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Abstract. The performance of many efficient algorithms critically de-
pends on the tuning of their parameters, which on turn depends on the
problem at hand. For example, the performance of Evolutionary Algo-
rithms critically depends on the judicious setting of the operator rates.
The Adaptive Operator Selection (AOS) heuristic that is proposed here
rewards each operator based on the extreme value of the fitness improve-
ment lately incurred by this operator, and uses a Multi-Armed Bandit
(MAB) selection process based on those rewards to choose which opera-
tor to apply next. This Extreme-based Multi-Armed Bandit approach is
experimentally validated against the Average-based MAB method, and
is shown to outperform previously published methods, whether using a
classical Average-based rewarding technique or the same Extreme-based
mechanism. The validation test suite includes the easy One-Max problem
and a family of hard problems known as “Long k-paths”.

1 Introduction

Evolutionary Algorithms (EAs), remotely inspired from the Darwinian “survival
of the fittest” principle, have been demonstrated to be efficient in tackling ill-
posed optimization problems. Given a search space X , an objective function
defined on X , referred to as fitness, and a set of elements in X , termed population

of individuals, EAs iteratively proceed by (i) selecting some individuals, favoring
those with better fitness; (ii) perturbing these individuals through some variation

operators, thus generating offspring; (iii) evaluating the offspring fitness; (iv)
replacing some individuals by some offspring, again favoring fitter offspring.

EAs have demonstrated their ability to address a wide range of optimization
problems beyond the reach of standard methods, e.g. involving structured and
mixed search spaces; irregular, noisy, rugged or highly constrained fitness func-
tions. Their performance actually relies on tuning quite a few parameters (such
as the population size, types of variation operators and respective application
rates, types of selection mechanisms and other intrinsic parameters) depending
on the problem at hand. This wealth of tunable parameters is the main reason



why EAs are still far away from being part of the standard optimization tool-
boxes. Although knowledgeable users can benefit from this flexibility and take
the most out of the evolutionary approach, the naive user will generally fail to
appropriately tune an EA in a reasonable amount of time. Tuning the parameters
to efficiently solve the problem at hand corresponds to an optimization problem
per se, as noted in the very early days of the field [1]. Therefore, a mandatory
step for EAs to “cross the chasm” and make it out of the research labs is to offer
some automatic parameter setting capabilities. Accordingly, Parameter Setting

in EAs was and still is one of the most active research topics in Evolutionary
Computation [2] (section 2).

This paper specifically focuses on the control of the variation operators. Dif-
ferent operators play different roles in the search process, the importance of
which depends on the current state: for instance, crossover operators ensure the
exploration of wide regions of the search space in the early stages of evolution;
meanwhile, mutation operators both ensure the exploitation and local search
around the current best individuals, at any stage, and prevent the loss of di-
versity in the last stages of evolution. The so-called Exploration vs Exploitation

trade-off thus relies on the mutation and crossover rates; in practice, these are
most often defined by the user once for all, depending on his experience and
intuition, although the need for exploration and exploitation clearly varies as
the search goes on.

Adaptive Operator Selection (AOS) is meant to adaptively update the op-
erator rates online, depending on e.g. the fitness improvement brought by the
offspring. Since Davis’ seminal work [3] (section 2), AOS proceeds by combin-
ing two main ingredients, illustrated in Fig. 1: The Credit Assignment mecha-
nism associates a reward to each operator, reflecting the operator impact on the
progress of the search (e.g. fitness improvement); the Operator Selection mech-
anism actually chooses one operator depending on the past associated rewards
of all operators.

This paper investigates the combination of an Operator Selection and Credit

Assignment heuristics, first described in [4] and [5] respectively. The proposed
Operator Selection rule ([4], section 3.1), performs the dynamic operator selec-
tion by combining a Multi-Armed Bandit algorithm [6] with a statistical test for
change point detection, the Page-Hinkley test [7], assuming an unbiased Credit
Assignment mechanism. The proposed Credit Assignment ([5], section 3.2) con-
siders the extreme values of the fitness improvement due to an operator, claiming
that rare but highly beneficial “jumps” matter as much or more than frequent
but small improvements.

