
HAL Id: inria-00278542
https://hal.inria.fr/inria-00278542v2

Submitted on 3 Dec 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Operator Selection with Dynamic
Multi-Armed Bandits

Luis Da Costa, Álvaro Fialho, Marc Schoenauer, Michèle Sebag

To cite this version:
Luis Da Costa, Álvaro Fialho, Marc Schoenauer, Michèle Sebag. Adaptive Operator Selection with
Dynamic Multi-Armed Bandits. Genetic and Evolutionary Computation Conference (GECCO), ACM,
Jul 2008, Atlanta, United States. pp.913-920, �10.1145/1389095.1389272�. �inria-00278542v2�

https://hal.inria.fr/inria-00278542v2
https://hal.archives-ouvertes.fr

Adaptive Operator Selection with
Dynamic Multi-Armed Bandits

Luis DaCosta1, Álvaro Fialho2, Marc Schoenauer1,2, Michèle Sebag1,2

1Team TAO, LRI (UMR CNRS 8623)
INRIA Saclay - Île-de-France
Bat 490, Université Paris-Sud
91405 Orsay Cedex, France

2Microsoft Research–INRIA Joint Centre
Parc Orsay Université
28, rue Jean Rostand
91893 Orsay Cedex, France

FirstName.LastName@inria.fr

ABSTRACT
An important step toward self-tuning Evolutionary Algo-
rithms is to design efficient Adaptive Operator Selection
procedures. Such a procedure is made of two main com-
ponents: a credit assignment mechanism, that computes a
reward for each operator at hand based on some characteris-
tics of the past offspring; and an adaptation rule, that mod-
ifies the selection mechanism based on the rewards of the
different operators. This paper is concerned with the latter,
and proposes a new approach for it based on the well-known
Multi-Armed Bandit paradigm. However, because the ba-
sic Multi-Armed Bandit methods have been developed for
static frameworks, a specific Dynamic Multi-Armed Bandit
algorithm is proposed, that hybridizes an optimal Multi-
Armed Bandit algorithm with the statistical Page-Hinkley
test, which enforces the efficient detection of changes in time
series. This original Operator Selection procedure is then
compared to the state-of-the-art rules known as Probability
Matching and Adaptive Pursuit on several artificial scenar-
ios, after a careful sensitivity analysis of all methods. The
Dynamic Multi-Armed Bandit method is found to outper-
form the other methods on a scenario from the literature,
while on another scenario, the basic Multi-Armed Bandit
performs best.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelligence:
Problem Solving, Control Methods, and Search

General Terms
Algorithms

Keywords
Adaptivity, Operator selection, Multi-Armed Bandit

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’08, July 12–16, 2008, Atlanta, Georgia, USA.
Copyright 2008 ACM 978-1-60558-131-6/08/07 ...$5.00.

1. PARAMETER CONTROL IN EAS
Parameter control has become a hot research area in many

domains of Computer Science, and in particular in Opti-
mization. While optimization methods are widely used in
different application areas, it remains that an extensive ex-
pertise and/or extensive experimentations are needed to fully
benefit from their possibilities. Like all high technology tech-
niques, optimization methods thus require specific develop-
ments in order to cross the chasm [16] and make it outside
of research labs. Concretely, these methods should become
self-tuning, i.e. able to automatically parametrize them-
selves, in order to be accessible to a wide audience without
any knowledge in the optimization technique itself.

The above remarks indeed apply to Evolutionary Algo-
rithms (EAs); although their many parameters are appreci-
ated for the great search flexibility they enforce, setting the
parameter values best suited to the problem at hand defines
an optimization problem per se, as noted in the very early
days of Evolutionary Computation [9].

Accordingly, the topic of parameter-tuning has been ex-
tensively investigated in the literature, and is still an ac-
tive field of research [15]. Amongst the different approaches
to parameter setting, this paper is concerned with Parame-
ter Control (following the terminology of [6, 7]), which pro-
ceeds by modifying the parameters along the EA run. Along
the same lines, three types of Parameter Control are distin-
guished: in deterministic control, parameter values are pre-
defined functions of time; in self-adaptive control, parame-
ters are attached to the individual genotype and their values
are set by evolution; in adaptive control, parameter values
are predefined functions of the whole history of the run.
While deterministic control suffers from the same difficulties
as static control (finding the optimal pre-defined functions
would require Parameter Tuning), self-adaptive and adap-
tive control have met some success along the years, but only
in very specific domains, like in the framework of contin-
uous parameter optimization (see the discussion in [5] and
references herein).

One key objective of Parameter Control is thus to propose
generic methods for the control of representation indepen-
dent parameters: i) population size, ii) selection mode and
parameters, iii) variation operator probabilities.

This paper is focused on the latter issue, or more generally,
on Adaptive Operator Selection (AOS): modifying on-line the
procedure that chooses a given variation operator among the
set of operators relevant to the problem representation, an
issue faced by all EAs. Section 2 will briefly review related

work, as many approaches have been proposed since Davis’
seminal work [4].

In essence, the goal of AOS is to select the operator which
maximizes the (expectation of) fitness improvement1. AOS
thus raises two main difficulties. The first one might be seen
as an Exploration vs Exploitation (EvE) dilemma; some ex-
ploration is needed to find the truly best operator, while the
best operators found so far should be selected as often as
possible in order to maximize the cumulative improvement.
The EvE dilemma has been intensively studied in the con-
text of Game Theory, in the so-called Multi-Armed Bandit
(MAB) framework [13, 1] (see Section 3). The second diffi-
culty is that the best operator does not need to be the same
at different stages of evolution, and the quality of a specific
variation operator (however measured) usually varies along
the evolutionary search. Formally, the problem is thus a
Dynamic Multi-Armed Bandit (D-MAB) setting.

