
HAL Id: inria-00139131
https://hal.inria.fr/inria-00139131v2

Submitted on 3 Apr 2007

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Modular Formalisation of Finite Group Theory
Georges Gonthier, Assia Mahboubi, Laurence Rideau, Enrico Tassi, Laurent

Théry

To cite this version:
Georges Gonthier, Assia Mahboubi, Laurence Rideau, Enrico Tassi, Laurent Théry. A Modular
Formalisation of Finite Group Theory. [Research Report] RR-6156, INRIA. 2007, pp.17. �inria-
00139131v2�

https://hal.inria.fr/inria-00139131v2
https://hal.archives-ouvertes.fr

appor t
de r ech er ch e

IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
61

56
--

F
R

+
E

N
G

Thème SYM

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

A Modular Formalisation of Finite Group Theory

Georges Gonthier — Assia Mahboubi — Laurence Rideau — Enrico Tassi — Laurent Théry

N° 6156

March 2007

Unité de recherche INRIA Futurs
Parc Club Orsay Université, ZAC des Vignes,

4, rue Jacques Monod, 91893 ORSAY Cedex (France)
Téléphone : +33 1 72 92 59 00 — Télécopie : +33 1 60 19 66 08

A Modular Formalisation of Finite Group Theory

Georges Gonthier∗ , Assia Mahboubi† , Laurence Rideau‡ , Enrico Tassi§ ,

Laurent Théry‡

Thème SYM — Systèmes symboliques
Projets Marelle, INRIA Sophia

Composants Mathématiques, Centre Commun INRIA Microsoft Research

Rapport de recherche n
�

6156 — March 2007 — 17 pages

Abstract: In this paper, we present a formalisation of elementary group theory done in
Coq. This work is the first milestone of a long-term effort to formalise Feit-Thompson
theorem. As our further developments will heavily rely on this initial base, we took special
care to articulate it in the most compositional way.

Key-words: finite groups, proof assistants, formalisation of mathematics

∗ Microsoft Research, Cambridge, R-U
† INRIA Futurs, Centre commun INRIA Microsoft Research
‡ INRIA Sophia Antipolis, projet Marelle
§ University of Bologna, Italy

Une formalisation modulaire des groupes finis

Résumé : Ce rapport présente une formalisation de théorie des groupes élémentaires réa-
lisée dans le système Coq. Ce travail est la première étape d’un projet d’envergure, qui a
pour but de construire une preuve formelle du théorème de Feit-Thompson. Comme nos
développements formels ultérieurs reposeront de façon cruciale sur cette base, nous avons
consacré un soin particulier à la modularité de ces fondations.

Mots-clés : Groupes finis, assistants à la preuve, formalisation des mathématiques

A Modular Formalisation of Finite Group Theory 3

1 Introduction

Recent work such as [2, 7, 8, 17] shows that proof systems are getting sufficiently mature
to formalise non-trivial mathematical theories. Group theory is a domain of mathematics
where computer proofs could be of real added value. This domain was one of the first
to publish very long proofs. The first and most famous example is the Feit-Thompson
theorem. Its historical proof [6] is 255 pages long. That proof has later been simplified and
re-published [4, 16], providing a better understanding of local parts of the proof. Yet its
length remains unchanged, as well as its global architecture. Checking such a long proof
with a computer would clearly increase the confidence in its correctness, and hopefully lead
to a further step in the understanding of this proof. This paper addresses the ground work
needed to start formalising this theorem.

There have been several attempts to formalise elementary group theory using a proof
assistant. Most of them [1, 11, 21] stop at the Lagrange theorem. An exception is Kammüller
and Paulson [12] who have formalised the first Sylow theorem. The originality of our work
is that we do not use elementary group theory as a mere example but as a foundation for
further formalisations. It is then crucial to us that our formalisation scales up. We have
therefore worked out a new development, with a strong effort in proof engineering.

First of all, we reuse the SSReflect extension of Coq developed by Gonthier for his
proof of the Four Colour theorem. This gives us a library and a proof language that is partic-
ularly well suited to the formalisation of finite groups. Second, we make use of many features
of the Coq proof engine (notations, implicit arguments, coercions, canonical structures) to
get more readable statements and tractable proofs.

The paper is organised as follows. In Section 2, we present the SSReflect extension
and show how it is adequate to our needs. In Section 3, we comment some of our choices
in formalising objects such as groups, quotients and morphisms. Finally, in Section 4, we
present some classic results of group theory that have already been formally proved in this
setting.

2 Small scale reflection

The SSReflect extension [9] offers new syntax features for the proof shell and a bunch
of libraries making use of small scale reflection in various respects. This layer above the
standard Coq system provides a convenient framework for dealing with structures equipped
with a decidable equality. In this section, we comment the fundamental definitions present
in the library and how modularity is carried out throughout the development.

