
HAL Id: inria-00344179
https://inria.hal.science/inria-00344179

Submitted on 3 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exploiting Weak Dependencies in Tree-based Search
Alejandro Arbelaez, Youssef Hamadi

To cite this version:
Alejandro Arbelaez, Youssef Hamadi. Exploiting Weak Dependencies in Tree-based Search. 24th
Annual ACM Symposium on Applied Computing, Mar 2009, Honolulu, United States. �inria-00344179�

https://inria.hal.science/inria-00344179
https://hal.archives-ouvertes.fr

Exploiting Weak Dependencies in Tree-based Search

Alejandro Arbelaez
MicrosoftINRIA, jointlab, Parc Orsay Université

28, rue Jean Rostand 91893 Orsay Cedex,
France

alejandro.arbelaez@inria.fr

Youssef Hamadi
Microsoft Research, UK

7 JJ Thomson avenue, Cambridge CB3 0FB,
United Kingdom

youssefh@microsoft.com

ABSTRACT

In this work, our objective is to heuristically discover a sim-
plified form of functional dependencies between variables
called weak dependencies. Once discovered, these relations
are used to rank the variables. Our method shows that
these relations can be detected with some acceptable over-
head during constraint propagation. More precisely, each
time a variable y gets instantiated as a result of the instan-
tiation of x, a weak dependency (x, y) is recorded. As a
consequence, the weight of x is raised, and the variable be-
comes more likely to be selected by the variable ordering
heuristic. Experiments on a large set of problems show that
on the average, the search trees are reduced by a factor 3
while runtime is decreased by 31% when compared against
dom-wdeg, one of the best dynamic variable ordering heuris-
tic.

Keywords

Constraint Programming, Constraint Satisfaction Problems,
Tree-Search , Functional Dependencies

1. INTRODUCTION
The relationships between the variables of a combinato-

rial problem are key to its resolution. Among all the possible
relations, explicit constraints are the most straightforward
and were widely used. For instance, they are used to sup-
port classical look-ahead and look-back schemes. During
look-ahead, they can limit the maintenance of some level of
consistency to some locality. During look-back, they can im-
prove the backtracking by jumping to related and/or guilty
decisions. These relationships are also used in dynamic vari-
able ordering (dvo) to relate the current variable selection
to past decisions (e.g., [3]), or to give preference to the most
constrained parts of the problem, etc.

Recently, backdoors have been illustrated. A backdoor
can be informally defined as a subset of the variables such
that, once assigned values, the remaining instance simpli-
fies to a computationally tractable class. Backdoors can be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’09 March 812, 2009, Honolulu, Hawaii, U.S.A.
Copyright 2009 ACM 9781605581668/09/03 ...$5.00.

explained by the presence of a particular relation between
variables, e.g., functional dependencies. Unfortunately, de-
tecting backdoors can be computationally expensive [4], and
their exploitation is often restricted to restart-based strate-
gies like in modern SAT solvers [11].

In this work, our objective is to heuristically discover a
simplified form of functional dependencies between variables
called weak dependencies. Once discovered, these relations
are used to rank the importance of each variable. Our
method assumes that these relations can be detected with
low overhead during constraint propagation. More precisely,
each time a variable y gets instantiated as a result of the in-
stantiation of x, a weak dependency (x, y) is recorded. As
a consequence, the weight of x is raised, and the variable
becomes more likely to be selected by the variable ordering
heuristic.

In the following section, we start with some background
definitions. Section three describes our new heuristic. Sec-
tion four presents experimental results. Finally, before the
general conclusion, section five presents related work.

2. BACKGROUND
In this section, we briefly introduce definitions and nota-

tion used hereafter.

Definition 2.1. A Constraint Satisfaction Problem (CSP)
is a triple (X, D, C) where,

• X = {X1, X2, . . . , Xn} represents a set of n variables.

• D = {D1, D2, . . . , Dn} represents the set of associated
domains, i.e., possible values for the variables.

• C = {C1, C2, . . . , Cm} represents a finite set of con-
straints.

Each constraint Ci is associated to a set of variables vars(Ci),
and is used to restrict the combinations of values between
these variables. Similarly, each variable Xi is related to a
set of constraints prop(Xi). The arity of a constraint Ci

corresponds to |vars(Ci)|, and the degree of a variable Xi

corresponds to |prop(Xi)|.
Solving a CSP involves the finding of a solution, i.e., an

assignment of values to variables such that all the constraints
are satisfied. If a solution exists, the problem is stated as
satisfiable, and unsatisfiable otherwise.