In this context, the contribution of the paper is a control
procedure addressing the D-MAB settings. Specifically, it
hybridizes an optimal MAB algorithm first proposed by [1],
with the statistical Page-Hinkley test [10], enforcing the effi-
cient detection of changes in time series. This methodology
is experimentally validated and compared, in terms of both
performance and robustness, with the state-of-art Probabil-
ity Matching [8, 14, 2] and Adaptive Pursuit [20], following
the protocol proposed in [20], i.e. using artificial scenarios,
independently of any Evolutionary Algorithm.

The paper is organized as follows. Section 2 presents a
survey of AOS procedures. Section 3 details several decision
making algorithms: First, the (static) MAB framework and
the corresponding state-of-art algorithms; then, the state-of-
the-art dynamic decision making techniques that have been
used within AOS methods, namely Probability Matching and
Adaptive Pursuit. D-MAB is then introduced and discussed
in section 4. Section 5 describes the experimental valida-
tion setting; the artificial reward scenario used to validate
the Probability Matching and Adaptive Pursuit procedures in
[20, 21] is extended, and some variants are proposed to in-
vestigate the robustness of the control. Section 6 reports on
the comparative validation of D-MAB with respect to Prob-
ability Matching, Adaptive Pursuit and the static MAB algo-
rithm; a detailed sensitivity analysis of all four approaches is
presented. The findings of this work and further directions
of research are discussed in section 7.

2. ADAPTIVE OPERATOR SELECTION
Adaptive methods (sometimes also called feedback meth-

ods), use information from the history of evolution to mod-
ify some parameters. There are two main components for
an AOS method: the credit assignment (how to assess the
goodness of an operator?), and the decision making (based
on past credits, how to choose the next operator to use?).
This section will survey existing adaptive methods for oper-
ator selection, looking at how they addressed these issues.

2.1 State-of-the-art
The first AOS procedure was proposed as early as in the

late 80s by D. Davis [4]. In this work, the probability of

1More precisely, the goal would to be to select the right
mixture of operators [19]. This mixture selection problem
can in principle be handled in the AOS setting, by consid-
ering mixtures as particular options; this point will not be
considered in the scope of this paper.

each operator is adjusted based on how often its application
helped improving the best fitness in the population, with a
propagation mechanism toward the parents of the newborn
best individual: an operator is considered beneficial if it cre-
ated individuals that in turn were the parents of improved
offspring, and so forth, with a decaying mechanism. Similar
ideas were applied by Julstrom [12] with a few significant
differences: an operator was considered beneficial if the off-
spring it created was better than its own parents, and not
only than the current best of the population. Moreover, the
propagation of reward to the parents of the good offspring
was simpler than that proposed by Davis. Some good results
are reported in both works, compared to static parameters.
And in both cases, beside the complex reward mechanism,
the update mechanism for the operator probabilities is some-
how similar to the Probability Matching method (see below),
in that the probability of an operator is proportional to an
estimate of its reward with decay mechanism.

A different approach was used in the CORBA (Cost Op-
erator Based Rate Adaptation) method [22], where opera-
tors probabilities are periodically readjusted based on their
“productivity” in the previous generations. Such productiv-
ity is defined by the average improvement of the offspring
over their parents during the time period (for those offspring
that were better than their parents) divided by the compu-
tational cost of evaluating a child. One main difference in
relation to both works cited above is that no credit is given
upward in the generations. Moreover, the user is asked to
define a fixed list of possible values for operator probabilities,
and every G generations, the rank of the operator produc-
tivity determines the value in the list that will be assigned
to its probability. Beside a favorable comparison with some
self-adaptive method, the authors report that, though the
adaptation is beneficial on some problems, it might not be
the case for all problems. Moreover, an important factor
is the cost of the adaptation itself, that should be carefully
balanced with the improvement it brings to the search – if
any.

In [2], the authors use a Probability Matching technique
to adapt the operator probabilities in the context of a real-
coded GA. Their main contribution (apart from trying out
the idea in a continuous context) is to use a mixture of local
reward (i.e. estimated from the improvement of fitness of
the offspring over its parents) and global measure of perfor-
mance (i.e. obtained by comparing the offspring fitness to
some statistics about the fitness in the whole population).
As in [22], the cost (number of function evaluations required,
if any) is also used to decrease the reward of the operator.
The adaptation rule is very close to the Probability Match-
ing method.

2.2 Discussion
A critical issue in the above works is the definition of

the credit deserved by an operator. More precisely, what
characterizes a good operator? A second issue regards the
credit assignment procedure, aimed to find the best strategy
of operator probability control.

Given the difficulty of the task, it might seem relevant
to separately investigate both issues, namely the definition
of the operator reward, and the search for an efficient AOS
strategy. A first step along this line is taken by [20], tack-
ling the control of operator probabilities in artificial dynamic
environments, assuming the reward associated to each op-

erator to be known. This framework is quite similar to the
so-called Multi-Armed Bandit framework; both frameworks
are presented in the next section.

3. DECISION MAKING
This section first introduces the static Multi-Armed Ban-

dit (MAB) setting, referring the reader to [1] for a more
comprehensive presentation. The closely related dynamic
setting considered by [20] is described thereafter, together
with the Probability Matching and Adaptive Pursuit meth-
ods.

