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Analyse de sélection adaptative de stratégies
appliquée à l'algorithme à evolution di�érentielle

sur le banc d'essai de fonctions non-bruitées
BBOB 2010

Résumé : Ce document présente une analyse empirique de laFitness-based
Area-Under-Curve - Bandit (F-AUC-Bandit ), une méthode de sélection adap-
tative de stratégies récemment proposé dans le contexte desalgorithmes géné-
tiques. Cette méthode est utilisé ici pour sélectionner, pendant la résolution
du problème, la stratégie à être utilisé par l'algorithme à évolution di�éren-
tielle pour générer la prochaine solution, basée sur les performances récentes
des stratégies disponibles. Des résultats expérimentaux sur un banc d'essai
de fonctions tests non-bruitées sont présentés. Le gain de performance attein-
dre par l'utilisation de techniques adaptatives est montré par la comparaison
entre F-AUC-Bandit et les choix normalement prises par un utilisateur naïf:
l'utilisation de seulement une stratégie ou la sélection aléatoire à partir d'un
sous-ensemble de stratégies.F-AUC-Bandit est comparé aussi avec d'autres
techniques adaptatives existantes, en montrant une performance signi�cative-
ment meilleure (par rapport au temps d'exécution espéré pour atteindre une
valeur cible) dans la majorité des fonctions, et en présentant en même temps
une con�guration très robuste pour ces hyper-paramètres. Même si cette com-
binaison ne peut pas encore rivaliser avec un algorithme d'optimisation état
de l'art comme le CMA-ES (avec lequel une comparaison empirique est aussi
présenté), un grand gain de performance a été atteint par rapport au algorithme
de base, celui à l'évolution di�érentielle, et aussi par rapport aux choix naïf et
adaptatives existantes.

Mots-clés : Sélection adaptative de stratégie, algorithme à évolutiondif-
férentielle, bandit manchot, aire sous la courbe ROC
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1 Introduction

Di�erential Evolution (DE) is a very popular evolutionary a lgorithm. This
is mainly because of its simple structure, ease of use, robustness and speed.
Because of this, DE has been applied on many real-world applications, such as
pattern recognition, neural network training, data mining [1, 8, 24, 9, 6].

However, one of the features that helps making it robust with relation to
so many di�erent situations �the number of available strateg ies for o�spring
generation [26, 24]� is also responsible for adding an extra di�culty to its
use, the de�nition of which of the available strategies should be applied to the
problem at hand. Such choice is problem-dependent, and verysensitive in terms
of algorithm performance, what turns to be a non-trivial decision for the user.

An o�-line tuning procedure might be used to �nd the best stra tegy for the
problem at hand. But, besides being computationally expensive, its result (the
best single strategy) will always lead to sub-optimal behavior, as exploration
tends to be more important in the beginning of the optimization process, while
exploitation should be preferred when approaching to the optimum. In other
words, di�erent strategies should be applied at di�erent moments of the opti-
mization process, according to its �current needs� in termsof exploration and
exploitation.

De�ning the way such mixture of strategies will be used during the process
becomes yet another optimization problem. This is the main motivation for the
use of Adaptive Strategy Selection (AdapSS) techniques: based on the recent
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performance of each strategy on the current optimization process, the strategy
to be used on the generation of the next o�spring is automatically chosen, while
solving the problem.

A new comparison-based technique, theFitness-based Area-Under-Curve -
Bandit (F-AUC-Bandit ), has been recently proposed to this aim [13], being
originally assessed in the context of adaptive operator selection within Genetic
Algorithms (GAs). It uses a multi-armed bandit algorithm to select the strategy
to be applied, with the Area Under the ROC Curve paradigm [5] being used to
assess the performance of each strategy, based on the ranks of the �tnesses of the
generated o�spring, what makes it totally invariant with re lation to monotonous
transformations over the �tness function.