2.1 Proof shell

Proof scripts written with the SSReflect extension have a very different flavour than the
ones developed using standard Coq tactics. We are not going to present the proof shell
extensively but only describe some simple features, that, we believe, have a positive impact

RR n
�

6156

4 Gonthier & al.

on productivity. A script is a linear structure composed of tactics. Each tactic ends with a
period. An example of such a script is the following

move⇒ x a H; apply: etrans (cardUI).
case: (a x); last by rewrite /= card0 card1.
by rewrite [+ x]addnC.

by rewrite {1}mem filter /setI.

All the frequent bookkeeping operations that consists in moving, splitting, generalising for-
mulas from (or to) the context are regrouped in a single tactic move, making these operations
more intuitive. For example, the fact that arguments of the move at the first line of the
example of script are after the arrow indicates that the three arguments are the name to
associate to three formulas to move from the conclusion to the context.

Good practise recommends to outline the underlying structure of the proof by indenting.
To further structure scripts, SSReflect first proposes a tactical by to explicitly tag closing
tactics. When replaying scripts, we then have the nice property that an error immediately
occurs when a closing tactic fails to prove its subgoal. Second, when composing tactics, the
two tacticals first and last let the user restrict the application of a tactic to only the first or
the last subgoal generated by the previous command. It covers the frequents cases where a
tactic generates two subgoals one of which can be easily discarded. In practice, these two
tactics are so effective at increasing the linearity of our scripts that, in fact, it is very rare
than more than two levels of indentation are needed.

Finally, the rewrite tactic in SSReflect comes with a concise syntax to accommodate
in a single command all the possible combinations of conditional rewriting, unfolding of
definition, simplifying, rewriting selecting specific occurrences, rewriting selecting specific
patterns, to name only some of them. Rewriting is then really convivial and contributes
to a change of proof style more based on equational reasoning. In the standard library of
Coq, the rewrite tactic is roughly used the same number of times as the tactic apply. In our
development for group theory, rewrite is used three times more often than apply — despite
the fact that, on average, each SSReflect rewrite stands for three Coq rewrites.

2.2 Views

The Coq system is based on an intuitionistic type theory, the Calculus of Inductive Con-
structions [19, 14]. There is a distinction between logical propositions and boolean values.
On the one hand, logical propositions are objects of type Prop for which the excluded middle
does not hold, i.e., the proposition ∀P:Prop,

P ∨ ¬P is not provable. On the other hand, bool is an inductive datatype with two construc-
tors true and false , for which the term
fun b → if b returns (b || ∼b = true) then refl equal true else refl equal true

is a proof of ∀ b: bool, b || ∼b = true. This proof does a dependent case analysis on b and
returns in each case a proof of true = true, the term (refl equal true), thanks to the fact that
boolean functions are computable.

When working in a decidable domain, the distinction between propositions and booleans
does not make sense anymore. The small scale reflection proposes a generic mechanism to

INRIA

A Modular Formalisation of Finite Group Theory 5

have the best of the two worlds and move freely from a propositional version of a decidable
predicate to its boolean version. For this, booleans are injected into propositions using the
coercion mechanism:

Coercion is true (b: bool) := b = true.

Now, every time the Coq system expects a proposition but receives a boolean b, it will
automatically coerce it into the proposition (is true b), i.e the proposition b = true. Coercions
are also omitted by the prettyprinter, so everything is completely transparent to the user.
Then, the inductive predicate reflect is used to relate propositions and booleans

Inductive reflect (P: Prop): bool → Type :=
| Reflect true : P ⇒ reflect P true
| Reflect false : ¬P ⇒ reflect P false.

The statement (reflect P b) indicates that (is true b) and P are two logically equivalent propo-
sitions. In the following, we use the notation b ↔ P for (reflect b P). For instance, the
following lemma:

Lemma andP: ∀ b1 b2, (b1 ∧ b2) ↔ (b1 && b2).

relates the boolean conjunction && and the logical one ∧ . Note that in andP, b1 and b2 are
two boolean variables and the proposition b1 ∧ b2 hides two coercions. The conjunction of b1

and b2 can then be viewed as b1∧ b2 or as b1&& b2. A naming convention in SSReflect is
to postfix the name of view lemmas with P. For example, orP relates || and ∨ , negP relates
∼ and ¬.

Views are integrated to the proof language. If we are to prove a goal of the form (b1∧ b2)

→G, the tactic case ⇒ E1 E2 changes the goal to G adding to the context the two assumptions
E1: b1 and E2: b2. If the goal is of the form (b1&& b2)→G instead, we simply need to change
the tactic to case/andP⇒ E1 E2 to perform the necessary intermediate change of view.

Suppose now that our goal is b1&& b2. In order to split this goal into two subgoals, we
use a combination of two tactics: apply/andP; split. The first tactic performs the change
of view so that the second tactic can do the splitting. Note that if we happen to have in
the context an assumption H: b1, instead of performing the splitting, the tactic rewrite H /=,
i.e., rewriting with H followed by a simplification, can directly be used to transform the goal
b1&& b2 into b2.

Views also provide a convenient way to swap between several (logical) characterisations
of the same (computational) definition, having a view lemma per interpretation. A trivial
example is the ternary boolean conjunction. If we have a goal of the form b1 && (b2 && b3)

→G, applying the tactic case/andP leads to the goal b1 → b2 && b3 →G. We can also define
an alternative view with

Inductive and3 (P Q R: Prop): Prop := And3: P →Q →R → (and3 P Q R).