3.1 Static Setting
A multi-armed bandit involves K arms. The i-th arm is

characterized by its (fixed, unknown) reward probability pi

(pi ∈ [0, 1]). At each time step t, the player (game strategy)
selects some arm j; with probability pj it gets reward rt = 1,
otherwise rt = 0.

At any point T during the game, the performance of the
strategy is measured after its cumulative reward

PT

t=1
rt.

An equivalent criterion, more amenable to theoretical anal-
ysis, is the so-called regret of the strategy, defined as the
difference between its performance and the best possible per-
formance; clearly, the best possible performance is achieved
by playing at each time step the (unknown) arm with maxi-
mal reward p∗. Hence the regret of the strategy after T time
steps is:

L(T) = Tp∗ −
T

X

t=1

rt

Classically, it is assumed that i) arms are independent
from each other; ii) the rewards associated to each arm are
independently and identically distributed (iid). Under these
assumptions, it is shown that the optimal regret logarithmi-
cally increases with time (L(T) = O(log(T))) [13].

The so-called Upper Confidence Bound (UCB) algorithm
devised by Auer et al. [1] achieves the optimal regret rate
above through an Exploration vs Exploitation-based crite-
rion. Formally, let ni,t denote the number of times the i-th
arm has been played up to time t, and let p̂i,t denote the
average corresponding reward; subscript t will be omitted
when clear from the context. The UCB1 algorithm selects
in each time step t the arm maximizing the quantity below:

p̂j,t +

s

2 log
P

k nk,t

nj,t

(1)

Clearly, the first term favors Exploitation (play the arm with
best empirical reward) while the second term enforces Ex-
ploration, each arm being selected infinitely many times as
t goes to infinity. However the laps of time between two se-
lections of some under-optimal arm increases exponentially.

Some adjustments of the Exploration term have been pro-
posed in the literature and are summarized in Table 1. UCB-
Tuned (UCBT) [1] takes into account the variance of the
rewards, often experimentally outperforming UCB1, though
with no formal guarantee. KUCBT [11] only differs from
UCBT as term log(

P

k
nk,t)/nj,t has been omitted. Lastly,

cUCB allows one to directly control the exploration strength
through constant c. Typically, when the number of arms is
large and/or when the time horizon is restricted it makes
sense to limit the exploration strength.

p̂j +
q

2log
P

k nk,t

nj,t
UCB1 [1]

p̂j +
log

P

k nk,t

nj,t
+

q

vj,tlog
P

k nk,t

nj,t
UCB-Tuned [1]

p̂j +
q

vj,tlog
P

k nk,t

nj,t
KUCBT [11]

p̂j +
q

clog
P

k nk,t

nj,t
cUCB

Table 1: UCB Variants, where vj,t = max(ε, Vj,t) and
Vj,t is the empirical variance of the reward for the
j-th arm. vj,t is used instead of Vj,t (ε being a small
constant) to avoid definitively rejecting arm j in case
of a null variance.

It must be noted that Multi-Armed Bandits differ in two
respects from the mainstream framework concerned with
learning optimal strategies, namely Reinforcement Learning
(RL). On the one hand, MAB aims to select the best action,
whereas RL is concerned with finding the best sequence of
actions. On the other hand, while RL is concerned with
learning the optimal sequence, it does not pay attention to
the rewards it gets during the training phase. Quite the con-
trary, MAB simultaneously wants to learn the best action,
and to optimize the cumulative reward it gets during learn-
ing. Clearly, the latter objective is the only one relevant in
the context of Parameter Control: the goal is to learn the
best operators along evolution while maximizing the fitness
improvement in the course of evolution.

3.2 Dynamic Setting
Interestingly, the setting proposed by Thierens [20, 21]

in order to investigate the various issues raised by AOS in
a dynamic environment resembles that of the Multi-Armed
Bandit, except that it is dynamic. Formally, a reward dis-
tribution, uniform in a given interval [pi,t − 1, pi,t + 1], is
associated to the i-th arm or operator. Further, the center
pi,t of this reward distributions varies every P time steps (in
the experiments P = 50 or P = 200); the reward distribu-
tions associated to all operators change simultaneously.

Indeed, it is doubtful that the reward of variation oper-
ators (however measured) obeys such simple distributions.
Nevertheless, the construction of efficient AOS strategies in
this simplified setting undoubtedly is a significant milestone
toward adaptive self-tuning EAs.

Along these lines, [20] aims to identify at every time step
the optimal selection probability si,t for every operator i

(i = 1 to K, with
PK

i=1
si,t = 1), such that it maximizes

the expected cumulative reward at the end of the run. Em-
pirically, the cumulative reward is obtained by selecting in
each time step t the i-th operator with probability si,t, and
recording the associated reward.

Like in MAB framework, [20] uses and maintains an esti-
mate of the current operator reward noted p̂i,t. At time t:
• arm i is selected with probability si,t

• the corresponding reward rt is drawn uniformly in [pi,t −
1, pi,t + 1];
• the reward estimate p̂i,t of the selected arm is updated af-
ter rt, using an additive relaxation mechanism with learning
rate α (0 < α ≤ 1). Parameter α thus controls the memory
of the reward estimate; the forgettingness increases with α.

p̂i,t+1 = (1 − α)p̂i,t + α rt (2)

Based on the reward estimates, two methods named Prob-

ability Matching and Adaptive Pursuit have been proposed
to adjust the selection probabilities si,t.