A proof of principle of the AOS combining the above Extreme-Value-based
Credit Assignment and the Dynamic Multi-Armed Bandit Operator Selection

rule, referred to as Ex-DMAB, is presented in this paper; this proof of principle
considers the easy One-Max problem and a family of hard problems, the Long
k-paths [8]. Not only are the Long k-path landscapes more difficult than the
One-Max ones (the former involves a single, exponentially long path leading
to the global optimum, together with many shortcuts, while the latter involves



Fig. 1. General scheme of the Adaptive Operator Selection framework.

many paths with linear length leading to the global optimum); overall, they
can be considered to be deceptive in terms of operator selection (more on this
in section 4.3). Section 4 reports on the experimental results of the approach,
showing significant improvements with respect to baseline approaches. The paper
concludes with some perspectives for further research.

2 Related work

This section briefly describes and discusses the state of the art in Evolutionary
Parameter Setting, focusing on Adaptive Operator Selection.

2.1 Parameter Setting in EAs

After [9, 10, 2], Parameter Setting in EAs includes two main categories of heuris-
tics, respectively referred to as Parameter Tuning and Parameter Control :

– In Parameter Tuning (also known as off-line or external tuning), parameters
are tuned before the run. This category mostly includes statistical methods
derived from Design Of Experiments (see e.g., [11–14]). Although more effi-
cient than standard ANOVA methods, Parameter Tuning relies on extensive,
computationally expensive, experiments. Furthermore, there is strong empir-
ical evidence that the optimal parameter values actually vary between the
beginning and the end of evolution; choosing the parameter values once for
all thus results in a sub-optimal setting.

– In Parameter Control (also known as on-line or internal control), parameters
are controlled during the run. This category can be further divided into three
types of approaches:

1. In Deterministic Control, parameter values are predefined functions of
time, which clearly raises the question of how to define such functions
(defining these a priori is but another Parameter Setting issue).

2. In Self-Adaptive Control, parameters are encoded in the genotype, and
therefore tuned and optimized “for free” by evolution itself. The main



weakness of self-adaptive control is to aggregate the solution and the pa-
rameter spaces, thus increasing the overall complexity of the optimization
problem.

3. In Adaptive (or Feedback-Based) Control, parameter values are prede-
fined functions of the whole history of the run. Adaptive control has met
significant successes in the last decade, specifically in the continuous
optimization framework (see [15] and references therein).

Focusing on Adaptive Operator Selection (AOS), the history of the run is used
to adjust the operator rates through two modules: a Credit Assignment module
computes the operator reward based on its impact on the search progress; an
Operator Selection module exploits these rewards and selects the operator to be
applied next.

2.2 Credit Assignment

Several Credit Assignment mechanisms have been proposed in the literature,
starting back in the late 80s with the seminal work of Davis [3]. In most ap-
proaches, the operator credit, aka reward, reflects the fitness of the offspring
built by the operator. More specifically, the reward measures the fitness im-
provement over some reference fitness: that of the offspring parents [16–18], of
the current best [3] or median [19] individual. Offspring which do not improve
on the reference fitness are simply not taken into account.

In some cases however, fitness improvement is but one element relevant to the
progress of evolution. Typically in multi-modal search landscapes, population
diversity is equally important; it must mandatorily be preserved in order to
avoid premature convergence to local optima. Based on this remark, the so-
called Compass credit assignment [20] measures the operator ability to produce
more fit individuals while preserving the population diversity.

While in all above approaches the operator reward is based on the current
fitness improvement, or on the fitness improvement averaged over the last n
offspring, another approach is proposed in [21]. This latter approach uses a
statistical measure aimed at outlier detection, and the authors report significant
improvement comparatively to other Credit Assignment on a set of continuous
benchmark problems.

A last issue concerns the offspring contribution to the operator rewards. Most
authors only reward the operator used to produce the current offspring [16–18];
other authors consider that it is only fair to reward the operators used to produce
the offspring ancestors, e.g. using a bucket brigade algorithm [3, 19].