A depth-first search backtracking algorithm can be used
to tackle CSPs. At each step a value is assigned to some
variable. Each assignment is combined with a look-ahead
process called constraint propagation which can reduce the

1: Q = {p1, p2, ...}
2: while Q 6= {} do
3: p = choose(Q);
4: run(p);
5: for all Xi ∈ vars(p) s.t. Di was narrowed do
6: schedule(Q, p, Xi);
7: end for
8: end while

Figure 1: Classic propagation engine

domains of the remaining variables. Constraint propagation
is usually based on some constraint network property which
determines its locality and therefore its computational cost.
Arc-consistency is widely used, and the result of its combi-
nation with backtrack search is called MAC for maintaining
arc-consistency [9].

Figure 1 describes a classic constraint propagation engine
[10]. In this algorithm, constraints are managed as propaga-
tors1 in a propagation queue, Q. This structure represents
the set of propagators that need to be revised. Revising a
propagator corresponds to the enforcement of some consis-
tency level on the domains of the associated variables.

Initially, Q is set to the entire set of constraints. This
is used to enforce the arc-consistency property before the
search process. During depth-first exploration, each decision
is added to an empty queue, and propagated through this
algorithm.

The function choose removes a propagator p ∈ Q, run
applies the filtering algorithm associated to p, and schedule
adds prop(Xi) to Q. The algorithm terminates when the
queue is empty. A fix-point is reached and more propaga-
tions can only appear as the result of a tree-based decision.

Definition 2.2. f(X, y) is a functional dependency be-
tween the variables in the set X and the variable y if and
only if for each combination of values in X there is precisely
one value for y satisfying f .

Many constraints of arity k can be seen as functional
dependencies between a set of k − 1 variables and some
remaining variable y. For instance, the arithmetic con-
straint X + Y = Z, gives the dependencies f({X, Y }, Z),
f({X, Z}, Y), and f({Y, Z}, X). There are also many ex-
ceptions like the constraint X 6= Y , where in the general
case, one variable is not functionally dependent of the other
one.

3. EXPLOITING WEAK DEPENDENCIES

IN TREE-BASED SEARCH

3.1 Weak dependencies
Our objective is to take advantage of functional depen-

dencies during search. We propose to heuristically discover
a weaker form of relation called weak dependency between
pairs of variables. A weak dependency is observed when a
variable gets instantiated as the result of another instantia-
tion. Our new dvo heuristic records these weak dependen-
cies and exploit them to prioritize the variables during the
search process.

1In the following, we will use this as a synonym for con-
straint.

Definition 3.2. During constraint propagation with the
Algorithm presented in Figure 1, we call (X, Y) a weak de-
pendency if the two following conditions hold:

1. Y is instantiated as the result of the execution of a
propagator p.

2. p was inserted in Q as the result of the instantiation
of X.

Property 3.1. Weak dependency relations (X, Y) can be
recorded as the result of the execution of a propagator p iff
X ∈ vars(p) and Y ∈ vars(p).

The proof is straightforward if we consider the Algorithm
presented in Figure 1.

3.3 Example
To illustrate our definition, we consider the following set

of constraints:

• p1 ≡ X1 + X2 < X3

• p2 ≡ X1 6= X4

• p3 ≡ X4 6= X5

With the domains, D1 = D2 = D4 = D5 = {0, 1} and
D3 = {1, 2}.

The initial filtering does not remove any value and the
search process has to be started. Assuming that the search
is started on X1 with value 1, the propagator X1 = 1 is
added to Q, and after its execution the domain D1 has been
narrowed, so that it is necessary to schedule p1 and p2.

Running p1 sets X2 to 0, and X3 to 2, and gives the weak
dependencies (X1, X2) and (X1, X3). Afterwards, p2 sets X4

to 0 which corresponds to (X1, X4). Finally, the narrowing
of D4 schedules p3 which sets X5 to 1, and gives the weak
dependency (X4, X5).

Weak dependencies are binary, therefore they only roughly
approximate functional dependencies. For example, with
the constraint X+Y = Z they will never record ({X, Y }, Z).
On the other hand, weak dependencies exploit the current
domains of the variables and can record relations which are
not true in general but hold in particular cases. For instance,
the propagator p3 above creates (X4, X5). This represents
a real functional dependency since the domains of the vari-
ables are binary and equal.