The Probability Matching by far the most popular amongst
AOS methods [8, 14, 2] (see also Section 2) preserves the Ex-
ploration vs Exploitation balance by i) defining a minimal
selection probability pmin (∀t,∀i, si,t ≥ pmin) and ii) making
si,t − pmin proportional to p̂i,t. Probability Matching thus
involves two parameters, the learning rate α used to update
the reward estimate p̂, and the minimal selection probability
pmin.

si,t+1 = pmin + (1 − K ∗ pmin)
p̂i,t+1

PK

j=1
p̂j,t+1

(3)

The rationale behind Probability Matching is that the selec-
tion probability of any operator should not become too low,
preventing de facto AOS from discovering that this operator
has become the optimal one. Except for this reservation, the
selection probability of every operator is meant to reflect the
associated reward.

After equations (2) and (3), if the i-th operator does not
get any reward for some period of time, p̂i,t goes to 0 while
si,t goes to pmin. Inversely, if the i-th operator gets all
rewards, si,t goes to pmax = 1−K ∗pmin. In the meanwhile,
all mildly relevant operators (0 < si,t < max{si,t}) keep
being selected, thus hindering the performance of Probability
Matching [20].

This drawback is addressed by the Adaptive Pursuit method.
Originally proposed for learning automata, this method aims
to select at each time step the operator i∗t with maximal es-
timated reward (i∗t = argmax{p̂i,t}). To do so, the update
mechanism follows a “winner take all” strategy, increasing
the selection probability of the best arm up to pmax while
all other selection probabilities are decreased to pmin.

8

<

:

i∗ = argmax{p̂i,t, i = 1 . . . K}
si∗,t+1 = si∗,t + β (pmax − si∗,t) ,
si,t+1 = si,t + β (pmin − si,t) , for i 6= i∗

(4)

Adaptive Pursuit thus involves one additional parameter
compared to Probability Matching, the learning rate β used
to update the selection probabilities.

4. DYNAMIC MULTI-ARMED BANDIT
As shown in section 3.1, Multi-Armed Bandits are not

suited to dynamic environments. Typically, if the current
best arm becomes less efficient and dominated by another
one, it might take a long time before the latter arm catches
up. The proposed D-MAB algorithm thus combines MAB
ideas with a specific statistical test known as Page-Hinkley
(PH), which is used to detect the changes in the environment
and, accordingly, restart the multi-armed bandit.

After describing the PH test, this section gives an overview
of D-MAB. The UCB algorithm presented in section 3.1 is
adapted to handle continuous rewards as in [20], whereas
the standard MAB framework considers boolean rewards.

4.1 Change-point Detection
Given a series of observations r1, . . . , rℓ, a frequently asked

question is if these observations can be attributed to a same
statistical law (null hypothesis) or if some change in the
law underlying the observations has occurred at some point
(Change hypothesis).

A standard test for the change hypothesis is the Page-
Hinkley (PH) statistics [17]. Let r̄ℓ denote the average of
r1, . . . rℓ and let eℓ denote the difference rℓ − r̄ℓ + δ, where
δ is a tolerance parameter [18]. The PH test considers the
random variable mt defined as the sum of e1, . . . , et. The
maximum value Mt of the mt for ℓ = 1 . . . t is also computed
and the difference between Mt and mt is monitored; when
this difference is greater than some user-specified threshold
λ, the PH test is triggered, i.e., it is considered that the
Change hypothesis holds.

r̄ℓ =
1

ℓ

ℓ
X

i=1

ri

mt =

t
X

ℓ=1

(rℓ − r̄ℓ + δ) (5)

Mt = max{mℓ, ℓ = 1 . . . t}

PHt = Mt − mt

Return (PHt > λ)

The PH test involves two parameters. Parameter λ con-
trols the trade-off between false alarms and un-noticed changes.
Parameter δ enforces the robustness of the test when dealing
with slowly varying environments.

4.2 D-MAB
D-MAB hybridizes the UCB1 algorithm (Section 3.1) and

the Page-Hinkley test by restarting UCB1 from scratch when
the PH test is triggered. Formally, D-MAB maintains four
indicators for each arm i: the number ni of times this arm
has been played up to time t; the average empirical reward
p̂i; the average and maximum deviation mi and Mi involved
in the PH test, initialized to 0 and updated as detailed be-
low. At each time step t:

• D-MAB selects an arm i after equation (1). It receives
some reward rt, drawn after reward distribution pi,t.

• All four indicators p̂i, ni, mi and Mi are updated ac-
cordingly:

p̂i := 1

ni+1
(nip̂i + rt)

ni := ni + 1
mi := mi + (p̂i − rt + δ)
Mi := max(Mi, mi)

• If the PH test is triggered (Mi − mi > λ), the bandit
is restarted, i.e., for all arms, all indicators ni, p̂i, mi

and Mi are set to 0.

Instead of reinitializing p̂i and ni to 0 when the PH test is
triggered, one might consider to discount their values, e.g.
using some relaxation mechanism as in Probability Matching.
Empirically, it turns out however that the restart mechanism
is more robust. A tentative explanation for this fact goes as
follows. While UCB, as it is, can handle slowly varying
reward distributions, its real limitation is due to its inertia
in the case where the current best arm is well established
and undergoes a sudden fall2. In such cases, the simple
restart mechanism enables to recover accurate estimates of
the rewards much faster than relaxation.

2When the current best arm has been selected ni times and
its reward falls down by δ, it needs niδ/ε moves before re-
covering an accurate reward estimate up to precision ε.

