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Abstract. This paper describes a method for rendering search coordinate system
independent, Adaptive Encoding. Adaptive Encoding is applicable to any iterative
search algorithm and employs incremental changes of the representation of solu-
tions. One attractive way to change the representation in the continuous domain
is derived from Covariance Matrix Adaptation (CMA). In this case, adaptive en-
coding recovers the CMA evolution strategy, when applied to an evolution strat-
egy with cumulative step-size control. Consequently, adaptive encoding provides
the means to apply CMA-like representation changes to any search algorithm in
the continuous domain. Experimental results confirm the expectation that CMA-
based adaptive encoding will generally speed up a typical evolutionary algorithm
on non-separable, ill-conditioned problems by orders of magnitude.

1 Introduction

In optimization or search, the problem encoding, that is the choice of the represen-
tation of the optimization problem is of utmost importance. A good representation, if
available, can render any search problem trivial—finding a proper representation means
essentially solving the problem. In an iterative search procedure, in principle, a good
problem representation can be iteratively approached, just as a good solution to the
problem is approached in the iteration sequence. Indeed, variable metric methods like
quasi-Newton methods [2], covariance matrix adaptation (CMA) [7], or estimation of
distribution algorithms [8] implicitly conduct a representational change. In case of an
additive modification of solutions, as for example a mutation in an evolutionary algo-
rithm, a linear change of representation is equivalent with an appropriate linear transfor-
mation of the additive mutation [3]. Linear transformations of additive mutation opera-
tors, parameterized in step-sizes or covariance matrices, are well studied in evolutionary
algorithms [1,8].

In this paper, we sketch an explicit framework for an iterative incremental repre-
sentation change, denoted as adaptive encoding. The framework by itself is just about
trivial. While the framework is very general, this paper considers subsequently only
linear changes of the representation in the continuous domain.

Searching for a linear representational change in the continuous domain comple-
ments the original n-dimensional search problem with a second search problem of size
n2. The advantage from adaptive encoding is that these two search problems are de-
coupled. Consequently, an effective adaptation of the representation (which can dra-
matically improve the algorithms performance) can be applied to any underlying search
procedure.
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In the next section we give the preliminary notations and definitions. In Section 3
the general idea of adaptive encoding is introduced. Section 4 proposes an update rule
for the representation, AECMA, derived from CMA. We can prove that AECMA applied to
CSA-ES recovers CMA-ES. Section 5 conducts another experimental proof of concept
and Section 6 gives a summary and conclusions.

2 Preliminary Notations and Definitions

Let f : Rn → R be an objective function to be minimized. Let a (baseline) search
algorithm propose new candidate solutions, x, in an iterated procedure and typically
evaluate them on f . Let further denote

S the state space of the search algorithm;
A : S → S an iteration step of the search algorithm A;
TB : S → S an invertible transformation, the decoding of the state space, the change

of representation. The TB is parameterized by a matrix B and therefore uniquely
depends on B;

B ∈ Rn×n a full rank matrix, representing (i) a new coordinate system and a coor-
dinate system transformation in Rn, and (ii) a problem representation and linear
decoding of candidate solutions B : x 7→ Bx;

U : Rn×n × S → Rn×n, (B, s) 7→ U(B, s) the change of representation by updating
the matrix B. For convenience, we assume that all necessary information to update
B is included in the algorithm state s and we may write U(B) instead of U(B, s);

From these definitions we first remark, that an iteration step of an algorithm can be
surrounded by an encoding-decoding step according to

AB ≡ TB ◦ A ◦ T−1
B , (1)

defining algorithm AB : S → S, s 7→ TB(A(T−1
B (s))). If TB is the identity we have

AB ≡ A.
By definition, decoded solutions (phenotypes) are represented in the given coordi-

nate system, where also f is evaluated. Accordingly, the algorithm operates, by def-
inition, on encoded solutions (genotypes). We usually assume, for convenience and
w.l.o.g., that recently evaluated solutions are part of the algorithms state.