3.4 Computing weak dependencies
We can represent weak dependencies as a weighted di-

graph relation among the variables of the problem, where
the nodes of the graph are the variables and the edges indi-
cate weak dependencies relations between two variables, i.e,
when there is an edge between two variables X and Y , the
direction of the edge shows the relation and its weight indi-
cates the number of observed occurrences of that relation.

In a propagation centered approach [6] each variable has
a list of dependent propagators and each propagator knows
its variables (see Figure 2).

In this way, once the domain of a variable is narrowed
it is necessary to schedule its associated propagators into
the propagator pool. Since we are interested in capturing
weak dependencies, we have to track the reasons for con-
straint propagation. More specifically, when a propagator

X2X1 X3

Prop1 Prop2

Figure 2: Variables and propagators

gets activated as the result of the direct assignment of some
variable, we need to keep a reference to that variable. Since
the assignment of several variables can activate a propaga-
tor, we might have to keep several references.

1: enqueue(Q, prop(Xi));
2: if |Di| = 1 then
3: dependencies(p.assigned, Xi);
4: for all p′ in prop(Xi) do
5: p′.assigned.add(Xi);
6: end for
7: end if

Figure 3: Schedule(Queue Q, Propagator p, Vari-
able Xi)

A modified schedule procedure is shown in Figure 3. The
algorithm starts by enqueueing all the propagators associ-
ated to a given variable Xi into the propagators pool. If the
propagator p was called as the result of the assignment of Xi

(|Di| = 1), a weak dependency is created between each vari-
able of the set p.assigned and Xi. Variables from this set are
the ones whose assignment was the reason for propagating
p. After that, a reference to Xi is added to its propagators
prop(Xi). This is done to ensure that if these propagators
assign other variables, a subsequent call to the schedule pro-
cedure will be able to create dependencies between Xi and
these variables.

3.5 The domFD dynamic variable ordering
In the previous section, we have seen that a generic con-

straint propagation algorithm can be modified to compute
weak dependencies. As we pointed out above, weak depen-
dencies can be seen as a weighted digraph relation among the
variables. Using this graph, we propose to define a function
FD(Xi) which computes the out-degree weight of a variable
Xi taking into account only uninstantiated variables.

FD(Xi) =
X

Xj∈Γ+(Xi)

weight(Xi, Xj) (1)

Where Γ+(x) (resp. Γ−(x)) represents the set of outgoing
(resp. ingoing) edges from (resp. to) x in the graph of
dependencies. It is also important to note that when there
is no outgoing edge associated to Xi we assume FD(Xi) = 1.

Given the definition of FD, we propose to define domFD,
a new dvo heuristic based on both: the observed weak de-
pendencies of the problem and the well-known fail-first mindom
heuristic:

domFD(Xi) =
|Xi|

FD(Xi)
(2)

Then, the heuristic selects the variable whose domFD
value is minimal.

3.6 Complexities of domFD

3.6.1 Space

We know from Property 3.1 that dependencies are created
between variables which share a constraint. Therefore, com-
puting the weak dependency graph requires in the worst case
a space proportional to the space used for the representation
of the problem. Assuming n variables and m constraints, the
space is proportional to n + m.

3.6.2 Time

The computation of weak dependencies is tightly linked
to constraint propagation. The original schedule procedure
only enqueues the propagators related to Xi in Q, therefore
its original cost is O(m). Our new procedure creates depen-
dencies each time a variable gets instantiated. Dependencies
between variables can be recorded as the result of the instan-
tiation of one or several variables. In the latter case, up to
n− 1 dependencies can be created since the instantiation of
up to n − 1 variables can be responsible for the scheduling
of the current propagator (line 3 in Algorithm of Figure 3).
Once dependencies are created, the propagators associated
to Xi need to reference it. Here the cost is bounded by m.
Overall, the time complexity of the new schedule procedure
is O(n + m).

We now have to consider the cost of maintaining the weak
dependency graph. Since our heuristic only considers the
weights related to the variables which are not instantiated
we have to disconnect variables from the graph when they
get a value, and we have to reconnect them when the search
backtracks. This can be done incrementally.