Lemma and3P: ∀ b1 b2 b3, (and3 b1 b2 b3) ↔ (b1 && (b2 && b3)).

Now, the tactic case/and3P directly transforms the goal b1 && (b2 && b3) →G into b1 →b2 →

b3 →G.

RR n
�

6156

6 Gonthier & al.

2.3 Libraries

In our formalisation of finite groups, we reused the base libraries initially developed for the
formal proof of the Four Colour theorem. They consist in a hierarchy of structures and a
substantial toolbox to work with finite types. At the bottom of this hierarchy, the structure
eqType deals with types with decidable equality.

Structure eqType : Type := EqType {
sort :> Type;
== : sort → sort → bool;
eqP : ∀ x y, (x = y) ↔ (x == y)

}.

The :> symbol declares sort as a coercion from an eqType to its carrier type. It is the standard
technique to get subtyping, an object of type eqType can then be viewed as an object of type
Type. In the type theory of Coq, the only relation we can rewrite with is the primitive
(Leibniz) equality. When another equivalence relation is the intended notion of equality on
a given type, the user usually needs to use the setoid workaround [3]. Unfortunately, setoid
rewriting does not have the same power as primitive rewriting. An eqType structure not only
assumes the existence of a decidable equality == but also eqP injects this equality into the
Leibniz one, thus promoting it to a rewritable relation.

Any non parametric inductive type can be turned into an eqType choosing for == the
function that checks structural equality. This is the case for booleans and natural numbers
for which a bool eqType and nat eqType are defined as canonical structures. Canonical struc-
tures are used when solving equations involving implicit arguments. Namely, if the type
checker needs to infer an eqType structure on the type nat, it will automatically choose as
a default choice the nat eqType type. By enlarging the set of implicit arguments Coq can
infer, canonical structures ease the handling of the hierarchy of structures.

A key property of eqType structures is that they enjoy proof-irrelevance for the equality
proofs of their elements: every equality proof is convertible to a reflected boolean test.

Lemma eq irrelevance: ∀ (d: eqType) (x y: d) (E: x = y) (E’: x = y), E = E’.

An eqType structure only defines a domain, in which sets take their elements. Sets are
then represented by their characteristic function

Definition set (d: eqType) := d →bool.

and defining set operations like ∪ and ∩ is done by providing the corresponding boolean
functions.

The next step consists in building lists, elements of type seq d, whose elements belong to
the parametric eqType structure d. The decidability of equality on d is needed when defining
the basic operations on lists like membership ∈ and look-up index. Then, membership is
used for defining a coercion from list to set, such that (l x) is automatically coerced into
x ∈ l.

Lists are the cornerstone of the definition of finite types. A finType structure is com-
posed of a list of elements of an eqType structure, each element of the type being uniquely
represented in the list:

INRIA

A Modular Formalisation of Finite Group Theory 7

Structure finType : Type := FinType {
sort :> eqType;
enum : seq sort ;
enumP : ∀ x, count (set1 x) enum = 1

}.

where (set1 x) is the set that contains only x and (count f l) computes the number of elements
y of the list l for which (f y) is true.

Finite sets are then sets taken in a finType domain. In the library, the basic operations
are provided. For example, given A a finite set, (card A) represents the cardinality of A. All
these operations come along with their basic properties. For example, we have:

Lemma cardUI : ∀ (d: finType) (A B: set d),
card (A ∪ B) + card (A ∩ B) = card A + card B.

Lemma card image : ∀ (d d’: finType) (f: d →d’) (A: set d),
injective f ⇒ card (image f A) = card A.

3 The group library

This section is dedicated to the formalisation of elementary group theory. We justify our
definitions and explain how they relate to each other.

3.1 Graphs of function and intensional sets

We use the notation f=1g to indicate that two functions are extensionally equal, i.e the
fact that ∀ x, f x = g x holds. In Coq, f=1g does not implies f = g. This makes equational
reasoning with objects containing functions difficult in Coq without adding extra axioms.
In our case, extra axioms are not needed. The functions we manipulate have finite domain
so they can be finitely represented by their graph. Given d1 a finite type and d2 a type with
decidable equality, a graph is defined as

Inductive fgraphType : Type :=
Fgraph (val: seq d2) (fgraph sizeP: size val = card d1): fgraphType.

It contains a list val of elements of d2, the size of val being exactly the cardinal of d1. Defining
a function fgraph of fun that computes the graph associated to a function is straightforward.
Conversely, a conversion fun of fgraph is defined to let the user manipulate graphs as standard
functions. With graphs as functions, it is possible to prove functional extensionality

Lemma fgraphP : ∀ (f g : fgraphType d1 d2), f =1 g ⇔ f = g.