In this report we extend its empirical validation, coupling the F-AUC-Bandit
with a DE algorithm, and analyzing it on the context of contin uous optimization
with the BBOB-2010 noiseless benchmarking suite. Such combination is �rstly
compared with the common naïve choices,i.e., the basic DE using a single
strategy, and the DE with strategies uniformly chosen from the set of available
ones (referred to asUniform-DE ). Besides, it is also compared with previously
proposed adaptive schemes, listed as follows:

ˆ the PM-AdapSS-DE [16] adaptive strategy selection technique, a method
that uses the Probability Matching (PM ) strategy selection and a credit
assignment scheme based on therelative �tness improvements;

ˆ the Adaptive Pursuit (AP ) [28] adaptive strategy selection technique, here
being fed by extreme value based rewards [10];

ˆ the Dynamic Multi-Armed Bandit (DMAB ) [7], also using the extreme
value based rewards;

F-AUC-Bandit is also compared with the three other rank-based approaches
proposed in the same paper [13], the one that uses a �tness-based sum of ranks
as credit assignment scheme (referred to asF-SR-Bandit ), and the counterparts
of F-AUC-Bandit and F-SR-Bandit, using the rank of the �tness improvements
instead of the rank of the real �tness values. F-AUC-Bandit was chosen to
be the main technique in this report because it achieved overall better results,
even if not much signi�cant di�erence can be found between it and the other
rank-based techniques.

Lastly, in order to have an idea about the performance ofF-AUC-Bandit
with relation to state-of-the-art continuous optimizers, it was also compared
with the CMA-ES [ 3]. Although it did not show to be competitive, a better
performance could be achieved by simply tuning more carefully the parameters
of DE (population size NP , mutation scaling factor F , and crossover rateCR),
but this is out of the current scope of this work, which is rather to present
yet another proof-of-concept of the Adaptive Strategy (or Operator) Selection
paradigm.

As preliminaries, the DE algorithm will be brie�y overviewe d in Section 2.
The adaptive strategy selection techniques are brie�y described in Section 3 (we
refer the reader to the original papers [13, 16, 28, 7, 10] for a more complete
view). Section 4 presents the experimental settings and Section5 describes
the hyper-parameter tuning that were used to generate the empirical results,
presented in Section6. A brief conclusion is given in Section7
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2 Di�erential Evolution

Di�erential Evolution (DE) [ 26, 24] is an evolutionary algorithm that uses a
di�erential mutation procedure that consists in the additi on of the weighted
di�erence of two or more population vectors into a third one. DE loops over the
following steps:

Selection For the generation of each o�spring, up to �ve di�erent indiv iduals
(depending on the mutation strategy that will be used) are randomly
selected from the population.

Mutation Many di�erent mutation schemes or strategies can be considered.
We list a few here:

1) �DE/rand/1�:
v i = x r 1 + F �

�
x r 2 � x r 3

�
(1)

2) �DE/rand/2�:

v i = x r 1 + F �
�
x r 2 � x r 3

�
+ F �

�
x r 4 � x r 5

�
(2)

3) �DE/rand-to-best/2�:

v i = x r 1 + F �
�
x best � x r 1

�
+ F �

�
x r 2 � x r 3

�
+ F �

�
x r 4 � x r 5

�
(3)

4) �DE/current-to-rand/1�:

v i = x i + F �
�
x r 1 � x i

�
+ F �

�
x r 2 � x r 3

�
(4)

where i is in 1; : : : ; NP with NP being the population size,x i represents
the current individual, xbest is the best individual in the current genera-
tion, r1; r2; r3; r4; r5 are individuals randomly chosen from the population,
being r1 6= r2 6= r3 6= r4 6= r5 6= i . F is a parameter, the mutation scaling
factor, in the range ]0; 2],

Crossover ~ui is the resulting individual of the crossover between the parent ~xi

and the mutant candidate ~vi which is generated by choosing component
by component between those of~vi and ~xi with probability CR and 1� CR
respectively (CR being a parameter), with the exception that one random
component of~ui must correspond to that of ~vi ,

Replacement After the creation of an entire new population, the individu al ~ui

replaces~xi in the next generation population if there is an improvement.