Practically, we do not have to physically remove a variable
from the dependency graph, we can just offset the weight of
the recorded dependencies between other variables and that
variable. For instance, when Xi gets instantiated as the
result of a tree decision or as the result of constraint propa-
gation, we only need to update the out degrees of variables
Xj ∈ Γ−(Xi). The update is done by decreasing their asso-
ciated counter Xj .FD by weight(Xj , Xi). These counters
represent the number of times the weak dependency (Xj , Xi)
was observed during the search process. During backtrack-
ing, Xi gets back its domain, and we just have to “recon-
nect” the associated Xj ∈ Γ−(Xi) by adding weight(Xj , Xi)
to Xj .FD. Since a variable can be linked to m propagators,
an update of the dependency graph cost O(m). In the worst
case, each branching holds no propagation and therefore at
each node, the cost of updating the dependency graph is
O(m).

Finally, selecting the variable which minimizes domFD
can cost an iteration over n variables if no special data struc-
ture is used.

Now if we consider all the operations, constraint propaga-
tion with the new schedule procedure, disconnecting a sin-
gle variable, and selection of the variable which minimizes
domFD, we have O(n + m) - as opposed to O(m) initially.

4. EXPERIMENTS
In this section, we propose to study the performance of

domFD when compared to dom-wdeg, a recently introduced
heuristic able to focus on the difficult parts of a problem [2].

In dom-wdeg, the priority is given to variables which are
frequently involved in failed constraints. A weight is added
to each constraint and updated (i.e, incremented by one)
each time a constraint fails. Using this value variables are
selected based on their domain size and their total associated
weight. Xi, the selected variable minimizes dom-wdeg(Xi)=
|Xi|/

P

c∈prop(Xi)
weight(c).

This heuristic is used in the Abscon solver which appeared
to be the most robust in the last CSP-competition2 where
it finished 1 time first, 3 times second, 3 times third, and 2
times fourth, when compared against 15 other solvers.

To compare domFD against the powerful dom-wdeg, we
implemented them in gecode-2.0.1 [5] and used them to
tackle several problems. Since gecode is now widely used, we
decided to take from the Internet problems already encoded
for the gecode library. We paid attention to the fact that
overall our problems cover a large set of gecode’s constraints.

We used 35 instances coming from 9 different benchmark
families. They involve satisfaction, counting, and optimiza-
tion problems. They were solved using the default gecode’s
branch-and-prune strategy, and a modified restart technique
based on the default strategy. In the tests, the value selec-
tion ordering was gecode’s INT VAL MIN, which returns the
minimal value of a domain. All the experiments were per-
formed on a MacBook-Pro 2.4GHz Intel Core 2 Duo, under
Ubuntu linux 7.10 and gcc version 4.0.1. A time-out (TO)
of 10 minutes was used for each experiment.

4.1 The problems
In the following, we list the different benchmark fami-

lies. When they are described on www.csplib.org, we only
present the number in the library. Note that for all prob-
lems (except Quasigroup) the model and its implementation
is the one proposed in the gecode examples3.

• Quasigroup, qwh, problem 3 of CSPLib.

• Golomb-ruler, gol-rul, problem 6 of CSPLib.

• All-interval, all-int, problem 7 of CSPLib.

• Nonogram, nono, problem 12 of CSPLib.

• Magic-square, magic-squ, problem 19 of CSPLib.

• Langford-number, lfn, problem 24 of CSPLib.

• Sport league tournament, sport-lea, problem 26 of CSPLib.

• Balanced Incomplete Block Design, bibd, problem 28
of CSPLib.

• Crowded-chess, crow-ch, this problem consists in ar-
ranging n queens, n rooks, 2n−1 bishops and k knights
on a n × n chessboard, so that queens cannot attack
each others, no rook can attack another rook and no
bishop can attack another bishop. Note that two queens
(in general two pieces of the same type) are attacking
each other even if there is a bishop (in general another
piece of different type) between them.

2http://www.cril.univ-artois.fr/
CPAI06/round2/results/ranking.php?idev=6
3Available from http://www.gecode.org/gecode-doc -latest/
group ExProblem.html.

When an instance is solved, the number of nodes in the
tree(s), the number of fails and the time in seconds are re-
ported. If the 10 minutes time-out is reached, TO is re-
ported.

4.2 Searching for all solutions or for an opti-
mal solution

The first part of Table 1, presents results related to the
finding of all the solutions of all-interval problems of order
11 to 14. We can observe that the trees generated with
domFD are usually far smaller than the ones generated by
dom-wdeg. Most of the time, domFD runtime is also bet-
ter. However, the time per nodes is more important for our
heuristic. For instance, on all-int-14, dom-wdeg does 89973
nodes/s while domFD runs at 54122 nodes/s.