Remark 1 (Evaluation of solutions). In order to make use of Eq. (1), we have to ensure
that candidate solutions are utilized in their original representation. The solutions must
be decoded for evaluation. In other words, A in Eq. 1 operates on f ◦B.

Considering Remark 1, we can execute the algorithm A in any coordinate system
of our choice. The new coordinate system, where the operations of A are effectively
conducted, is defined by B. Optimizing f ◦B instead of f already renders A indepen-
dent of the given coordinate system (if B is chosen independent of the given coordinate
system). Eq. (1) becomes meaningful when we also adapt B. We shall choose TB such
that changes of B do not change solutions after they are decoded to their original rep-
resentation (phenotype).
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Finally, we assume to have a performance measure when running an algorithm on
an objective function f . The performance measure determines whether one algorithm is
better than another. For example, a typical, quantitatively useful measure is the number
of candidate solutions evaluated on f until a target function value is achieved.

3 Adaptive Encoding

Equation (1) represents an iteration step of a search algorithm with an additional en-
coding-decoding procedure. The encoding is, throughout this paper, parameterized by
a n × n-matrix; it therefore adds n2 degrees of freedom. Obviously, the idea is to find
a good encoding for algorithm A.

Aim 1 (static encoding) The goal of finding a good encoding is to find a transforma-
tion TB , such that

TB ◦ A ◦ T−1
B outperforms A on f

The static encoding is usually part of the design of the objective function. Equivalently,
the algorithm can be modified specifically in regard to the given objective function (the
encoding-decoding can certainly be interpreted as part of the algorithm). The formalism
of Aim 1 is not very interesting. To get a more interesting situation, we need to consider
an update or adaptation of the encoding TB .

Definition 1. (Adaptive Encoding) Given an algorithm, A, an encoding, TB , and an
update, U , the iteration step of an adaptively encoded algorithm in state s ∈ S is
defined as

s← TB ◦ A ◦ T−1
B (s) (2)

B ← U(B, s) (3)

where← denotes the assignment operator and TB ◦ A ◦ T−1
B (s) = TB(A(T−1

B (s))).
We write TB ◦ A ◦ T−1

B ; U(TB) to denote the iteration step of Equations (2) and (3).

Obviously, any iterative algorithm A can be plugged into the adaptive encoding mech-
anism.

Proposition 1. (Adaptive Encoding is universal) The Adaptive Encoding from Defini-
tion 1 can be applied to any search algorithm.

Proof. The proposition follows directly from the definition of TB as invertible mapping
from S to S.

Even though Proposition 1 is just about trivial, it is of utmost importance for the im-
plications of our results, because it establishes the general applicability of any effective
adaptive encoding.

Analogous to Aim 1, we consider the merits of an adaptive encoding.

Aim 2 (adaptive encoding) Find an update U , such that for a given T0 and a given
(initial) TB
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TB ◦ A ◦ T−1
B ; U(TB) outperforms T0 ◦ A ◦ T−1

0 on f .

The left iteration step updates the encoding, the right iteration step applies a constant
encoding, T0, to algorithm A.

Taking only a single iteration step, Aim2 does not depend on the update U and it reduces
to Aim 1. Consequently, Aim 2 becomes only interesting, when an iteration sequence
is considered. Indeed, in a realistic automated scenario, Aim 2 can only be achieved in
the iteration sequence.

Finally, we define two cases/scenarios when considering Aim 2.

Scenario 1 (Standard scenario) The initial TB equals to T0. Aim 2 shall be satisfied
for most given T0.

Scenario 2 (Ambitious scenario) The initial TB equals to T0. Aim 2 shall be satisfied
for all given T0.

Satisfying the ambitious scenario implies that no fixed optimal encoding TB exists and
a changing encoding can, in principle, be better than any fixed encoding. Both, the
standard and the ambitious scenario are reasonable objectives, depending on the given
objective function.