The setting of parameters NP , CR, F and the choice of the strategies is
a sensitive issue in the sense that choosing the right strategy and setting the
algorithm parameters is very much dependent on the type of problem considered.
This specially motivates the use of adaptive strategy selection techniques.
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3 Adaptive Strategy Selection

To do Adaptive Strategy (or Operator) Selection, there is the need of de�ning
how the impact of the application of a given strategy is assessed, i.e., how to
reward the strategy after its �production�, which is referr ed to as the Credit
Assignment mechanism; and based on these assessments, there is the needof
de�ning how to select the next strategy to be applied, which is called theStrategy
Selection scheme. TheF-AUC-Bandit is brie�y analyzed in the following, as
well as the other adaptive schemes used as baseline for comparison, focusing on
how they handle these two issues.

3.1 Fitness-AUC Bandit

The F-AUC-Bandit algorithm, recently proposed in the context of GAs [13],
uses the Area Under the ROC Curve (AUC) paradigm to assess theempirical
quality of each strategy. The AUC is a criterion originally u sed in Machine
Learning to compare binary classi�cation rules [5]. In the context of AdapSS,
it shows how good one strategy is, by comparing the rewards received after its
recent applications with the rewards received by the others.

Instead of being calculated based on the received raw rewards, in this work
the AUC uses the ranks of these rewards, what improves its robustness with
relation to di�erent problems (there is no need of re-scaling the algorithm to
the di�erent possible ranges of rewards). Besides, by directly using the rank of
the �tnesses of the generated o�spring, instead of the commonly used �tness
improvements, it becomes a total comparison-based method,invariant with re-
lation to monotonous transformations over the �tness function. This is what
we refer to as theFitness-based AUC credit assignment scheme. In case the
generated o�spring does not improve over its parent, a null reward is assigned.

Figure 1, reproduced from [13], illustrates an example computation of the
AUC. Brie�y, it is the total area upper bounded by the Receiving Operator
Curve (ROC), represented by the solid line in the example. Computing the
quality of a given strategy consists of going down the sortedlist of raw rewards,
and drawing, starting from the origin, a vertical segment each time the strategy
under assessment is found in the list, a horizontal one otherwise, and a diagonal
in case of ties.

In this example, for the sake of clarity, each rank position has the same
weight on the calculation of the reward, i.e., each segment has the same length
than the others, no matter its ranking. But it is clear that th e initial rank
positions (the best raw rewards) should have a higher impacton this quality
estimation. To this aim, a decay factor can be applied. BeingW the size of the
sliding window that stores the recent raw rewards received by all the strategies,
and r the rank position of a given reward, the length of its segmentin the
ROC curve (i.e., its importance in the AUC computation) can be calculated as
D r (W � r ), with D 2 ]0; 1] being the decay factor that de�nes how skewed is
this ranking distribution. A linear decay is achieved by using D = 1 ; smaller
D , faster the decay.

A multi-armed bandit technique, based on the UCB multi-armed bandit
formula [2, 13], is then used to select the next strategy to be applied, according
to the presented quality estimation. The main di�erence is that, as there is
no much sense in calculating statistics over statistics, inthis case the empirical
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Figure 1: Sample computation of AUC reward: only two operators are involved,
and the sorted list contains the operators in the order (1 2 1 12 2 [2 2 1] 1 2
2 1), with [2 2 1] meaning that these 3 positions have the same raw reward,
leading to the diagonal line between points (3 3) and (5 4) (dotted lines are
spaced by 1). In case of decay, the width of the squares would decrease leftward
and upward.

quality used by the UCB formula is equal to the last received reward (the AUC
computation), instead of being an average of the received rewards, since the
AUC e�ciently summarizes the up-to-date quality of the stra tegy with relation
to the others, while n refers to the number of times the strategy appears in the
current reward sliding window.

Besides the decay factorD , the F-AUC-Bandit algorithm requires the def-
inition of a scaling factor C, that is used to balance the importance of its
exploration and exploitation terms; and also the credits sliding window sizeW .