2.3 Operator Selection Rules

The simplest and most widely used Operator Selection is Probability Matching

(PM) [22, 16, 18]. PM implements a roulette wheel-like selection process, where
the operator rate is proportional to its reward. Some care is however exercised in
order to enforce a sufficient amount of exploration, through keeping the operator



rate above some threshold pmin. Otherwise, an operator which is inefficient in
the early stages of evolution would never be considered again, even though it
might become the best operator later on. A side effect however is to keep the
best operator rate below pmax = 1− (K − 1)pmin being K the number of opera-
tors. In practice, all mildly relevant operators keep being selected, slowing down
evolution [23].

This drawback is partly addressed by Adaptive Pursuit (AP) [23], a method
originally proposed for learning automata, which implements a winner-takes-
all strategy. The main difference compared to PM is that the rate of the best
rewarded operator goes to pmax whereas all the others go to pmin; an additional
β parameter controls the greediness of the winner-take-all update.

Others, such as APGAIN [24], use a sequence of exploration/exploitation
phases. During each exploration phase, operators are uniformly selected and
their rewards are estimated; during the following exploitation phase, operators
are selected according to their reward. The fraction of generations devoted to
exploration phases (circa 25 % in [24]) is meant to catch up with the changes in
the reward distribution; unfortunately, it severely harms the population and the
progress of evolution whenever disruptive operators are considered [20].

3 Extreme Dynamic Multi-Armed Bandit

The Extreme Dynamic Multi-Armed Bandit (Ex-DMAB) AOS combines Dynamic-
Multi Armed Bandit as Operator Selection rule and Extreme Value Based Credit

Assignment. For the sake of self-containedness, this section summarizes both
heuristics, referring the interested reader respectively to [4] and [5] for more
details.

3.1 Dynamic Multi-Armed Bandit

The choice of an operator within an Evolutionary Algorithm can be viewed
as yet another instance of the Exploration vs. Exploitation (EvE) dilemma: on
the one hand, one wishes to select the operator with best empirical behavior
(exploitation); on the other hand, other operators should also be selected in
order to check whether the best empirical operator so far truly is the best one
(exploration). This dilemma has been intensively studied in the context of Game

Theory within the so-called Multi-Armed Bandit (MAB) framework [25, 6].

The MAB framework involves a set of N arms; the i-th arm, when selected,
gets reward 1 with probability pi and 0 otherwise. A MAB algorithm is a de-
cision making algorithm, selecting an arm at every time step with the goal of
maximizing the cumulative reward gathered along time. The widely studied Up-
per Confidence Bound (UCB) algorithm devised by Auer et al. [6], provably
maximizing the cumulative reward with optimal convergence rate, proceeds as
follows. Let ni,t denote the number of times the ith arm has been played up to
time t, and let p̂i,t denote the average empirical reward received from arm i.



UCB1 selects in each time step t the arm maximizing the following quantity:

p̂j,t + C ∗
√

log
∑

k nk,t

nj,t
(1)

The left term in Eq. (1) favors the option with best average empirical reward
(exploitation). The right term ensures that each arm is selected infinitely of-
ten (exploration); the lapse of time between two selections of under-optimal
arms however increases exponentially. The scaling factor C controls the explo-
ration/exploitation trade-off.

The operator selection problem can indeed be formalized as a MAB problem,
taking each operator as an arm [4], with two caveats. Firstly, arms are assumed to
be independent, which is definitely not the case in AOS as operators apply on the
same population. Secondly, and even more importantly, the reward probabilities
are fixed in standard MAB settings, whereas the operator rewards depend on the
current population and the evolution stage. In other words, AOS corresponds
to a dynamic MAB problem. It must be emphasized that although UCB keeps
exploring all arms, it would need quite some time to detect that the best operator
has changed. Therefore, a statistical change detection test was coupled with UCB
in [4], defining the Dynamic MAB (DMAB) algorithm. Specifically, the Page-
Hinkley (PH) test [7] is used to detect whether the empirical rewards collected
for the best current operator undergo an abrupt change. Upon triggering the PH
test (suggesting that the current best operator is no longer the best one), the
MAB algorithm is restarted from scratch.