Note that on the left-hand side of the equivalence, f =1g is automatically coerced into (

fun of graph f) =1(fun of graph g). In order to make graphs a proper substitute to functions,
we need to equip them with the same operations that the ones proposed for functions. For
example, (setType d) corresponds to (set d). We call elements of (setType d) intensional sets by
opposition to the sets defined by their characteristic function. The notation {x, f x} is used

RR n
�

6156

8 Gonthier & al.

to define the intensional set whose characteristic function is f and (iimage f A) corresponds
to the intensional set of the image of A by f.

Graphs are used to build some useful datastructures. For example, homogeneous tuples,
i.e. sequences of elements of type K of fixed length n, are implemented as graphs with domain
(ordinal n), the finite type {0, 1, 2,. . ., n−1}, and co-domain K. With this representation, the
n-th element of a p-tuple t can be obtained applying t to n, as soon as n lies in the the
domain of t. Also, permutations are defined as function graphs with identical domain and
co-domain, the val list of which does not contain any duplicate.

3.2 Groups

In the same way that eqType structures were introduced before defining sets, we introduce a
notion of (finite) group domain which is distinct from the one of groups. It is modelled by
a finGroupType record structure

Structure finGroupType : Type := FinGroupType {
element :> finType;

1 : element;
−1 : element → element;

� : element → element → element;
unitP : ∀ x, 1 � x = x;

invP : ∀ x, x−1 � x = 1;
mulP : ∀ x1 x2 x3, x1

� (x2
� x3) = (x1

� x2)
� x3

}.

It contains a carrier, a composition law and an inverse function, a unit element and the
usual properties of these operations. Its first field is declared as a coercion to the carrier of
the group domain.

In the group library, a first category of lemmas is composed of properties that are valid
on the whole group domain. For example:

Lemma invg mul : ∀ x1 x2, (x2
� x1)−1 = x1

−1 � x2
−1.

Also, we can already define operations on arbitrary sets of a group domain. If A is such
a set, we can define for instance:

Definition x ˆ y := y−1 � x � y.

Definition A : � x := {y, y � x−1 ∈ A}. (� right cosets �)

Definition A :ˆ x := {y, y ˆ x−1 ∈ A}. (� conjugate �)
Definition normaliser A := {x, (A :ˆ x) ⊂ A}.

Some definitions may look less intuitive at first sight since we try as much as possible to
define them as boolean predicates. For example, the set of point-wise products of two sets
is defined as:

Definition A :*:B := {xy, ∼(disjoint {y, xy ∈ (A : � y)} B)}

A view lemma gives the natural characterisation of this object:

Lemma smulgP : ∀A B z, (∃ x y, x ∈ A & y ∈ B & z = x � y) ↔ (z ∈ A :*:B).

INRIA

A Modular Formalisation of Finite Group Theory 9

Lemmas like smulgP belongs to the second category of lemmas composed of the properties of
these operations requiring only group domain sets.

Finally, a group is defined as a boolean predicate, satisfied by sets of a given group
domain that contain the unit and are stable under product.

Definition group set A := 1 ∈ A && (A :*:A) ⊂ A.

It is very convenient to give the possibility of attaching in a canonical way the proof that a
set has a group structure. This is why groups are declared as structures:

Structure group(elt : finGroupType) : Type := Group {
set of group :> setType elt;
set of groupP : group set set of group

}.

The first argument of this structure is a set, giving the carrier of the group. Notice that
we do not define one type per group but one type per group domain, which avoids having
unnecessary injections everywhere in the development.

Finally, the last category of lemmas in the library is composed of group properties. For
example, given a group H, we have the following property:

Lemma groupMl : ∀ x y, x ∈ H ⇒ (x � y) ∈ H = y ∈ H.

In the above statement, the equality stands for Coq standard equality between boolean
values, since membership of H is a boolean predicate.

We declare a canonical group structure for the usual group constructions so that they
can be displayed as their set carrier but still benefit from an automatically inferred proof
of group structure when needed. For example, such canonical structure is defined for the
intersection of two groups H and K that share the group domain elt :

Lemma group setI : group set (H ∩ K).
Canonical Structure setI group := Group group setI.

where, as in the previous section, ∩ stands for the set intersection operation.
Given a group domain elt and two groups H and K, the stability of the group law for the
intersection is proved in the following way:

Lemma setI stable : ∀ x y, x ∈ (H ∩ K) ⇒ y ∈ (H ∩ K) ⇒ (x � y) ∈ (H ∩ K).
Proof. by move⇒ x y H1 H2; rewrite groupMl. Qed.

The group structure on the H ∩ K carrier is automatically inferred from the canonical struc-
ture declaration and the by closing command uses the H1 and H2 assumptions to close two
trivial generated goals.

This two-level definition of groups, involving group domain types and groups as first order
citizens equipped with canonical structures, plays an important role in doing proofs. Type
inference is then used to perform proof inference from the database of registered canonical
structures.