3.2 Fitness-SR Bandit

The Sum of Ranks (SR) method, as its name already says, credits the op-
erators with the sum of the ranks of the rewards given after its applications,
normalized by the sum of all the rank-values, so that the sum of the credits
assigned to all operators sum up to 1 . BeingK the number of operators, the
operator i is rewarded at time t as follows:

SRi;t =

P
opr = i D r (W � r )

P W
r =1 D r (W � r )

(5)

The strategy selection scheme used is the same used byF-AUC-Bandit , based
on the adapted version of the UCB multi-armed bandit algorithm.

3.3 AUC-Bandit and SR-Bandit

These techniques are the counterparts ofF-AUC-Bandit and F-SR-Bandit that
use the rank of the �tness improvements instead of rank of thereal �tness values
of the generated o�spring for the credit assignment of the strategies. Although
not being comparison-based, they are still quite robust with relation to di�erent
�tness ranges, as presented in [13].

3.4 PM-AdapSS-DE

The PM-AdapSS-DE algorithm is much simpler, although presenting competi-
tive results, as shown in its original paper [16]. The credit assignment scheme
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awards the strategy with the absolute average of the rewardsrecently received
by it. The reward in this case is the relative �tness improvement, i.e., the im-
provement achieved by the o�spring over its parent, normalized by the �tness
of the best-so-far individual.

The Probability Matching (PM ) technique [15] uses this received credit to
update the empirical quality estimate it keeps for each strategy, with the weight
of the received reward being ruled by a user-de�ned parameter, the adaptation
rate � 2 ]0; 1]. The probability of selection of each strategy is then updated
proportionally to its empirical estimate with relation to t he others. A minimal
probability pmin 2 [0; 1] might be applied, so that no operator gets �lost� during
the process [27]. With this, every time a strategy needs to be applied, it is
selected from the set of available ones by a roulette-wheel-like process over these
up-to-date probabilities.

3.5 Adaptive Pursuit

Adaptive Pursuit (AP ) [28] is a strategy selection technique based on probabili-
ties, such as thePM. The main di�erence lies in the update of such probabilities:
instead of updating it proportionally to the known quality o f each strategy, it
implements awinner-takes-all scheme, by quickly shifting the probability of the
current best strategy towards a maximum value, consequently lowering the rates
of the other ones towards a minimal value.

The credit assignment coupled with AP in this work is the extreme value
based one [10], as it was found to be the best among a set of previously existent
ones [11, 12] (although in a totally di�erent context).

3.6 Dynamic Multi-Armed Bandit

Dynamic MAB (DMAB ) [7] is another strategy selection technique originally
proposed in the context of operator selection within Genetic Algorithms. As
for the other bandit-based methods previously mentioned, it is also based on
the UCB [2] formula; but here the empirical estimate q̂ refers to the average of
the credits assigned, andn accounts to the number of times the given strategy
was applied, as in the original formula, with the scaling factor C handling the
balance between the exploration and exploitation terms.

The �dynamic� term here refers to the embedding of a restart strategy onto
the original MAB algorithm, which re-initializes the MAB pr ocess from scratch
based on the Page-Hinkley change-detection statistical test [22], thus allowing
it to quickly adapt to the new situation with relation to the p erformance of the
strategies.

As for the AP, in this work the extreme value based rewards [10] were used
as credit assignment within the DMAB .

4 Experimental Settings

We test variants of DE on some continuous optimization problems given by the
BBOB 2010 experimental framework [19], which provides a whole experimental
set-up for testing continuous optimizers. In particular, BBOB 2010 provides test
problems [14, 19] in dimensions from 2 to 40 in the form of function instances:
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each of the twenty-four functions of the noiseless testbed has �fteen instances,
totalizing 360 problems for each dimension. The experiments were performed
following the BBOB guidelines [18], with the maximum number of evaluations
being �xed at 105 times the dimension.

For the parameters of DE, the population sizeNP was �xed at 10 times
the dimension of the search space, and the mutation scaling factor F was set
to 0.5. Although a value around 0.9 is usually advocated for the crossover rate
CR, it was chosen to set it to 1.0 for this benchmarking exercise, as in this
way the DE becomes invariant with relation to rotation, and entirely dependent
on the application of the mutation strategies [20]. Given that the main focus
of this work it to further empirically assess the AdapSS techniques, instead of
competing with the best optimizers, it is true to say that no much attention was
deserved to the user-de�ned parameters of DE, what is left for future work.