The second part of the table presents results for the opti-
mal Golomb-rulers of orders 10 to 12. Here, we can observe
that order 10 is easier for dom-wdeg, but sizes trees are com-
parable. Order 11, and 12 give the advantages to domFD,
with far smaller search trees and better runtimes. As before,
the time per node is more important for our heuristic (31771
vs 35852 on gol-rul-11).

4.3 Searching for a solution with a classical
branch-and-prune strategy

Experiments related to the finding of a first solution are
presented in Table 2. They show results for respectively,
quasi-groups, balance incomplete block design, Langford num-
bers, and nonograms.

4.3.1 Quasigroups

Three instances of order 30 with 316 unassigned posi-
tions were produced with the generator presented in [1].
On these instances, domFD always generates smaller search
trees. When this difference is large enough e.g., second in-
stance, the runtime is also better.

4.3.2 Balance incomplete block design

Our heuristic always explores smaller trees which allows
better runtimes. Interestingly the third instance is solved in
0.03 seconds by domFD while dom-wdeg cannot solve it in
10 minutes.

4.3.3 Langford numbers

On these problems, domFD is always superior to dom-
wdeg. For instance, lfn-3-10 can be solved by both heuris-
tics but the performance of domFD is far better: 190 times
faster.

4.3.4 Nonograms

Table 2 shows results for the nonogram problem. Three
instances of orders 5, 8, and 9 were generated. Here again,
the trees are systematically smaller with domFD and when
the difference is large enough runtimes are always better.

4.4 Searching for a solution with a restart-
based branch-and-prune strategy

Restart-based searches are very efficient since they can
alleviate the effects of early bad decisions. Therefore, it is
important to test our new heuristic with a restart strategy.

A restart is done when some cutoff limit in the number
of fails is met, i.e., at some node in a tree. There, the
actual domFD-graph is stored and used to start the next

Table 1: All solutions and optimal solution
Instance dom-wdeg domFD

#nodes #failures time (s) #nodes #failures time (s)
all-int-11 100844 50261 0.93 52846 26262 0.81
all-int-12 552668 276003 6.92 211958 105648 3.45
all-int-13 2.34M 1.17M 26.13 1.64M 821419 29.74
all-int-14 15.73M 7.86M 174.83 11.27M 5.63M 208.23
gol-rul-10 93732 46866 1.97 102910 51449 2.70
gol-rul-11 2.77M 1.38M 77.26 1.77M 889633 55.71
gol-rul-12 12.45M 6.22M 404.92 6.97M 3.48M 266.28

Table 2: First solution, branch-and-prune strategy
Instance dom-wdeg domFD

#nodes #failures time (s) #nodes #failures time (s)
qwh-30-316-1 1215 603 0.22 234 115 0.32
qwh-30-316-2 48141 24063 8.09 10454 5220 3.62
qwh-30-316-3 6704 3347 1.11 2880 1437 1.15
bibd-7-3-2 100 39 0.01 65 28 0.01
bibd-7-3-3 383 180 0.03 96 42 0.01
bibd-7-3-4 — — TO 132 56 0.03
lfn-3-9 168638 84316 6.16 7527 3760 0.26
lfn-2-19 — — TO 1.64M 822500 43.05
lfn-3-10 2.21M 1.10M 87.15 12440 6218 0.46
nono-5 1785 879 0.12 491 239 0.11
nono-8 17979 8983 3.54 1084 537 0.54
nono-9 248 115 0.04 120 58 0.12

tree-based search. This allows the early selection of well
ranked variables. The same technique is used with dom-
wdeg, and the next search tree can branch early on well
ranked variables.

This part presents results with a restart-based branch-
and-prune where the cutoff value used to restart the search
was initially set to 1000, and the cutoff increase policy to
×1.2. The same 10 minutes timeout was used.

Table 3 presents the results for magic square, crowded
chess, sport league tournament, quasi-groups, and bibd prob-
lems.

4.4.1 Magic square

Instances of orders 5 to 11 were solved. Clearly, domFD is
the only heuristic able to solve large orders within the time
limit. For example, dom-wdeg cannot deal orders greater
than 8, while our technique can. The reduction in the search
tree sizes is very significant, e.g., on mag-squ-8, dom-wdeg
develops 35.18M nodes and domFD 152466, which allows it
to be more than 100 times faster.