RR n
�

6156

10 Gonthier & al.

3.3 Quotients

Typically, every local section of our development assumes once and for all the existence of
one group domain elt to then manipulate different groups of this domain. Nevertheless, there
are situations where it is necessary to build new finGroupType structures. This is the case for
example for quotients. Let H and K be two groups in the same group universe, the quotient
K/H is a group under the condition that H is normal in K. Of course, we could create a new
group domain for each quotient, but we can be slightly smarter noticing that given a group
H, all the quotients of the form K/H share the same group law, and the same unit. The idea
is then to have all the quotients groups K/H in a group domain ./H. The largest possible
quotient is N(H)/H, where N(H) is the normaliser of H and all the other quotients are subsets
of this one.

In our formalisation, normality is defined as:

Definition H / K := (H ⊂ K) && (K ⊂ (normaliser H)).

If H / K, H-left cosets and H-right cosets coincide for every element of K. Hence, they are
just called cosets. Once again, we carefully stick to first order predicates to take as much
benefit as possible from the canonical structure mechanism. If necessary, side conditions are
embedded inside definitions by the mean of boolean tests. Like this, we avoid having to add
pre-conditions in the properties of these predicates to insure well-formedness. The definition
of cosets makes no restriction on its arguments:

Definition coset (A : setType elt) (x : elt) :=
if (x ∈ (normaliser A)) then A : � x else A.

The set of cosets of an arbitrary set A is the image of the whole group domain by the
coset operation. Here we define the associated sigma type:

Definition cosets (A : setType elt):= iimage (coset A) elt.
Definition cosetType (A : setType elt):= eq sig (cosets A).

where eq sig builds the sigma type associated to a set. This cosetType type can be equipped
with canonical structures of eqType and finType and elements of this type are intentional sets.
The quotient of two groups of the same group domain can always be defined:

Definition A/B := iimage (coset of B) A.

where coset of : elt → (cosetType A) injects the value of (coset A x) in (cosetType A). Thanks
to the internal boolean test in coset, A/B defines in fact [A ∩ N(B)]/B.

When H is equipped with a group structure, we define group operations on (cosetType H)

thanks to the following properties:

Lemma cosets unit : H ∈ (cosets H).
Lemma cosets mul : ∀Hx Hy : cosetType H, (Hx :*: Hy) ∈ (cosets H).

Lemma cosets inv : ∀Hx : cosetType H, (Hx :−1) ∈ (cosets H).

where A :−1 denotes the image of a set A by the inverse operation. Group properties are
provable for these operations: we can define a canonical structure of group domain on
cosetType, depending on an arbitrary group object. Canonical structures of groups, in this

INRIA

A Modular Formalisation of Finite Group Theory 11

group domain, are defined for every quotient of two group structures. A key point in the
readability of statements involving quotients is that the ./. notation is usable because it
refers to a definition independent of proofs; the type inference mechanism will automatically
find an associated group structure for this set when it exists.

Defining quotients has also been a place where we had to rework our formalisation sub-
stantially using intensional sets instead of sets defined by their characteristic function. In the
library of finite group quotients, there are two kinds of general results. The first one states
equalities between quotients, like the theorems about the kernel of quotient morphism. The
second, often heavily relying on properties of the first kind, builds isomorphisms between
different groups, i.e. groups having distinct carriers (and hence operations). For example,
this is the case for the so-called three fundamental isomorphism theorems. The initial ver-
sion of the quotients was using sets defined by their characteristic function. Having sets for
which function extensionality does not hold had forced us to use setoid. For theorems with
types depending on setoid arguments, especially the ones stating equalities, we had to add
one extensional equality condition per occurrence of such a dependant type in the statement
of the theorem in order to make these theorems usable. The situation was even worse since,
in order to apply one of these theorems. the user had to provide specific lemmas, proved
before-hand, for each equality proof. This was clearly unacceptable if quotients were to be
used in further formalisations. Using intensional sets has simplified everything.

3.4 Group Morphisms

Group morphisms are functions between two group domains, which comply with the group
laws of their domain and codomain. Since we do not create one type per group, the notion of
morphism is parametrised by a group on which morphism properties hold. The fundamental
property of group morphisms is that they preserve group structures under image and pre-
image.

To avoid having to use technical lemmas about the restriction of morphism domains, we
want the image and preimage of groups by morphism to have a canonical structure of group.
Thus, the values of a given function alone should be enough to determine the largest group
on which this function may be seen as a morphism.

We have embedded the domain of a morphism inside its computational definition by
giving a default unit value outside the group where the morphism properties are supposed
to hold. Now, the problem is to compute back the domain of a morphism candidate from
its values, identifying the kernel among the set of elements mapped to the unit:

Definition ker (f: elt → elt’) := {x:elt ⊂ {y: elt, f (x � y) == f y}}.

which can be equipped with a canonical group structure. Morphism domains are defined as:

Definition mdom (f: elt → elt’) := ker ∪ {x, f x != 1}.

Morphisms are defined by the following structure:

Structure morphism : Type := Morphism {
mfun :> elt → elt’;

RR n
�

6156

12 Gonthier & al.

group set mdom : group set (mdom mfun);
morphM : ∀ x y,
(mfun x) ∈ mdom ⇒ (mfun y) ∈ mdom ⇒ mfun (x � y) = mfun x � mfun y

}.

