 (±5) 22 (±2)

Table 1. Action detection results on the “Coffee and Cigarettes”
dataset in Average Precision (in %). ASM refers to our method.
Where possible, we report the mean and standard deviation of the
performance over 5 independent runs with varying negative train-
ing samples.

Method “Open Door” “Sit Down”
matching criterion: OV20

DLSBP [3] 13.9 14.4
BOF 12.2 14.2
BOF T3 11.5 17.7
ASM 16.4 19.8

matching criterion: OVAA
BOF 9.9 5.8
BOF T3 5.1 13.1
ASM 14.9 16.7

Table 2. Action detection results on the “DLSBP” dataset in Aver-
age Precision (in %). ASM refers to our method.

to as KMSZ, is based on regular temporal grids inside hu-
man tracks. Note that their set-up is slightly different than
ours, as they report results for spatio-temporal detection,
that quantify the performance of both their human tracker
and their temporal action detection approach restricted to
human tracks. On the “DLSBP” dataset, we compare to the
original results of the authors in [3]. They use a similar
set-up to our BOF baseline. In the following, we discuss
how our ASM model compares to both our bag-of-features
baselines and the state of the art.

Comparison to bag-of-features. According to both
evaluation criteria, we perform better than the bag-of-
features baseline. The improvement is significant when
using the OV20 criterion (+21% for drinking, +12% for
smoking, +4.2% for “Open Door” and +5.6% for “Sit
Down”). In contrast to our method, the BOF baseline
sees its performance strongly degraded when changing
the matching criterion from OV20 to the more restrictive
OVAA (e.g. −25% for drinking). This proves that it learns
more the temporal context than the action itself. Our ASM
model, on the other hand, is more accurately detecting all
action components and the relative gap in performance w.r.t.
the baselines increases significantly when changing from
OV20 to OVAA (e.g. from +21% to +39% for drinking
and from +12% to +21% for smoking).

Rigid vs. adaptive temporal structure. Contrary to
using ASM, incorporating a rigid temporal grid does not
always improve over global bag-of-features. Though, in
some cases, it can noticeably improve detection perfor-
mance compared to “BOF”, it is significantly outperformed
by our adaptive model. This confirms that the temporal
structure of actions varies and, therefore, needs to be rep-
resented with a flexible model that can adapt to different
durations, speeds and interruptions. Thus, regular tempo-
ral grids are not well suited to represent temporal struc-
ture, whereas our method leverages temporal information
and consistently improves performance over non-structured
or rigidly structured methods.

Comparison to state-of-the-art. Our method clearly
outperforms the state-the-art approaches, for all actions of
the two datasets. For instance, on the drinking action, we
gain up to +17% AP with respect to DLSBP [3]. On the
more challenging “DLSBP” dataset, we improve by +2.5%
for “Open Door” and by +5.4% for “Sit Down”. Our
ASM method even outperforms other methods trained with
more complex supervision, like bounding boxes (+8% w.r.t.
LP [12]) or human tracks with regular grids (+3% w.r.t.
KMSZ [9]). This shows, that appropriately modeling the
temporal structure of actions is crucial for performance.
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Figure 5. Frames of automatically detected test actom sequences.

5. Conclusion
In this paper, we introduced the Actom Sequence Model

(ASM). This model describes an action with a temporal se-
quence of actoms, which are characteristic of the action. It
is discriminative, as it represents an action by several com-
ponents instead of one average representation as in the bag
of features. It is flexible, as our temporal representation
allows for varying temporal speed of an action as well as
interruptions within the action. Experimental results show
that our approach outperforms the bag of features as well
as its extension with a fixed temporal grid. Furthermore,
our approach outperforms the state of the art, even if more
complicated models with spatial localization are used. This
illustrates the power of our temporal model.
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