Formally, the PH test considers r̄t, the empirical average of the instant re-
wards r1, . . . rt. Let et denote the difference rt − r̄t + δ, where δ is a tolerance
parameter, and let mt be the sum of ei for i = 1 to t. The PH test is trig-
gered when the difference between the maximum of |mi| for i = 1 to t, and the
current |mt| is greater than a user-specified threshold γ. The PH test is thus
controlled from two parameters, γ governing the trade-off between false alarms
and unnoticed changes, and δ enforcing the test robustness when dealing with
slowly varying distributions. Following initial experiments [4], δ is set to 0.15 in
all experiments in this paper.

3.2 Extreme Value Based Credit Assignment

The second AOS component measures the operator impact on the progress of
evolution 2.2. Letting F , o and x respectively denote the fitness function (to be
maximized), a variation operator and an element of the current population, the
standard instant reward is set to the current fitness improvement of the offspring
(F(o(x)) − F(x))+ (the + superscript indicates the positive part of the fitness
difference).

The main originality of the Credit Assignment proposed in [5] is to consider
the extreme as opposed to the average instant reward. Let us compare an oper-
ator bringing frequent small improvements, and an operator bringing rare but
large improvements. Even though both operators might have the same expected



impact on evolution, with high probability an average-reward based AOS would
only consider the former one: after the first trials, the former operator domi-
nates the latter one, which is thus hardly selected thereafter, and thus prevented
from gathering any further rewards. In other words, average reward-based AOS
is risk-adverse. Another strategy, first investigated by [21], thus is to consider
extreme rewards. Notably, the role of extreme events in design has long been
acknowledged in numerical engineering (e.g. taking into account rogue waves
when dimensioning an oil rig); it receives an ever growing attention in the do-
main of complex systems, as extreme events govern diffusion-based processes
ranging from epidemic propagation to financial markets.

The Extreme Value Based (EVB) Credit Assignment first presented in [5]
proceeds as follows. To each operator o is associated a register storing the last
W (positive) instant rewards collected by o. The operator reward used within
the DMAB Operator Selection is the maximum instant reward in the operator
register. This Credit Assignment mechanism thus involves the window size W
as single parameter. W is meant to reflect the time scale of the process; if too
large, operators will be applied after their optimal epoch and the switch from
the previous best operator to the new best one will be delayed. If W is too small,
operators causing large but infrequent jumps will be ignored (as successful events
will not be observed at all in the first place) or too rapidly forgotten.

4 Experimental results

This section reports on the empirical validation of the Extreme - Dynamic Multi-
Armed Bandit (Ex-DMAB) AOS, combining Extreme-Value-Based Credit As-

signment and DMAB Operator Selection, first described in [5].

Previous results on the One-Max problem, the “Drosophila of EC”, are re-
called in section 4.2, and comparatively discussed with respect to some new
results obtained with Average-Value-Based Credit Assignment. A different fam-
ily of problems, the Long k-paths [26], is considered in section 4.3. Both sets of
experiments have been conducted using the same experimental setting, described
in section 4.1.

4.1 Experimental setting

All experiments consider a standard (1 + λ)-EA, where λ offspring are created
from a single parent, and the best individual among the current offspring and
parent becomes the parent in the next generation. For the sake of reproducibility,
the initial individual is set to (0, . . . , 0).

For the simplicity of assessment, the AOS only considers mutation opera-
tors: the standard 1/ℓ bit-flip operator (every bit is flipped with probability 1/ℓ,
where ℓ is the bit-string length), the 1-bit, 3-bit and 5-bit mutation operators
(the b-bit mutation flips exactly b bits, uniformly selected in the parent). This
setting makes it feasible to compute the optimal mutation operator depending



on the stage of evolution (fitness of the current parent), using Monte-Carlo sim-
ulations. Two baseline approaches are considered: the first one uniformly selects
an operator out of the whole set of operators; the second one selects an operator
out of the best two operators.

Two Credit Assignment procedures are considered: the Extreme-Value and
the Average-Value based reward (out of the last W instant rewards for the
operator). These are combined with three Operator Selections: AP, PM and
DMAB. The results obtained with PM will be omitted as this Operator Selection

is found significantly dominated by the other two.
Every AOS is assessed from the average time-to-solution, averaged over 50

independent runs. The ability of each AOS to correctly identify the best operator
is also considered.