4.3 Reward Scaling
A second difference between the MAB setting and the

one considered by [20], besides the dynamic aspects, is that
MAB considers boolean rewards and Bernouilli reward dis-
tributions while [20] considers continuous rewards and uni-
form reward distributions. The order of magnitude of the
empirical reward (the Exploitation-related term in Eq. (1))
might thus be quite different from that of the Exploration
term, adversely affecting the Exploration/Exploitation bal-
ance in UCB1. Accordingly, two scaling mechanisms pro-
posed to control the EvE balance are incorporated in D-
MAB.
Multiplicative Scaling (cUCB). The simplest scaling op-
tion is to multiply all rewards by a fixed user-defined pa-
rameter CM−scale. This option relies on the user’s prior
knowledge about the range of the rewards.
Affine Scaling. The other scaling option is inspired by the
well-known Fitness Scaling heuristics, used to calibrate the
roulette wheel selection in Canonical GA. The Affine Scaling
option similarly relies on the user’s prior knowledge about
the desired selection pressure, here the selection probability
of the best operator. Formally, Affine Scaling computes at
every time-step two coefficients a and b such that the scaled
empirical rewards q̂i,t = ap̂i,t + b satisfy3:

PK

i=1
q̂i,t = 1

maxi q̂i,t = CA−scale

where CA−scale is a positive, user-defined constant. Em-
pirically, CA−scale should take values around 1; it can even
exceed 1, leading to negative scaled empirical rewards for the
worst arms. Clearly, the selection rule (Eq. 1) only depends
on coefficient a; the difference compared to Multiplicative
Scaling is that a is adjusted in every time step depending
on the relative ranges of the operator rewards.

Finally, D-MAB involves four parameters: parameters λ
and δ used in the PH test; the type of scaling (multiplica-
tive or affine); and the scaling factor CM−scale or CA−scale

depending on the type of scaling.

5. EXPERIMENTAL SETTING
This section describes the goal of the experiments, and the

methodology followed to experimentally assess the various
AOS algorithms.

5.1 Goal of the Experiments
The goal of the experiments is to assess the performance

of all AOS algorithms below:

• The Probability Matching and Adaptive Pursuit meth-
ods (section 3.2, [21]) will be used as baseline algo-
rithms. Probability Matching parameters include the
minimal selection probability pmin and the relaxation
factor α; Adaptive Pursuit involves an additional pa-
rameter, the learning rate β.

• The UCB algorithm [1] proposed for static Multi-Armed
Bandit problems (section 3.1) will also be considered as
baseline, combined with the multiplicative and affine
scaling mechanisms (section 4.3). For the sake of clar-
ity, the multiplicative (respectively, affine) variants will

3It is seen that a and b are well defined except for the case
where all p̂i,t, or all but 1, are 0.

be referred to as MAB-M (resp., MAB-A). Both MAB-
M and MAB-A involve a single parameter, the scaling
constant S .

• Finally, the D-MAB algorithm described in section 4
will also be considered, combined with the multiplica-
tive and affine scaling mechanisms, referred to as D-
MAB-M and D-MAB-A. Both algorithms involve three
parameters: the λ and δ parameters used in the PH
test (section 4.1) and the scaling constant S .

Two performance measures will be considered. The first
one, noted p̂best, is the probability of picking up the best
operator, estimated as the percentage of time steps the op-
erator with current best reward is selected [20], averaged
over 100 independent runs for each parameter setting. The
second one is the total cumulative reward (TCR), estimated
as the sum of the rewards gathered along the run and like-
wise averaged over 100 independent runs. It is claimed that
TCR better reflects the priorities of evolution than p̂best:
maximizing the cumulative reward would correspond to op-
timizing the best fitness in the run if the operator rewards
directly reflected the fitness improvement (see below).

5.2 Experiment scenarios
The first scenario considered is the one defined in [20].

Two other variants will be investigated in order to assess the
robustness of the algorithms with respect to other reward
distributions.

Formally, the number K of operators considered is set to
5. The reward of each operator follows a known probability
distribution, which is constant along a fixed number of time
steps ∆T , or epoch. At the end of each epoch (i.e. every
∆T time steps), all rewards are exchanged amongst opera-
tors following a given permutation. All runs in all scenarios
involve 10 epochs and use the same series of 10 permuta-
tions. Two cases are considered: short epochs (∆T = 50)
and long epochs (∆T = 200).

In the Uniform Scenario [20], distributions of the re-
wards are uniform distributions on different intervals. The
best operator receives a reward that is uniformly distributed
on [4, 6], the second best on [3, 5], etc, and the worst opera-
tor on [0, 2]. Note that those intervals are overlapping; the
second best operator occasionally gets better rewards than
the best operator.

In the Boolean Scenario, the rewards are either 0 or
10. The best operator receives reward 10 with probability
.5, the second best with probability .4 and so forth. While
the average reward for a given arm during a given epoch is
the same as for the uniform scenario, the variance is much
higher in the boolean scenario. This scenario is closer to the
standard MAB setting (up to a factor of 10).

In the Outlier Scenario, all operators receive reward
0 with probability .9; the best operator receives reward 50
with probability .1, the second best receives reward 40 with
probability .1, and so forth. Likewise, the average rewards
in this scenario are the same as for the previous ones, but
with a much higher variance.

In all scenarios, the optimal strategy, selecting the best
operator in each time step, would get an average reward of
5 per time step; the maximal TCR thus is 2500 in the case
of short epochs (10×∆T × 5, ∆T = 50) and 10 000 for long
epochs (∆T = 200),

6. EXPERIMENTAL RESULTS
This section first reports on the sensitivity analysis of ev-

ery considered algorithm, and identifies its best parameter
values. The performances of all algorithms (each one at its
best) are then compared and discussed.