4.4.2 Crowded chess

As before, domFD can tackle large problems while dom-
wdeg cannot.

4.4.3 Sport league tournament

If we exclude the last instance, domFD is always better
than dom-wdeg.

4.4.4 Quasigroups

Here, on most problems, domFD generates smaller search
trees, and can return a solution more quickly. On the hard-
est problem, (order 35), domFD is nearly two time faster.

4.4.5 Balanced incomplete block design

Here domFD performs very well, with both smaller search
trees and small runtime.

4.5 Synthesis
Table 4 summarizes the performance of the heuristics.

These results were generated by only taking into account
the problems which can be solved by both domFD and dom-
wdeg i.e., we removed 6 instances which cannot be solved
by dom-wdeg.

Table 4: Synthesis of the experiments
heuristic average

#nodes #failures time (s) nodes/s
dom-wdeg 2.14M 1.07M 56.99 37664
domFD 717202 358419 39.53 18139

We can observe that the search trees generated by domFD
are on the average three times smaller. The difference in the
number of fails is similar. Finally, even if domFD is 2 times
slower on the time per node, it is 31% faster overall.

Technically, our integration into gecode is quite straight-
forward and not particularly optimized. For instance we
use Leda4, an external library to maintain the graph, while
a bespoke light class with the right set of features should
be used. The way we record weak dependencies is also not
optimized and requires extra data structures whose accesses
could be easily improved, e.g., the assigned list of variables
shown in the Algorithm of Figure 3. For all these reasons,
we think that it must be possible to increase the speed of
our heuristic by some factor.

4www.algorithmic-solutions.com.

Table 3: First solution, restart-based strategy
Instance dom-wdeg domFD

#nodes #failures time (s) #nodes #failures time (s)
mag-squ-5 2239 1113 0.02 3025 1505 0.06
mag-squ-6 33238 16564 0.32 4924 2440 0.08
mag-squ-7 9963 4868 0.20 33422 16614 0.86
mag-squ-8 35.18M 17.59M 460.40 152446 75987 4.51
mag-squ-9 — — TO 66387 32951 1.64
mag-squ-10 — — TO 83737 41607 2.17
mag-squ-11 — — TO 8.52M 4.26M 374.62

crow-ch-7 2029 1002 0.04 3340 1656 0.22
crow-ch-8 16147 8036 0.67 2041 1002 0.14
crow-ch-9 129827 64788 6.15 228480 114089 37.97
crow-ch-10 — — TO 1134052 566761 263.01
sport-lea-14 4746 2327 0.68 4814 2359 0.65
sport-lea-16 28508 14073 4.05 3913 1912 0.61
sport-lea-18 546475 272510 101.70 51680 25549 10.72
sport-lea-20 182074 90355 36.69 2.07M 1.03M 514.18
qwh-30-316-1 1215 603 0.22 234 115 0.32
qwh-30-316-2 118348 59104 20.06 8828 4397 2.7
qwh-30-316-3 8944 4451 1.68 3114 1552 1.01
qwh-35-405 2.38M 1.19M 562.62 475053 237369 236.05
bibd-7-3-2 100 39 0.01 65 28 0.01
bibd-7-3-3 383 180 0.03 96 42 0.01
bibd-7-3-4 6486 3210 0.79 132 56 0.03

We also did some experiments to see if the computation of
domFD could be cheaply approximated. We used a counter
with each variable to record the number of times that vari-
able was at the origin of a weak dependency. This represents
an approximation of domFD since the counter considers de-
pendencies on instantiated variables. Unfortunately, this -
fast - approximation is always beaten by domFD on large
instances.

5. PREVIOUS WORK
In [2], the authors have proposed dom-wdeg, an heuristic

which gives priority to variables frequently involved in failed
constraints. It adds a weight to each constraint which is
updated (i.e, incremented by one) each time the constraint
fails. Using this value variables are ranked according to
domain size and associated weight. Xi, the selected variable
minimizes dom-wdeg(Xi)= |Xi|/

P

c∈prop(Xi)
weight(c). As

shown in the previous section, domFD is superior to dom-
wdeg on many problems. Interestingly, while dom-wdeg can
only learn information from conflicts, domFD can also learn
from successful branchings. This is an important difference
between these two techniques.