The best parameters of every considered AOS have been computed offline,
in order to compare them at their best level of performance (see [4, 5]). For the
One-Max scenario, the parameters were determined after a Design of Experi-
ment campaign [4, 5]. For the Long k-path, the following set of values was tried
for each parameter: for AP and PM, pmin ∈ {0, .05, .1, .2}; α|β ∈ {.1, .3, .6, .9};
for DMAB, C ∈ {.1, .5, 1, 5, 10, 50, 100}; γ ∈ {1, 5, 10, 25, 50, 100, 250, 500, 1000};
and for all techniques, concerning the Credit Assignment, W ∈ {50, 500}. Given
the number of possible configurations, the F-Race [11] method was used. For-
mally, racing techniques proceed by pruning every configuration as soon as it is
not going to be the best one after the available statistical evidence. The F-Race
was applied using a confidence level of 95%, with 11 runs being done for each
configuration before the first elimination round, up to 50 runs done or a single
candidate configuration left.

4.2 The One-Max Problem

The One Max problem involves an unimodal fitness function that simply counts
the number of “1”s in the individual binary bitstring. The only difficulty comes
from the size of the problem; in the presented experiments, the size N of the
bitstring is 10,000. This problem is viewed as a “sterile EC-like” environment,
where the ideal AOS behavior can be computed. Fig. 2 (bottom) displays the op-
timal mutation operators for a (1+50)-EA, depending on the stage of evolution;
for each fitness of the current parent, the expected fitness improvement (esti-
mated over 100 independent runs) of a (1+50)-EA is computed. The landscape
presented in such figure thus serves as a reference to assess the basic skills of an
AOS mechanism: the ability to pick up the best operator and stick to it as long
as appropriate, to catch up the changes and switch to the next best operator in
transition phases, and to remain efficient in desert phases.

Fig. 2 displays the operator rates of Ex-DMAB and Ex-AP (averaged over
50 runs) against the “oracle”; the vertical grey lines indicate the changes of the
current best mutation operator of the oracle.

Table 1 summarizes the performance of all approaches, together with their op-
timal setting. The Extreme Value-Based Credit Assignment, coupled with either
AP or DMAB, closely matches the optimal behavior and significantly improves
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Fig. 2. The Ex-DMAB (top) and the Ex-AP (middle) AOS compared with the Opti-
mal Operator Selection (bottom) on the 10,000 bit One-Max: operator selection rates
averaged on 50 runs.

on the baseline approaches (see [5] for more detail). Interestingly, the Extreme
Value-Based Credit Assignment appears to be more stable than the Average
Value-Based one (the performance of the latter is much degraded when com-
bined with DMAB), despite the smoothness of the One-Max landscape (which
should thus make little difference between average and extreme rewards).

4.3 The Long k-Path Problem

First proposed by [26], Long Paths are unimodal problems designed to challenge
local search algorithms. Specifically, the optimum can be found by following a



Table 1. Comparative AOS Results on the 10,000 One-Max problem, averaged over
50 runs (W = 50).

Credit Assignment Operator Selection Configuration Gens. to Optimum

Extreme
DMAB

C = 1; γ = 250 5467 ± 513
Average C = 10; γ = 25 7727 ± 642

Extreme
Adaptive Pursuit

pmin = 0; α = .3; β = .3 5478 ± 299
Average pmin = .05; α = .1; β = .9 5830 ± 324

- Optimal Strategy Given by “Oracle” 5069 ± 292

- Best Naive U(1-Bit+5-Bit) 6793 ± 625

- Complete Naive U(4 ops.) 7813 ± 708

path in the fitness landscape, the length of which increases exponentially w.r.t.
the bitstring length ℓ. Solving the Long Path using the 1-bit mutation thus
requires a time increasing exponentially with ℓ.