6.1 Design of Experiments
For the sake of a fair comparison, the optimal parametriza-

tion of all six algorithms has been determined through a
factorial design of experiments, varying the parameters as
follows (100 independent runs are launched for each param-
eter setting):

• For the Probability Matching and Adaptive Pursuit meth-
ods, the minimal selection probability pmin is varied in
[0, .1] by .01 increment. The relaxation factor α ranges
in [.1, 1] with .1 increment. For Adaptive Pursuit, pa-
rameter β similarly ranges in [.1, 1] with .1 increment.

• For MAB algorithms with Multiplicative (respectively,
Affine) Scaling, the scaling factor S ranges in [2, 10]
(respectively, [.1, 2]) with .1 increment.

• For dynamic MAB, the PH threshold λ ranges in [0.5, 10]
with 0.5 increment in the Uniform scenario, and in
[10, 20] by 2 increment in the other scenarios. Param-
eter δ was set to .15 after a few preliminary experi-
ments.

The analysis of the results is based on a 1-way ANOVA
with confidence 95%, ordering the parameters of each al-
gorithm by decreasing impact on the performances. If the
influence of the first parameter, say p1, is statistically signif-
icant, its best value p∗

1 is determined using a Scheffé’s test.
A similar procedure is used to determine the best value for
the second parameter conditioned by p1 = p∗

1, and so forth
(note that all algorithms have two parameters, except Adap-
tive Pursuit that has three).

The optimal parameter values (or range of values) and the
associated performances are reported for all six algorithms
in Tables 2 and 3, distinguishing the Uniform scenario (top),
the Boolean scenario (middle) and the Outlier scenario (bot-
tom).

The stability of the performances can be graphically as-
sessed after the response surface of the algorithms with re-
spect to their most influential parameters. Figures 1 and 2
respectively display the behavior of D-MAB-A and Adaptive
Pursuit, where each point represents the average TCR over
100 runs.

6.2 Sensitivity Analysis
A first finding is that the Outlier scenario is too harsh

for all considered algorithms; the best p̂best is close to ran-
dom guessing and the surface response (not shown due to
space constraints) is chaotic. This scenario will thus be not
discussed further in this paper.

In other scenarios, the MAB algorithms show good per-
formances. Figure 1 is a typical plot of the response surface
for an algorithm of the MAB family, that exhibits a rather
stable area of high values. The landscape is even smoother
for the Uniform scenario, and slightly more rough for the
case ∆T = 50, but with the same general outlook. Extreme
values of λ (not visible on the plot) degrade the results; for
medium values of λ, the results seem not very sensitive to
the value of the scaling factor S .

Regarding the Probability Matching and Adaptive Pur-
suit algorithms, a first surprising result is that the optimal
pmin value is very low, .01 or 0 (Tables 2 and 3, Figure 2),
whereas the original experiments reported in [20] used value
.1. A tentative interpretation for this fact is that, even with
pmin = 0, the reward estimates do not converge to 0, even
for long epochs (∆T = 200) and does not prevent the worst
operators from catching up later.

In the meanwhile, Probability Matching and Adaptive Pur-
suit display a lesser stability (Figure 2), with a much smaller
area of high TCR compared to MAB algorithms. Again, the
surface responses obtained for uniform and boolean scenar-
ios, and for Probability Matching and Adaptive Pursuit, are
similar.

1 2 3 4 5

10

20

5

15

6000

7000

5500

6500

7500

1

2

3

4

5

6000

7000

5500

6500

7500

1020 515

xy

z

Dynamic MAB with Affine scaling on Boolean scenario

Figure 1: Response surface for a subset of the DOE
for the D-MAB-A algorithm in the Boolean scenario
for ∆T = 200. Depth is the scaling factor Sand left
to right is the threshold λ.

0

0.1

0.05

70000

65000

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.9

0
0.1 0.05

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

70000

65000

x y

z

Adaptive Pursuit on Boolean scenario (200)

Figure 2: Response surface for a subset of the DOE
for the Adaptive Pursuit algorithm in the Boolean

scenario for ∆T = 200. Depth is Pmin and left to right
is the adaptation rate α.

6.3 Comparison of the algorithms
Based on the extensive experimental evidence summarized

in Tables 2 and 3, the TCR performances of all six algo-
rithms are compared using a 1-way ANOVA test (confidence
level 95%). This test is used to determine whether the per-
formances of the algorithms are significantly different; it this

PM AP MAB-M MAB-A D-MAB-M D-MAB-A
Pmin / α Pmin / α / β S S S/ λ S/ λ

Param. 0-.01 / .8-.9 .03 / .7-.9 / .4-.9 .3-.4-.5 .5-1.4 .6-.7-.8 / 4-13 1.2-1.5-1.9 / 1.5-2-4
TCR 1.80 ± 0.077 2.12 ± 0.12 2.25 ± 0.033 1.98 ± 0.047 2.24 ± 0.031 2.20 ± 0.044
p̂best 0.32 ± 0.06 0.58 ± 0.09 0.73 ± 0.04 0.45 ± 0.032 0.68 ± 0.038 0.66 ± 0.07

Param. 0-.01 / .9 .03-.1 / .7-.9 / .7-.9 .2-.6 .4-1.9 .5-.7-1 / 5-21 .8-1.1-1.8 / 17 (all)
TCR 1.82 ± 0.29 1.84 ± 0.29 1.89 ± 0.135 1.74 ± 0.132 1.85 ± 0.147 1.81 ± 0.145
p̂best 0.32 ± 0.15 0.33 ± 0.13 0.36 ± 0.05 0.30 ± 0.05 0.35 ± 0.07 0.33 ± 0.07

Param. ∅ / .1 .02-.09 / .1-.4 / ∅ .1 (all) .4 (all) .2-.6 / ∅ .2-.4 / ∅
TCR 1.60 ± 0.49 1.57 ± 0.49 1.63 ± 0.24 1.59 ± 0.27 1.58 ± 0.234 1.58 ± 0.219
p̂best (0.22 ± 0.07) 0.22 ± 0.09 0.24 ± 0.06 0.22 ± 0.05 0.22 ± 0.02 0.21 ± 0.004

Table 2: Results for ∆T = 50. Each big row is a scenario (from top to bottom, Uniform, Boolean and Outlier).
Each column presents the optimal parameter setting and the corresponding results of one algorithm.