Between the four rank-basedAdapSS techniques proposed in [13], the F-
AUC-Bandit was the one chosen to be compared in a pair-wise fashion with all
the baseline techniques, because it presented overall better results (although not
much signi�cant di�erences can be found). Besides the empirical comparison
with the other three rank-based techniques (AUC-B, SR-B, F-SR-B ), it is also
compared with: a standard DE using a single mutation strategy (for each of
the strategies presented in Section2), a variant of DE using uniform strategy
selection, and also with the following existent adaptive schemesPM-AdapSS-DE
[16], Adaptive Pursuit [28] and Dynamic MAB [7], the two latter being fed by
extreme value based rewards [10].

Finally, we also compare the performance ofF-AUC-Bandit with a state-of-
the-art optimizer. The CMA-ES with an Increasing POPulatio n (IPOP-CMA-
ES) size restart strategy [3] was tested on the BBOB 2010 test suite with the
same parameter tuning as used in [17].

5 Hyper-Parameters Tuning

For the sake of a fair empirical comparison, the adaptive schemes had their
hyper-parameters tuned o�-line, by means of the F-Race technique [4], as in
[13]. The F-Race eliminates candidate con�gurations as soon asit is possible
to conclude, based on the Friedman's two-way analysis of variances by ranks
statistical test being applied at a rate of 95%, that a given candidate con�gu-
ration will not be the best, thus saving computational resources and time. The
�rst elimination round happens after one run over all instances of a given di-
mension/function class, being done after every run, up to 10runs or just one
con�guration left. The parameter values tried for each technique are summa-
rized in Table 1. We refer the reader to the original papers [16, 28, 7, 13] for a
more detailed description of each of the mentioned hyper-parameters.

5.1 On the robustness w.r.t the hyper-parameters

Firstly, to try to have a view of the robustness of each technique with relation
to its hyper-parameters, 6 di�erent tuning procedures wereperformed for each
dimension 2 f 5; 20g, being them: the tuning considering, independently, each
of the 5 function classes; and the tuning considering all thefunctions. The best
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Heuristic H-P Range Comments
All W f 50; 100; 500g Window size
AP, PM pmin f 0; :05;:1; :2g Min. prob. (P)
AP, PM � f :1; :3; :6; :9g Adaptation rate
AP � f :1; :3; :6; :9g Learning rate
DMAB (PH) 
 Range (C); f 250; 500; 1000g PH threshold
Rank-based bandits D f :5g Decay factor
All bandits C ff 1; 5g:10f� 4� i � 2gg Scaling factor

Table 1: AOS Hyper-parameters and value range

Table 2: Robustness analysis: best hyper-parameters con�guration found for
each technique, o�-line tuned under di�erent conditions.

Dim5 F-AUC-B PM-Ad AP DMAB
separ. C.5D.5W50 P.05� .9 P.2� .6� .6W500 C10
 .01W100
moder. C.5D.5W50 P.05� .3 P.2� .9� .3W50 C.01G100W50
ill-cond. C.5D.5W50 P0� .9 P.2� .6� .3W500 C100G1000W500
multi-m. C.5D.5W50 P.05� .9 P.2� .9� .3W500 C100G1W50
weak-st. C1D.5W500 P.05� .1 P.2� .9� .6W50 C100
 .1W50
all funct. C.5D.5W50 P0� .9 P.2� .3� .6W500 C100
 .1W50

Dim20 F-AUC-B PM-Ad AP DMAB
separ. C.5D.5W50 P0� .9 P.2� .3� .1W500 C100
 .01W50
moder. C.5D.5W50 P0� .9 P.2� .9� .3W500 C100
 .01W50
ill-cond. C.5D.5W50 P0� .9 P.2� .6� .3W500 C100
 .01W50
multi-m. C1D.5W50 P0� .3 P.2� .3� .1W100 C100
 .01W50
weak-st. C.01D.5W50 P0� .9 P.2� .3� .3W100 C100
 .01W50
all funct. C.5D.5W50 P0� .6 P.2� .1� .1W500 C100
 .1W50

con�guration found for each technique on each of the analyzed cases is presented
in Table 2.