A generalization of Long Path problems was proposed by [8], referred to as
Long k-path, where k is the minimal number of bits to be simultaneously flipped
in order to take a shortcut on the path. Long k-path problems have the following
properties [27]:

– Points that are not on the path have a “Zero-Max” fitness, i.e. their fitness
is their number of 0s;

– The first point on the path is 0, 0, . . . , 0 and has fitness ℓ;

– Any point on the path has exactly 2 neighbors on the path with Hamming
distance 1; two consecutive points on the path have a fitness difference of 1;

– The length of the path is (k + 1)2(l−1)/k − k + 1;

– A mutation of i < k bits can only lead to a point which is either off the path
(hence with a very low fitness), or on the path but only i positions away from
the original point; shortcuts (i.e. jumps to very distant points on the path)
can only be achieved by mutating at least k bits; using a mutation operator
which mutates every bit independently with probability p, the probability of
finding a given shortcut is hence pk(1 − p)l−k.

Long k-path problems are defined by recurrence on ℓ. Starting from the Long
k-path P (k, ℓ), the P (k, ℓ + k) path is made of three parts: (i) the first part S0

is made by concatenating k 0’s to each point of P (k, ℓ); the third part S1 is
made by concatenating k 1’s to each point of P (k, ℓ) in reverse order; S0 and
S1 are linked by a “bridge” containing (k − 1) points, created by concatenating
0 . . . 01, 0 . . .011, . . . , 001 . . .1, 01 . . .1 to the final point of P (k, ℓ). The original
Long Path problem is a Long k-path with k = 2. The path length decreases as
k increases, together with the probability of finding a shortcut.

After [27], shortcuts provably speed up the convergence if k ≤
√

ℓ (for higher
values of k one should simply follow the path). In such cases, “exceptional prop-
erties of operators sometimes reflect EA behavior more accurately than average
typical properties”.



AOS and Long 3-Path problems

The reported experiments consider k = 3 with ℓ ranging in {43, 49, 55, 61}. An
additional mutation operator, the 3/ℓ bit-flip (flipping each bit with probability
3/ℓ), has been added to the operator set.

Note that Long k-paths are challenging problems for AOS: when the parent
individual belongs to the path, the 1-bit mutation improves the fitness by 1,
with probability 1/ℓ while all other mutation operators will fail to improve the
fitness (reward 0) in the vast majority of cases. Experimentally, the Adaptive

Pursuit AOS does not cope well with Long k-paths and will be omitted in the
following; the best results are obtained for pmin= .2, i.e. for a uniform selection
of the operators.

Results

By construction, some Long k-path runs can be “lucky” and discover the short-
cuts, thus yielding large standard deviations in the performance. For instance,
the optimal result obtained for ℓ = 49 reaches the solution in 3590 ± 3327 gen-
erations (averaged over 50 runs). For this reason, the results will be described
in terms of min and median number of generations needed to reach the solution
(as opposed to, average and standard deviation).

Table 2 displays the results obtained for Ex-DMAB, Avg-DMAB and the
baseline approaches: the Oracle one always selects the optimal operator (deter-
mined in the same way as for the One-Max problem) and the Naive one uniformly
selects an operator in the operator set. The AOS setting is the best one found
by the F-Race over all considered Long k-path.

Table 3 reports the results obtained for the best AOS setting, found by
the F-Race over each considered Long k-path. The optimal setting (W (C, γ))
is indicated below the min and median number of generations to the solution.
As could have been expected, the Avg-DMAB AOS goes for a medium window
size (W = 50) whereas the Ex-DMAB needs a much larger window size (W =
500). Besides, the F-Race retains many good settings for the AOS parameters,
suggesting that the C and γ parameters together control the Exploration vs
Exploitation tradeoff, and might be redundant to some extent.

Table 2. Extreme vs Average Reward and DMAB AOS on the Long k-path, k = 3,
min - median number of generations to the solutions out of 50 runs; the robust optimal
AOS parameters (W, (C, γ)) are indicated below.

ℓ

DMAB - W (C, γ)
Optimal UniformExtreme Average

500 (100; 100) 50 (50; .5)

43 11 - 2579 61 - 2342 2 - 1202 50 - 3393

49 17 - 4467 6 - 6397 19 - 2668 5 - 4904

55 161 - 6190 54 - 8222 45 - 3224 344 - 10068

61 251 - 13815 94 - 15304 8 - 5408 12 - 9590



Table 3. Extreme vs Average Reward and DMAB AOS on the Long k-path, k = 3,
min - median number of generations to the solutions out of 50 runs, using the optimal
AOS parameter for each ℓ.