An isomorphism is a morphism having a trivial kernel. Restricting a morphism is simply
done by giving the default unit value outside its intended domain. This operation is a
canonical morphism construction. Morphisms and quotients are involved in the universal
property of morphism factorisation. For any function between group domains, we define a
quotient function by:

Definition fquo H (f : elt → elt’):=
if H ⊂ (ker f) then fun (Hx : cosetType H) ⇒ f (repr Hx)
else fun (Hx : cosetType H) ⇒ 1.

where repr picks a representative in any set of a finGroupType. Given any morphism, its
quotient function defines an isomorphism between the quotient of its domain by its kernel
and the image of the initial morphism.

This definition of morphism has been motivated by the formal proofs of the three fun-
damental isomorphism theorems. The goal was to eliminate any proof dependency which
cannot be resolved by the type inference system with the help of canonical structures. The
result is that statements are much more readable and formal proofs much easier. For in-
stance, the third fundamental isomorphism theorem follows directly from the three lemmas
below, because the function f3 is canonically a morphism.

Hypothesis sHK : H ⊂ K.
Hypothesis nHG : H / G.
Hypothesis nKG : K / G.

Let f3 := (fquo (fquo (coset K)).

Lemma mdom f3 : mdom f3 ⊂ (G / H) / (K / H).
Lemma im f3 : iimage f3 = G / K.
Lemma f3 ker : (ker f3) = {1}.

4 Standard theorems of group theory

In order to evaluate how practical our definitions of groups, cosets and quotients were, we
have started formalising some standard results of group theory. In this section, we present
three of them: Sylow theorems, Frobenius lemma and Cauchy-Frobenius lemma. Sylow
theorems are central in group theory. Frobenius lemma gives a nice property of the elements
of a group of a given order. Finally Cauchy-Frobenius lemma, also called Burnside counting
lemma, applies directly to enumeration problems. Our main source of inspiration for these
proofs was some lecture notes on group theory by Constantine [5].

INRIA

A Modular Formalisation of Finite Group Theory 13

4.1 Sylow theorems

The first Sylow theorem states the existence of a subgroup H of K of cardinal pn, for every
prime p such that card(K) = pns and p does not divide s. Its formal statement is the
following

Definition sylow K p H := subgroup H K && card H == p ˆ (logn p (card K)).

Theorem sylow1: ∀K p, ∃H, sylow K p H.

The first definition captures the property of H being a p-Sylow subgroup of K. The function
logn computes, if p is prime, the maximum value of i such that pi divides the cardinality
of K, if p is not prime it returns 0. This theorem has already been formalised by Kammüller
and Paulson [12]. They have followed the standard proof due to Wielandt [20]. Our proof
is slightly different and intensively uses group actions on sets. Given a group domain G and
a finite type S, actions are defined by the following structure

Structure action : Type := Action {
act f :> S → G → S;
act 1 : ∀ x, act f x 1 = x;
act morph : ∀ (x y : G) z, act f z (x � y) = act f (act f z x) y

}.

Note that we take advantage of our finite setting to replace the usual bijectivity of the action
by the simpler property that acting with the neutral element is the identity.

A complete account of our proof is given in [18]. The proof works by induction on n
showing that there exists a subgroup of order pi for all 0 < i ≤ n. The base case is Cauchy
theorem. It states the existence of an element of order p where p is a prime divisor of the
cardinality of the group K. To prove it, we use a simpler argument than the one in [12]
where a combinatorial argument based on some properties of the binomial is used. We
first build the set U such that U = {(k1, . . . , kp) | ki ∈ K and

∏i=p

i=1 ki = 1}. We have that
card(U) = card (K)p−1. We then define the action of the additive group Z/pZ that acts on
U as

n 7−→ (k1, . . . , kp) 7→ (kn mod p+1, . . . , k(n+p−1) mod p+1)

Note that defining this action is straightforward since p-tuples are graphs of function whose
domain is (ordinal p).

Now, we consider the set S0 of the elements of U whose orbits by the action are a
singleton. S0 is composed of the elements (k, . . . , k) such that k ∈ K and kp = 1. A
consequence of the class equation tells us that p divides the cardinal of S0. As S0 is non-
empty ((1, . . . , 1) belongs to S0), there exists at least one k 6= 1, such that (k, . . . , k) belongs
to S0. The order of k is then p.

In a similar way, in the inductive case, we suppose that there is a subgroup H of order
pi, we consider NK(H)/H the quotient of the normaliser of H in K by H. We act with H on the
left cosets of H by left translation:

g 7−→ hH 7→ (gh)H

RR n
�

6156

14 Gonthier & al.

and consider the set S0 of the left coset of H whose orbits by the action are a singleton. The
elements of S0 are exactly the elements of NK(H)/H. Again, applying the class equation, we
can deduce that p divides the cardinal of S0 so there exists an element k of order p in S0

by Cauchy theorem. If we consider H’ the pre-image by the quotient operation of the cyclic
group generated by k, its cardinality is pi+1.