The remainder of this paper proposes and investigates an effective way to implement
adaptive encoding as given in Definition 1.

4 Adaptive Encoding Based on Covariance Matrix Adaptation

In order to define an adaptive encoding, we need to specify the encoding of the algo-
rithms state space, TB : S → S, and the update of the encoding, U . In this section, our
aim is to obtain an efficient update U , leaving the choice of TB as only remaining, algo-
rithm specific design issue. The update is derived from the equations for the covariance
matrix update in the (µ/µW, λ)-CMA-ES [4,7], denoted as AECMA in the following, and
explicated in Algorithm 1 AECMA-Update.

The parameters of AECMA-Update are chosen to α0 =
√

n
‖B−1(m−m−)‖ , with li =

‖B−1(xi −m−)‖ we have αi =
√

n max
(

li
β ,median

j=1,...,µ
(lj)

)−1

, for i = 1, . . . , µ and

β = 2, αp = 1, cp = 1√
n

, wi = ln(µ+1)−ln i
µ ln(µ+1)−

∑µ
j=1 ln j

, for i = 1, . . . , µ, and µ is
half of the overall generated number of solutions per iteration (before selection), c1 =

αc
0.2

(n+1.3)2+µW
, cµ = αc

0.2 (µW−2 + 1
µW

)
(n+2)2+0.2µW

with µW = 1∑µ
i=1 w2

i
≥ 1. Finally αc ≈ 1 must

be chosen positive and such that c1 + cµ ≤ 1. Too large values for αc potentially lead
to a failure. Too small values slow down the adaptation. In any case, a parameter study
for αc is recommended, as conducted below. All parameters are detailed in [5].

The state variables are m, p and C. The mean m is initialized to the initial solution
mean of the search algorithm to which AECMA-Update is applied, and initially p = 0
and C = I .
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Algorithm 1: AECMA-Update({x1, . . . ,xµ})
updates the encoding matrix B using the µ recent best-ranked candidate solutions

given parameters wi, cp, c1, cµ, see text1
given m ∈ Rn, p ∈ Rn and C ∈ Rn×n from last iteration2
let matrices B◦ orthogonal, and D diagonal, with diagonal elements sorted in ascending3
order , “←” assigns accordingly
m− = m4
m←

∑µ
i=1 wixi // Eq.(3) in [4]5

set scalars αi ≥ 0, for i = 0, . . . , µ, see text6

p← (1− cp) p +
√

cp (2− cp) α0(m−m−) // Eq.(17) in [4]7

Cµ =
∑µ

i=1 wi α2
i (xi −m−)(xi −m−)T // rank-µ matrix8

set scalar αp ≥ 0, see text9

C ← (1− c1 − cµ) C + c1αp ppT + cµCµ // Eq.(22) in [4]10
B◦DDB◦ ← C // eigendecomposition11
optionally normalize D12
B ← B◦D // encoding matrix13

Proposition 2. Let σ denote a step-size and µ−1
W =

∑µ
i=1 w2

i . Let αp = 1, α0 =√
µW

σ and αi = σ−1, for i = 1, . . . , µ. Then, the procedure AECMA-Update implements
the update equations for the evolution path, p, and the covariance matrix, C, in the
(µ/µW, λ)-CMA-ES.

Proof. Assuming that x1, . . . ,xµ are the µ best solutions in the recent iteration step,
line 5 computes m according to Eq. (3) in [4]. Lines 7 and 10 of AECMA-Update repli-
cate the covariance matrix update equations (17) and (22) in [4] with added or renamed
normalization coefficients, denoted with α. Substituting the coefficients as given above
results in the original equations.

The AECMA-Update implements the covariance matrix update of CMA-ES with ad-
ditional coefficients α to be specified. Within CMA-ES, this update was designed to
operate reliably for any choice of µ [4].