ℓ
DMAB - W (C, γ)

Optimal Uniform
Extreme Average

43
11 - 2216 66 - 2487 2 - 1202 50 - 3393

500(50; 50) 50(.5; 100)

49
17 - 3244 6 - 5321 19 - 2668 5 - 4904

500(100; 500) 50(.1; 1000)

55
161 - 6190 54 - 8158 45 - 3224 344 - 10068

500(100; 100) 50(50; .1)

61
80 - 10253 94 - 13865 8 - 5408 12 - 9590
500(50; 25) 50(.5; 50)

The significance of these results is assessed using unsigned Wilcoxon rank
sum and Kolmogorov-Smirnov non-parametric tests (thereafter referred to as W
and KS).

In the robust scenario (AOS parameters are selected by F-race over all Long
k-path problems), Ex-DMAB is outperformed by (respectively similar to) the
Oracle AOS for ℓ ∈ {43, 61} (resp. ℓ ∈ {49, 55}) with confidence 99% according
to both W and KS tests. Ex-DMAB outperforms Avg-DMAB for ℓ = 49 (with
W at 90% and K at 95%) and for ℓ = 55 (with W at 90%).

In the fine tuning scenario (AOS parameters are selected by F-race for each
Long k-path problem), Ex-DMAB obtains better results as could have been
expected: no significant difference between Ex-DMAB and the Oracle strategy
is observed, with confidence 99% according to both W and KS tests. In the
meanwhile, Ex-DMAB significantly improves on the Naive AOS in all instances
(ℓ = 43, for W at 99% and KS at 95%; ℓ = 49, for W at 95% and KS at 90%;
ℓ = 55, for W and KS at 99%), except for the ℓ = 61 one. Comparatively to
Avg-DMAB, Ex-DMAB obtains similar (respectively significantly better) perfor-
mances for ℓ ∈ {43, 61} with both tests at 99% (resp. for ℓ = 49, with W at 99%
and KS at 95%; for ℓ = 55, with W at 90%).

The empirical distributions of all approaches are displayed on Fig. 3. The
case ℓ = 61 is omitted as no strategy was found effective on this problem, which
is blamed on the very low probability of finding shortcuts.

5 Discussion and Perspectives

This paper provides a proof of principle for the proposed Ex-DMAB Adaptive
Operator Selection, based on ample empirical evidence gathered from the One-
Max and Long k-path problems. Ex-DMAB was found to efficiently detect the
best mutation operators during the whole course of evolution, keeping up with
the Oracle strategy in the majority of cases.

Although its good performances rely on the expensive offline tuning of Ex-

DMAB parameters, Ex-DMAB was found to outperform the main options opened
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Fig. 3. AOS results on Long k-paths, k = 3.

to the naive EA user, namely (i) using a fixed or deterministic strategy (including
the naive, uniform selection, strategy; (ii) using a former AOS strategy. Further-
more, Ex-DMAB involves a fixed and limited number of parameters (the window
size W , the scaling factor C and the change detection test threshold γ), whereas
the number of operator rates increases with the number of operators.

The most challenging situations for Ex-DMAB are the last stages of evo-
lution. At this point, the best operator hardly brings any improvement, and
Ex-DMAB is found to tend toward the uniform naive strategy (uniformly select-
ing an operator in the pool). A tentative interpretation for this fact is as follows.
On the one hand, fitness improvements are more and more rare with respect
to the window size, leading to uniform rewards and hence to uniform selection.
Furthermore, when a reward occurs after a long wandering period, it is likely to
trigger the change detection test, causing the Dynamic Multi-Armed Bandit to
restart from scratch, thus increasing the exploration bias.



Further research will aim at addressing the above weaknesses. A first per-
spective is opened by learning across runs, specifically recording the statistics of
fitness improvement in relation with the current average fitness; these statistics
will serve to adjust the window length W in the last stages of evolution. A sec-
ond perspective is to adjust online the Page Hinkley parameter γ, depending on
the estimated number of transitions (change of the best operator) in the fitness
landscape. Along the same lines, we shall investigate how γ and the scaling factor
C relate, as both cooperate to control the exploration vs exploitation trade-off.
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