This tuning experiment clearly demonstrates the robustness ofF-AUC-Bandit ,
with f C = :5; D = :5; W = 50g being always the best con�guration, except for
the multi-modal and weak-structure class functions, in which none of the tech-
niques was able to perform well. The other rank-based techniques, AUC, F-SR
and SR, are neglected here, as the conclusions (and the con�guration found to
be the best) are basically the same.

For the PM-AdapSS-DE, the advantages of using a relative instead of a raw
reward are also shown on dimension 20, with always a very low value for pmin

(represented byP), and a high one for the adaptation rate � .
For the AP, however, several con�gurations arrived to the end of the Racing

process, all of them sharingP:2 and W 500, but presenting all possible combi-
nations for the adaptation rate � and the learning rate � .This could be seen as
a good sign, possibly showing that thisAdapSS combination was not sensitive
w.r.t. its parameters; however,P:2 was found to be the best value for the mini-
mal probability, what in fact means that the method presented a behavior really
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close to the uniform selection: as there are 4 strategies, the uniform would be
equal to P:25, not mattering the other parameters. This is very possibly related
to the credit assignment used, the extreme values [10], which uses the raw val-
ues of the �tness improvements, thus not scaling to the di�erent �tness ranges
provided by the tested functions.

The same kind of conclusions can be drawn for the tuning experiments of
DMAB . The con�gurations found for the di�erent situations were a ll quite sim-
ilar, with C100, 
 � :1 and W 50. However, a very high scaling factorC was
found to be the best, what means that much more weight was given to the ex-
ploration term of the UCB formula, i.e., although knowing which is the current
best strategy, the algorithm prefers to explore the others. Besides, a very low
value for the Page-Hinkley change detection threshold
 means that the proba-
bility of having restarts during the search was really high, what also favors the
exploration, thus dramatically decreasing the performance of the method.

To conclude with, just the fact that the same hyper-parameter tuning is
found to be the best on di�erent situations is not enough to state that a given
technique is robust. Intuitively, if the �nal performance i s as good as the uniform
one, the con�gurations found are meaningless. TheF-AUC-Bandit and the
PM-AdapSS-DE, while presenting similar con�gurations for di�erent situ ations,
also perform very well, as shown in the empirical comparisonpresented in the
following.

5.2 Final hyper-parameters setting

Besides checking their robustness, the same experiments were also used to de�ne
the hyper-parameter tuning to be used for each technique on the �nal experi-
ments used by the empirical comparison.

For the F-AUC-Bandit , the following parameters were used:f C = :5; D =
:5; W = 50g. For the PM-AdapSS-DE, although �: 9 was found to be the best
value on dimension 5,�: 6 was not signi�cantly di�erent, being thus the con�g-
uration used in the �nal experiments on both dimensions (with pmin = 0 ).
For the AP, the con�guration used was the one that was found to be the
best considering all functions, di�erently for each dimension. For DMAB ,
f C = 100; 
 = :1; W = 50g was used.

The same parameter values were used on all the experiments for each of the
techniques, on each of the dimensions, thus the crafting e�ort (as de�ned in
[18]) for all of them is equal to zero.

6 Results

Results from experiments according to [18] are presented in the following. The
expected running time (ERT) , used in the �gures and tables, depends on a
given target function value, f t = f opt + � f , and is computed over all relevant
trials as the number of function evaluations executed during each trial while
the best function value did not reach f t , summed over all trials and divided by
the number of trials that actually reached f t [18, 23]. Statistical signi�cance
is tested with the rank-sum test for a given target � f t using, for each trial,
either the number of needed function evaluations to reach� f t (inverted and
multiplied by � 1), or, if the target was not reached, the best� f -value achieved,
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measured only up to the smallest number of overall function evaluations for any
unsuccessful trial under consideration.