Depending on the application of AECMA-Update, a slow change of B might be
desirable. While C will only change slowly, as long as c1 and cµ are small, the decom-
position of C does not ensure a similar behavior for B◦ and D. For this reason, the
diagonal elements in D are sorted. As an approximation, it might even be sufficient
to only decode the solutions for the function evaluation and completely abandon the
encoding-decoding of the algorithms state.

AECMA Recovers CMA-ES We apply AECMA (Algorithm 1) to an evolution strategy
with cumulative step-size adaptation (CSA, sometimes also denoted as path length
control). The AECMA-(µ/µW, λ)-CSA-ES is given in Algorithm 2, where the begin-end
block marks the original (µ/µW, λ)-CSA-ES. The following invertible encoding for the
state variables in CSA-ES is used.

TB : (m,pσ, σ) 7→ (Bm,B◦pσ, σ) (4)
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Algorithm 2: AECMA-CSA-ES
N (0, I) ∈ Rn indicates a (0, 1)-normal distribution in each coordinate
i(f) indicates the index of the i-th best solution, e.g., x1(f) = arg min

i=1,...,λ
{f(xi)}

Shaded areas implement the adaptive encoding, AECMA, also updating B and B◦

The begin-end block embraces the original CSA-ES minimizing f ◦B

initialize m ∈ Rn (distribution mean), pσ = 0 (evolution path), σ > 0 (step-size)1

initialize B = B◦ = I (encoding matrices)2
repeat3

m← B−1m4

pσ ← B◦Tpσ5

begin6
xi = m + σNi (0, I) , for i = 1, . . . , λ7

fi = f ◦B (xi) = f(B xi) , for i = 1, . . . , λ // decode to evaluate8
m− = m9
m←

∑µ
i=1 wi xi(f)10

pσ ← (1− cσ) pσ +
√

cσ (2− cσ)µW
1
σ
(m−m−)11

σ ← σ exp
(

cσ
dσ

(
‖pσ‖

E‖N(0,I)‖ − 1
))

12

end13

m← Bm14

pσ ← B◦pσ15

B, B◦ ← AECMA-Update({Bx1, . . . , Bxµ}) // update B and B◦
16

until stopping criterion is met17

Additionally, the µ best solutions are used as input to AECMA-Update (line 16 in Algo-
rithm 2). The encoding TB solely depends on B, as B◦ can be computed from B by
normalizing its columns to one. Applying AECMA-Update to CSA-ES we find

Theorem 1 (Recovery of CMA-ES). Let TB given in Eq. (4) and the scalars for
AECMA-Update in each iteration given in Proposition 2, then the AECMA-(µ/µW, λ)-
CSA-ES (Algorithm 2) implements the (µ/µW, λ)-CMA-ES.

Proof. Due to the space limitations, the proof is provided in [5].

Theorem 1 supports the hypothesis that AECMA-Update is an effective way to update
the representation matrix B in evolutionary search algorithms, as CMA-ES efficiently
adapts the principle axes of the coordinate system, where the independent sampling
takes place. In the next section, another application of AECMA-Update is realized.

5 Yet Another Experimental Proof of Concept

While AECMA-Update has proved to be effective with CSA-ES [7], in this section we
provide another case study. To underline the general applicability of AECMA-Update we
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Algorithm 3: AECMA-(1, λ)-Cauchy-ES
The begin-end block embraces the (1, λ)-Cauchy-ES minimizing f ◦B
Shaded areas implement the adaptive encoding
Ri ∈ Rn is standard Cauchy distributed in each component
1(f) indicates the index of the best solution x1(f) = arg mini=1,...,λ {f(xi)}

initialize x ∈ Rn and diagonal matrix σ (step-size matrix)1

initialize B = I (encoding matrix)2

repeat3

x← B−1x4
begin5

xi = x + σRi, for i = 1, . . . , λ6

fi = f ◦B (xi) = f(B xi) , for i = 1, . . . , λ // decode to evaluate7
x← x1(f)8
σjj ← σjj exp

(
1

2 n

(
1
2

sign(|R1(f),j | − 0.9) + sign

n∑
i=1

sign(|R1(f),i| − 1)
))