PM AP MAB-M MAB-A D-MAB-M D-MAB-A
Pmin / α Pmin / α / β S S S/ λ S/ λ

Param. 0 / .8 .02 / .7-.8 / .3-.7-.9 .3-.4 .4-1.1 .8-1.2-1.6 / 4.5-12 3-5 / 3-8-14
TCR 7.36 ± 0.21 9.19 ± 0.25 9.46 ± 0.111 8.18 ± 0.058 9.75 ± 0.063 9.79 ± 0.059
p̂best 0.34 ± 0.02 0.75 ± 0.06 0.84 ± 0.009 0.47 ± 0.017 0.92 ± 0.014 0.94 ± 0.010

Param. 0-.01 / .5-.9 .01-.02 / .5-.9 / .2-.9 .1-.2-.4 .4-1.4 .9-1.5-2 / 4.5-12 1.1-1.5-2 / 14-16-18
TCR 7.90 ± 0.73 8.13 ± 0.38 8.19 ± 0.341 7.50 ± 0.360 7.57 ± 0.421 7.71 ± 0.347
p̂best 0.43 ± 0.14 0.48 ± 0.08 0.52 ± 0.05 0.35 ± 0.07 0.38 ± 0.05 0.41 ± 0.06

Param. ∅ / .1 .04-.07 / .1 / ∅ .1-.2-.4 .1-.3-1.8 .1-.2-.5 / ∅ .2-.3-.5 / ∅
TCR 6.50 ± 1.12 6.66 ± 1.24 7.12 ± 0.585 6.83 ± 0.634 6.23 ± 0.515 6.17 ± 0.435
p̂best 0.24 ± 0.07 0.27 ± 0.04 0.29 ± 0.07 0.26 ± 0.07 0.22 ± 0.01 0.21 ± 0.006

Table 3: Results for ∆T = 200. Each big row is a scenario (from top to bottom, Uniform, Boolean and Outlier).
Each column presents the optimal parameter setting and the corresponding results of one algorithm.

is the case, a Scheffé-S4 test is run to extract the best algo-
rithm.

After these results, the algorithms based on the Multi-
Armed Bandit framework outperform the other methods.
For the Uniform scenario with frequent changes (∆T = 50),
MAB-M and D-MAB-M (MAB with Multiplicative Scaling,
static or dynamic) outperform all other methods. When
considering longer epochs (∆T = 200), D-MAB-M and D-
MAB-A (the dynamic multi-armed bandits using whatever
scaling method) are statistically better than the other meth-
ods. Figure 3 (a) and (b) illustrates this situation with the
usual box-plots.

For the Boolean scenario, MAB-M (the static MAB with
multiplicative scaling) outperforms all other algorithms (Fig-
ure 3 (c)), for both short and long epochs.

7. CONCLUSION
This paper has introduced D-MAB, a new Adaptation rule

(or Decision Making method) to work in dynamic environ-
ments, hybridizing the Multi-Armed Bandit algorithm UCB
with the Page-Hinkley test to detect abrupt changes in the
environment. D-MAB has been compared to the state-of-
the-art methods of Probability Matching and Adaptive Pur-
suit on artificial scenarios, and performed very well on the
original scenario proposed in [20]. Surprisingly, the simple
Multi-Armed Bandit algorithm was found adaptive enough

4The S method allows for comparison between the means of
populations, either from different size or not. It is a very
robust method in terms of normality of the population. For
more details see [3, p. 224-225]

(given the speed of the changes) to perform even better in
another scenario where the reward is boolean instead of uni-
formly distributed.

While D-MAB involves 2 additional parameters, the ex-
tensive experimental study presented in this paper suggests
that it is rather robust with respect to their settings, and
comparatively more robust than Probability Matching and
Adaptive Pursuit. Further work is concerned with automat-
ically setting the D-MAB parameters.

Another research perspective is concerned with addressing
the operator adaptation within the evolutionary run. The
experiments proposed here, though probably far from real-
ity, can nevertheless give us some hints when it comes to
design credit assignment mechanisms.

The results for the Probability Matching and the Adap-
tive Pursuit algorithms are surprising: whereas they confirm
those of [20] for the Uniform scenario, their results are not
statistically different for the other two scenarios. Moreover,
the best value for the minimal probability for all operators
is much lower than the one used in [20]. This seems to in-
dicate that, at least in the proposed scenarios, the changes
are occurring too rapidly to allow probabilities to go to 0,
and greediness is a valid option.

The case of the Outlier scenario was poorly handled by
all methods. However, it has been acknowledged that the
ability for an operator to produce outliers could be a good
measure of their efficiency within an Evolutionary Algorithm
[23]. Even though this scenario was a caricature, it should
be addressed by an efficient Adaptive Operator Selection
method.