We have also formalised the second and third Sylow theorems. The second theorem
states that any two p-Sylow subgroups H1 and H2 are conjugate. This is proved acting with
H1 on the left coset of H2. The third theorem states that the number of p-Sylow subgroups
divides the cardinality of K and is equal to 1 modulo p. The third theorem is proved by
acting by conjugation on the sets of all p-Sylow subgroups.

4.2 Frobenius lemma

Given an element a of a group G, (cyclica) builds the cyclic group generated by a. When
proving properties of cyclic groups, we use the characteristic property of the cyclic function.

Lemma cyclicP: ∀ a b, reflect (∃ n, aˆn == b) (cyclic a b).

The order of an element is then defined as the cardinality of its associated cyclic group.
Frobenius lemma states that given a number n that divides the cardinality of a group K, the
number of elements whose order divides n is a multiple of n. In our formalisation, this gives

Theorem frobenius: ∀K n, n | (card K) → n | (card {z:K, (orderg z) | n}).

The proof is rather technical and has intensively tested our library on cyclic groups. For
example, as we are counting the number of elements of a given order, we need to know the
number of generators of a cyclic group. This is given by a theorem of our library

Lemma phi gen: ∀ a,phi (orderg a) = card (generator (cyclic a)).

where phi is the Euler function.

4.3 The Cauchy-Frobenius lemma

Let G a group acting on a set S. For each g in G, let Fg be the set of elements in S fixed
by g, and t the number of orbits of G on S, then t in equal to the average number of points
left fixed by each element of G:

t =
1

|G|

∑

g∈G

|Fg |

To prove this lemma, we consider B, subset of the cartesian product G×S containing the pairs
(g, x) such that g(x) = x. We use two ways to evaluate the cardinality of B, first by fixing the
first component: |B| =

∑
g∈G |Fg |, then by fixing the second component: |B| =

∑
x∈S |Gx|

where Gx is the stabiliser of x in G. Then, when sorting the right hand-side of the second
equality by orbits we obtain that |B| = |Gx1||Gx1

| + |Gx2||Gx2
| + · · · + |Gxt||Gxt

| the xi

being representatives of the orbit Gxi. Applying the Lagrange theorem on the stabiliser of

INRIA

A Modular Formalisation of Finite Group Theory 15

xi in G (the subgroup Gxi
), we obtain that for each orbit: |Gxi||Gxi

| = |G| and we deduce
that |B| = t|G| =

∑
g∈G |Fg |.

This lemma is a particular case of the powerful Pólya method, but it already has signif-
icant applications in combinatorial counting problems. To illustrate this, we have formally
shown that there are 55 distinct ways of colouring with 4 colours the vertices of a square
up to isometry. This is done by instantiating a more general theorem that tells that the
number of ways of colouring with n colours is (n4 + 2n3 + 3n2 + 2n)/8. This last theorem
is a direct application of the Cauchy-Frobenius theorem. The encoding of the problem is
the following:

Definition square := ordinal 4.
Definition colour := ordinal n.
Definition colouring := fgraphType square colour.

Vertices are represented by the set {0, 1, 2, 3}, colours by the set {0, 1, . . . , n−1} and colouring
by functions from vertices to colours. The set of isometries is a subset of the permutations
of square that preserve the geometry of the square. In our case, we use the characteristic
condition that the images of two opposite vertices remain opposite.

Definition isometry := {p : perm square, ∀ i, p (opp i) = opp (p i)}.

where perm square is the permutation group and opp the function that returns the opposite of
a vertex. We get that the isometries is a subgroup of the permutations, since the property
of conserving opposite vertices is stable by composition and the identity obviously preserve
opposite vertices.

Given p an isometry, acting with p is defined as the function that given a colouring c
returns the colouring i 7→ c(p(i)). Each set of identical coloured squares corresponds to
an orbit of this action. To apply Cauchy-Frobenius, we first need to give an extensional
definition of the isometries, i.e. there are 8 isometries: the identity, the 3 rotations of π/2,
π and 3π/2, the vertical symmetry, the horizontal symmetry and the 2 symmetries about
the diagonals. Second, we have to count the elements left fixed by each of the isometry.

The proofs of three theorems presented in this section manipulate many of the base
concepts defined in our formalisation. They have been particularly important to gave us
feed-back on how practical our definitions were.

5 Conclusion

To our knowledge, what is presented in this paper is already one of the most complete
formalisation of finite group theory. We almost cover all the material that can be found in
an introductory course on group theory. Very few standard results like the simplicity of the
alternating group are still missing, but should be formalised very soon. The only similar
effort but in set theory can be found in the Mizar system [13]. Theorems like the ones
presented in Section 4 are missing from the Mizar formalisation.

Getting the definitions right is one of the most difficult aspect of formalising mathematics.
The problem is not much in capturing the semantics of each individual construct but rather

RR n
�

6156

16 Gonthier & al.

in having all the concepts working together well. Group theory has been no exception in
that respect. We had lots of try and go before converging to the definitions presented in
this paper. The fact that we were able to get results like the ones presented in Section 4
relatively easily makes us confident that our base is robust enough to proceed to further
formalisations.