9

end10

x← Bx11

B ← AECMA-Update({Bx1, . . . , Bxµ}) // update B12

until stopping criterion is met13

consider a baseline algorithm that (i) exploits the given coordinate system, and (ii) gen-
erates distributions that are rather different from Gaussians, providing a test scenario
that is rather different from CSA-ES. We use a simple but functional algorithm that uti-
lizes a Cauchy distribution in a derandomized adaptation framework, denoted as (1, λ)-
Cauchy-ES, with λ = 10 (see the begin-end block in Algorithm 3). Despite this choice
(lead by simplicity and personal preference), neither comma-selection (non-elitism) nor
derandomization nor a small population size are fundamental prerequisites for applying
AECMA. The (1, λ)-Cauchy-ES samples new solutions without dependencies between
variables in the given coordinate system, because σ is a diagonal matrix. Rendering the
(1, λ)-Cauchy-ES coordinate system independent results in correlations between vari-
ables (even if σ = I), because the Cauchy distribution is highly anisotropic [6]. The
invertible encoding

TB : (x, σ) 7→ (Bx, σ) (5)

is used, where the step-size matrix σ is not transformed. An appropriate mapping for
a covariance matrix σ2 7→ Bσ2BT would not preserve the diagonal property, while
arguably T−1

B : C 7→ diag(BTCB) could be used. In contrast, using Bdiag(σ)
as mapping for only the diagonal of σ cannot be recommended, because very small
diagonal entries can occur accidentally. Because σ is not encoded, it is important that
changes of B remain modest.

Using B◦ instead of B in Eq. (5) is a possible alternative and investigated below. In
this case, the step-size matrix σ needs to learn the scaling that can be otherwise provided
by the diagonal matrix D in Algorithm 1.
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Fig. 1. Simulation of the AECMA-(1, λ)-Cauchy-ES. Left: number of function evalua-
tions to reach function value 10−9 on the rotated felli versus the multiplier αc for the
learning rate of B in 3-, 10- and 30-D (from bottom to top). Symbols × = B and
© = B◦. For each set-up two trials were conducted. Right: time evolution on the
rotated fcigtab in 10-D, shown are the objective function value (bold single graph), di-
agonal elements of the step-size matrix σ (lower group of curves) and diagonal elements
of D in Algorithm 1 (smooth upper graphs)

Test functions Testing on a number of functions, we always found the expected effect
from AECMA. Exemplarily, we show simulations on two quadratic test functions, falling
into Scenario 1 from Section 3.

felli(x) =
n∑

i=1

106 i−1
n−1 y2

i and fcigtab(x) = y2
1 + 104

n−1∑
i=2

y2
i + 108y2

n , (6)

where y := Ox and O = [o1, . . . ,on] implements an angle-preserving, linear transfor-
mation, i.e. O is orthogonal. The basis O was either chosen as identity I (axis-parallel
case), or each column was sampled uniformly distributed on the unit hypersphere, or-
thogonalized to the previous columns and normalized to one (rotated case). For each
trial a new basis was sampled. Further initial values were x = (1, . . . , 1)T and σ = I .
In the following, if a single trial is shown, it represents a typical trial.

Choosing parameters for AECMA For applying AECMA to the (1, λ)-Cauchy-ES, we
conduct a minimalistic parameter study for the multiplier, αc, of the learning rate for the
matrix B. Further parameters for the AECMA-Update follow the settings from Section 4,
accordingly, we use µ = λ/2 = 5. We test two cases, (i) using Eq. (5) and (ii) replacing
B with B◦ in Eq. (5). The remaining set-up is minimalistic. We test on the rotated felli

in 3-, 10- and 30-D, vary αc by factors of 2 and 1/2 and measure the number of function
evaluations to reach function value 10−9, twice for each set-up. Results are shown in
Figure 1, left. Missing points for large values of αc (to the right) indicate that at least
one run did not succeed. Large values lead to a failure, because the condition number of
matrix D (line 11 in Algorithm 1) diverges. Using B◦ is less prone to a failure. When
reducing αc to small values, the number of function evaluations will increase at most
linearly with αc

−1.
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Fig. 2. Simulation of AECMA-(1, λ)-Cauchy-ES (bold) and (1, λ)-Cauchy-ES (light) on
the axisparallel (solid) and the rotated (dashed) felli in 10-D (left) and 30-D (right).
Shown is the objective function value of respectively 3 trials over time. In the rotated
case, the AECMA improves the performance by a factor of roughly one thousand.