In [8], Refalo proposes the impact dynamic variable-value
selection heuristic. The rational here is to maximize the re-
duction of the remaining search space. In this context an
impact is computed taking into account the reduction of the
search space due to an instantiated variable. Impact also
considers values, and can therefore select the best instantia-
tion instead of the best variable. With domFD, a variable is
well ranked if its instantiation has generated several others
instantiation. This is equivalent to an important pruning of
the search space. In that respect domFD is close to impact.
However, its principle is the dynamic exploitation of func-
tional dependencies, not the explicit quantification of search
space reductions. More generally, since dvo heuristics are all
based on some understanding of the fail-first principle they

are all aiming at an important reduction of the search space.
To improve SAT solving, [7] proposes a new pre-processing

step that exploits the structural knowledge that is hidden
in a CNF formula. It delivers an hybrid formula made of
clauses together with a set of equations of the form y =
f(x1, ..., xn). This set of functional dependencies is then
exploited to eliminate clauses and variables, while preserv-
ing satisfiability. This work detects real functions while our
heuristic observes weak dependencies. Moreover, it uses a
pre-processing step while we perform our learning during
constraint propagation.

6. CONCLUSION
In this work, our goal was to heuristically discover a sim-

plified form of functional dependencies between variables
called weak dependencies. Once discovered, these relations
are used to rank the branching variables. More precisely,
each time a variable y gets instantiated as a result of the
instantiation of x, a weak dependency (x, y) is recorded. As
a consequence, the weight of x is raised, and the variable
becomes more likely to be selected by the variable ordering
heuristic.

Experiments done on 35 problems coming from 9 bench-
marks families showed that on the average domFD reduces
search trees by a factor 3 and runtime by 31% when com-
pared against dom-wdeg, one of the best dynamic variable
ordering heuristic. domFD is also more expensive to com-
pute since it puts some overhead on the propagation engine.
However, it seems that our implementation can be improved,
for example by using incremental data structures to record
potential dependencies in the propagation engine.

Our heuristic learns from successes, allowing a quick ex-
ploitation of the solver’s work. In a way, this is comple-
mentary to dom-wdeg which learns from failures. Moreover,
both techniques rely on the computation of mindom. Com-
bining their respective strengths seems obvious. We did ex-

tensive experiments around a new mixture, dom(x)/(wdeg(x)+
FD(x)) but found out that domFD was better than this
straightforward combination.

7. REFERENCES
[1] D. Achlioptas, C. P. Gomes, H. A. Kautz, and

B. Selman. Generating satisfiable problem instances.
In AAAI/IAAI, pages 256–261. AAAI Press / The
MIT Press, 2000.

[2] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais.
Boosting systematic search by weighting constraints.
In ICAI, pages 146–150, 2004.

[3] D. Brelaz. New methods to color the vertices of a
graph. Communications of the ACM, 22:251–256,
1979.

[4] B. N. Dilkina, C. P. Gomes, and A. Sabharwal.
Tradeoffs in the complexity of backdoor detection. In
C. Bessiere, editor, CP’07, volume 4741 of Lecture
Notes in Computer Science, pages 256–270. Springer,
2007.

[5] Gecode Team. Gecode: Generic constraint
development environment, 2006. Available from
http://www.gecode.org.

[6] M. Z. Lagerkvist and C. Schulte. Advisors for
incremental propagation. In C. Bessiere, editor,
CP’07, volume 4741 of Lecture Notes in Computer
Science, pages 409–422. Springer, 2007.

[7] R. Ostrowski, E. Gregoire, B. Mazure, and L. Sais.
Recovering and exploiting structural knowledge from
CNF formulas. In CP’02, volume 2470 of Lecture
Notes in Computer Science, pages 185–199. Springer,
2002.

[8] P. Refalo. Impact-based search strategies for
constraint programming. In CP’04, volume 3258 of
Lecture Notes in Computer Science, pages 557–571.
Springer, 2004.

[9] D. Sabin and E. C. Freuder. Contradicting
conventional wisdom in constraint satisfaction. In
ECAI, pages 125–129, 1994.

[10] C. Schulte and M. Carlsson. Finite domain constraint
programming systems. In F. Rossi, P. van Beek, and
T. Walsh, editors, Handbook of Constraint
Programming, Foundations of Artificial Intelligence,
chapter 14, pages 495–526. Elsevier Science
Publishers, 2006.

[11] R. Williams, C. P. Gomes, and B. Selman. Backdoors
to typical case complexity. In IJCAI, pages 1173–1178,
2003.