Using SSReflect has been a key aspect to our formal development. It gives us a very
effective way of doing proofs inside the Coq system. Using decidable types and relying
heavily on rewriting for our proofs gives a ‘classical’ flavour to our development that is more
familiar to what can be found in provers like Isabelle [15] or Hol [10] than what is usually
done in Coq. An indication of the conciseness of our proof scripts is given by the following
figure. The standard library of Coq contains 7000 objects (definitions + theorems) for 93000
lines of code, this makes a ratio of 13 lines per object. The base library of SSReflect plus
our library for groups contains 1980 objects for 14400 lines, this makes a ratio of 7 lines per
object.

References

[1] Rob Arthan. Some group theory. Available at
http://www.lemma-one.com/ProofPower/examples/wrk068.pdf.

[2] Jeremy Avigad, Kevin Donnelly, David Gray, and Paul Raff. A Formally Verified Proof
of the Prime Number Theorem. ACM Transactions on Computational Logic, To appear.

[3] G. Barthe, V. Capretta, and O. Pons. Setoids in type theory. Journal of Functional

Programming, 13(2):261–293, March 2003.

[4] Helmut Bender and Georges Glauberman. Local analysis for the Odd Order Theorem.
Number 188 in London Mathematical Society Lecture Note Series. Cambridge Univer-
sity Press, 1994.

[5] Gregory M. Constantine. Group Theory. Available at
http://www.pitt.edu/~gmc/algsyl.html.

[6] Walter Feit and John G. Thompson. Solvability of groups of odd order. Pacific Journal

of Mathematics, 13(3):775–1029, 1963.

[7] Herman Geuvers, Freek Wiedijk, and Jan Zwanenburg. A Constructive Proof of the
Fundamental Theorem of Algebra without Using the Rationals. In Types for Proofs

and Programs, TYPES 2000 International Workshop, Selected Papers, volume 2277 of
LNCS, pages 96–111, 2002.

[8] Georges Gonthier. A computer-checked proof of the four-colour theorem. Available at
http://research.microsoft.com/~gonthier/4colproof.pdf.

INRIA

http://www.lemma-one.com/ProofPower/examples/wrk068.pdf
http://www.pitt.edu/~gmc/algsyl.html
http://research.microsoft.com/~gonthier/4colproof.pdf

A Modular Formalisation of Finite Group Theory 17

[9] Georges Gonthier. Notations of the four colour thorem proof. Available at
http://research.microsoft.com/~gonthier/4colnotations.pdf.

[10] Michael J. C. Gordon and Thomas F. Melham. Introduction to HOL : a theorem proving

environment for higher-order logic. Cambridge University Press, 1993.

[11] Elsa Gunter. Doing Algebra in Simple Type Theory. Technical Report MS-CIS-89-38,
University of Pennsylvania, 1989.

[12] Florian Kammüller and Lawrence C. Paulson. A Formal Proof of Sylow’s Theorem.
Journal of Automating Reasoning, 23(3-4):235–264, 1999.

[13] The Mizar Home Page. http://www.mizar.org/.

[14] C. Paulin-Mohring. Définitions Inductives en Théorie des Types d’Ordre Supérieur.
Habilitation à diriger les recherches, Université Claude Bernard Lyon I, December 1996.

[15] Lawrence C. Paulson. Isabelle: a generic theorem prover, volume 828 of LNCS. Springer-
Verlag, 1994.

[16] Thomas Peterfalvi. Character Theory for the Odd Order Theorem. Number 272 in
London Mathematical Society Lecture Note Series. Cambridge University Press, 2000.

[17] The Flyspeck Project. http://www.math.pitt.edu/~thales/flyspeck/.

[18] Laurence Rideau and Laurent Théry. Formalising Sylow’s theorems in Coq. Technical
Report 0327, INRIA, 2006.

[19] Benjamin Werner. Une théorie des Constructions Inductives. PhD thesis, Paris 7, 1994.

[20] Helmut Wielandt. Ein beweis für die Existenz der Sylowgruppen. Archiv der Mathe-

matik, 10:401–402, 1959.

[21] Yuan Yu. Computer Proofs in Group Theory. J. Autom. Reasoning, 6(3):251–286, 1990.

RR n
�

6156

http://research.microsoft.com/~gonthier/4colnotations.pdf
http://www.mizar.org/
http://www.math.pitt.edu/~thales/flyspeck/

Unité de recherche INRIA Futurs
Parc Club Orsay Université - ZAC des Vignes

4, rue Jacques Monod - 91893 ORSAY Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhône-Alpes : 655, avenue de l’Europe - 38334 Montbonnot Saint-Ismier (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)
Unité de recherche INRIA Sophia Antipolis : 2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-6399

	Introduction
	Small scale reflection
	Proof shell
	Views
	Libraries

	The group library
	Graphs of function and intensional sets
	Groups
	Quotients
	Group Morphisms

	Standard theorems of group theory
	Sylow theorems
	Frobenius lemma
	The Cauchy-Frobenius lemma

	Conclusion