PM AP MAB−M MAB−A D−MAB−M D−MAB−A

75
00

80
00

85
00

90
00

95
00

TCR for Methods

Method

T
ot

al
 C

um
ul

at
ed

 R
ew

ar
d

PM AP MAB−M MAB−A D−MAB−M D−MAB−A

16
00

18
00

20
00

22
00

TCR for Methods

Method

T
ot

al
 C

um
ul

at
ed

 R
ew

ar
d

PM AP MAB−M MAB−A D−MAB−M D−MAB−A

65
00

70
00

75
00

80
00

85
00

90
00

TCR for Methods

Method

T
ot

al
 C

um
ul

at
ed

 R
ew

ar
d

(a)∆T = 200, Uniform (b)∆T = 50, Uniform (c)∆T = 50, Boolean

Figure 3: Box-plots of the six algorithms for the scenarios where visible differences exist. In each plot, from
left to right, PM, AP, MAB-M, MAB-A, D-MAB-M, and D-MAB-A.

8. ACKNOWLEDGMENTS
The authors thank Olivier Teytaud for fruitful discussions,

and gratefully acknowledge the support of the Network of
Excellence PASCAL, IST-2002-506778.

9. REFERENCES
[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time

analysis of the multiarmed bandit problem. Machine
Learning, 47(2/3):235–256, 2002.

[2] H. J. C. Barbosa and A. M. Sá. On adaptive operator
probabilities in real coded genetic algorithms. In Proc.
XX International Conference of the Chilean Computer
Science Society, 2000.

[3] R. Bertrand. Pratique de l’analyse statistique des
donnees. Presses de l’Universite du Quebec, Quebec,
QC, 1986.

[4] L. Davis. Adapting operator probabilities in genetic
algorithms. In Proc. 3rd International Conference on
Genetic Algorithms, pages 61–69. Morgan Kaufman,
1989.

[5] K. De Jong. Parameter Setting in EAs: a 30 Year
Perspective. In F. Lobo, C. Lima, and Z. Michalewicz,
editors, Parameter Setting in Evolutionary Algorithms,
chapter 1, pages 1–18. Springer Verlag, 2007.

[6] A. E. Eiben, R. Hinterding, and Z. Michalewicz.
Parameter control in Evolutionary Algorithms. IEEE
Trans. Evolutionary Computation, 3(2):124, 1999.

[7] A. E. Eiben, Z. Michalewicz, M. Schoenauer, and J. E.
Smith. Parameter Control in Evolutionary
Algorithms. In F. Lobo, C. Lima, and Z. Michalewicz,
editors, Parameter Setting in Evolutionary Algorithms,
chapter 2, pages 19–46. Springer Verlag, 2007.

[8] D. Goldberg. Probability Matching, the Magnitude of
Reinforcement, and Classifier System Bidding.
Machine Learning, 5(4):407–426, 1990.

[9] J. Grefenstette. Optimization of Control Parameters
for Genetic Algorithms. IEEE Trans. Systems, Man
and Cybernetics, 16:122–128, 1986.

[10] D. Hinkley. Inference about the change point from
cumulative sum-tests. Biometrika, 58(3):509–523,
1970.

[11] Z. Hussain, P. Auer, N. Cesa-Bianchi, L. Newnham,
and J. Shawe-Taylor. Exploration vs. exploitation
challenge. In
http://www.pascal-network.org/Challenges/EEC/,
2006.

[12] B. A. Julstrom. What have you done for me lately?
Adapting operator probabilities in a steady-state
genetic algorithm on genetic algorithms. In Proc. 6th
International Conference on Genetic Algorithms,
pages 81–87. Morgan Kaufmann, 1995.

[13] T. Lai and H. Robbins. Asymptotically efficient
adaptive allocation rules. Advances in applied
mathematics, 6:4–22, 1985.

[14] F. Lobo and D. Goldberg. Decision making in a
hybrid genetic algorithm. In Proc. IEEE International
Conference on Evolutionary Computation, pages
121–125. IEEE Press, 1997.

[15] F. Lobo, C. Lima, and Z. Michalewicz, editors.
Parameter Setting in Evolutionary Algorithms.
Springer, 2007.

[16] G. A. Moore. Crossing the Chasm: Marketing and
Selling High-Tech Products to Mainstream Customer.
Collins Business Essentials, 1991.

[17] E. Page. Continuous inspection schemes. Biometrika,
41:100–115, 1954.

[18] G. Piriou, F. Coldefy, P. Bouthemy, and J.-F. Yao.
Détection supervisée d’événements à l’aide d’une
modélisation probabiliste du mouvement perçu. In
Proc. 14ème Congrès Francophone AFRIF-AFIA de
Reconnaissance des Formes et Intelligence Artificielle,
2004.

[19] W. Spears. Adapting crossover in evolutionary
algorithms. In Proc. 4th Annual Conference on
Evolutionary Programming, pages 367–384. MIT
Press, Cambridge, MA, 1995.

[20] D. Thierens. An adaptive pursuit strategy for
allocating operator probabilities. In Proc. Genetic and
Evolutionary Computation Conference, pages
1539–1546. ACM Press, 2005.

[21] D. Thierens. Adaptive Strategies for Operator
Allocation. In F. Lobo, C. Lima, and Z. Michalewicz,
editors, Parameter Setting in Evolutionary Algorithms,
pages 77–90. Springer Verlag, 2007.

[22] A. Tuson and P. Ross. Adapting operator settings in
genetic algorithms. Evolutionary Computation,
6(2):161–184, 1998.

[23] J. M. Whitacre, T. Q. Pham, and R. A. Sarker. Use of
statistical outlier detection method in adaptive
evolutionary algorithms. In Proc. Genetic and
Evolutionary Computation Conference, pages
1345–1352. ACM, 2006.