Section 6.1 presents a brief analysis, and �gures and tables that summa-
rize the empirical comparisons done. From Section6.2 to 6.13, a pair-wise
comparison is presented for each of the mentioned algorithms with relation to
F-AUC-Bandit , with a table detailing the performance of each algorithm, and
showing when there exists signi�cant di�erences between them.

6.1 Results Summary

Although results for both dimensions 5 and 20 are presented in the following,
�nally it was found that the low number of evaluations necessary to achieve
the target function value on dimension 5 was insu�cient to al low the adaptive
schemes to show a performance gain over the Uniform-DE. Thus, for this brief
results analysis, just dimension 20 is considered.

The F-AUC-Bandit was �rstly compared with the base technique, i.e., the
DE using a single mutation strategy. Four DE variants were tried, each of
them implementing one of the strategies that compose the strategy set used by
the adaptive schemes, referred to asDEn , summarized in Figure 2. The DE 4
was not able of solving any of the functions at 20-D, thus being neglected in
the following (although being possibly used by the adaptivescheme to attain
the presented performance). All the other strategies achieved the target value
on 60% of the trials for the separablefunctions, and on all trials for the ill-
conditioned ones. For the moderate functions, both F-AUC-Bandit and DE 3
were able to achieve 100% of success, whileDE 1 and DE 2 got, respectively, 98%
and 75%. The F-AUC-Bandit showed to be around 3 times faster thanDE 1
on the 3 analyzed function classes, while being around 20 times faster than
DE 2 on around 65%, 50% and 80% of the trials, respectively, for the separable,
moderate and ill-conditioned function classes. DE 3 was the best between the
single strategies, performing 10 times faster thanDE 2, thus being around 2
times slower than F-AUC-Bandit at around the same rates.

The comparison with the 3 previously proposedAdapSS techniques, PM-
AdapSS-DE [16], AP [28] and DMAB [7] (the two latter being fed by extreme
rewards [10]), and with the uniform strategy selection, is summarized in Figure
3. F-AUC-Bandit showed to be around 1.5 times faster than theUniform-DE in
around 80% of the trials. The same speed factor was attained with relation to
AP, at a rate of around 90% of the trials on the 3 function classesanalyzed. It
also showed to be around 3 times faster thanDMAB on half of the trials, being
at least around 1.5 times faster on all trials. ThePM-AdapSS-DE was found to
be the best one between the baseline techniques possibly because of the use of
a relative instead of a raw reward. F-AUC-Bandit was around 1.5 times faster
than PM-AdapSS-DE on just around 25% of the trials on the separable, and
40% for the moderate functions, with an even smaller performance di�erence
being found for the ill-conditioned ones, although still being faster on around
75% of the functions.

By analyzing Figure 4, which present the aggregated performance of each
algorithm over several functions, not much can be said aboutthe comparison
between F-AUC-Bandit and the other rank-based approaches (AUC, SR, F-
SR), they present basically the same performance. However,when analyzing
their performance independently for each function (what can be found in the
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pair-wise comparison tables found in the respective Sections in the following),
it can be said that F-AUC-Bandit presents overall better results, although just
a few signi�cant di�erences can be found between them.

F-AUC-Bandit was not able to show competitive results with relation to
the CMA-ES state-of-the-art optimizer, however it improved the performance
of its base technique, the Di�erential Evolution. A better p erformance could be
achieved by tuning more carefully the DE parameters, namely, the population
size NP, the mutation scaling factor F, and the crossover rate CR; however, this
is out of the scope of the current work.
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Figure 2: Empirical cumulative distributions (ECDF) of run lengths and speed-
up ratios in 5-D (left) and 20-D (right) of variants of DE vers us F-AUC-Bandit .
Left sub-columns: ECDF of the number of function evaluations divided by
dimensionD (FEvals/D) to reach a target value f opt +10 � 8, with F-AUC-Bandit
being represented by the black line. Right sub-columns: ECDF of FEval ratios
of F-AUC divided by each of the techniques, all trial pairs for each function.
Pairs where both trials failed are disregarded, pairs whereone trial failed are
visible in the limits being > 0 or < 1. The legends indicate the number of
functions that were solved in at least one trial (F-AUC �rst) .
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