Only for large values of αc the performance is remarkably different for B and B◦.
With increasing αc, first B◦ becomes worse, but finally B fails earlier than B◦. Nev-
ertheless, the designated default value αc = 1 is applicable in both cases: the value is
more than ten times larger than a value that leads to a failure and the performance loss
to the best setting, does not exceed a factor of two. We retain using B as in Eq. (5) in
the following.

Figure 1 (right) shows a single run on the rotated fcigtab in 10-D. The function
topology is successfully adapted as the optimum is approached quickly after about 5000
function evaluations. The single large dispersion value in the distribution, relating to y1

in Eq. (6), is mainly represented in the matrix D (upper graph), while the single small
value, relating to yn, is mainly represented in σ, in particular in the early stage.

The comparison Completing the picture, we compare the AECMA-(1, λ)-Cauchy-ES
with the (1, λ)-Cauchy-ES on felli. In Figure 2, three runs are shown for each algorithm
on the axis-parallel and on the rotated function in 10-D (left) and 30-D (right).

The performance of the AECMA-(1, λ)-Cauchy-ES is virtually independent of rota-
tion (only the initialization is still different in both cases). On the axis-parallel function,
AECMA-(1, λ)-Cauchy-ES becomes about two to ten times slower than (1, λ)-Cauchy-
ES (for reaching function value 10−10 in 10-D and function value 100 in 30-D re-
spectively). On the rotated function, AECMA-(1, λ)-Cauchy-ES becomes between 200
and 2000 times(!) faster (for reaching function value 10−1 in 30-D and function value
10−10 in 10-D respectively). The application of the AECMA was apparently successful
(the CMA-ES is still roughly four times faster in this particular case). The trade-off
when AECMA is applied with the axis-parallel function is comparatively small, but in-
creases with increasing dimension. By fixing the transformation B for some time in the
beginning of the optimization, this trade-off can be eliminated.
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6 Summary and Conclusions

We have outlined an adaptive change of representation in iterative search, denoted as
adaptive encoding (AE): after each iteration step, (i) the algorithms state is “decoded”,
(ii) the encoding mechanism is adapted, and (iii) the algorithms state is “encoded” again
for the next iteration. Additionally, candidate solutions are decoded for their evaluation
on the objective function. In the continuous search domain, practical implications from
this simple procedure are surprisingly far-reaching. The sophisticated update of the
covariance matrix in the CMA-ES can be entirely formulated as a change of represen-
tation of an encoding matrix B (Proposition 2). Applying this representation change,
AECMA, to an evolution strategy with cumulative step-size control, the CMA-ES is re-
covered (Theorem 1)—proving that an effective representation change can be entirely
decoupled from the underlying search algorithm. Addressing an important open prob-
lem in evolutionary computation [9], the representation change implicitly induced by
the covariance matrix adaptation in the CMA-ES becomes available for any continuous
domain search algorithm—AECMA can render any search algorithm independent of the
coordinate system, in particular rotationally invariant.

We conjecture that on various non-separable ill-conditioned problems AECMA will
typically speed up population-based search methods by orders of magnitude. A case
study of AECMA supports our conjecture: the baseline algorithm has become roughly
thousand times faster on the non-separable problems. While the principle of adaptive
encoding is quite general, we anticipate successful applications (e.g. using Algorithm 1)
in particular for population-based, stochastic search algorithms in the continuous do-
main.
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