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Rapid Mixing of Dynamic Graphs with Local
Evolution Rules

Laurent Massoulié, MSR-Inria Joint Center, and Rémi Varloot, Nokia Bell Labs France

Abstract—Dynamic graphs arise naturally in many contexts. In peer-to-peer networks, for instance, a participating peer may replace an
existing connection with one neighbor by a new connection with a neighbor of that neighbor. Several such local rewiring rules have been
proposed to ensure that peer-to-peer networks achieve good connectivity properties (e.g. high expansion) at equilibrium. However, the
question of whether there exists such a rule that converges rapidly to equilibrium has remained open. In this work, we provide an
affirmative answer: we exhibit a local rewiring rule that converges to equilibrium after each participating node has undergone only a
number of changes that is at most poly-logarithmic in the system size. As a byproduct, we derive new results for random walks on graphs,
bounding the spread of their law throughout the transient phase, i.e. prior to mixing. These rely on an extension of Cheeger’s inequality,
based on generalized isoperimetric constants, and may be of independent interest.

Index Terms—Markov chains, Mixing time, Dynamic graphs, Local dynamics, Bottleneck ratio

F

1 INTRODUCTION

D ISTRIBUTED systems typically cannot operate efficiently
unless their constituting parts are interconnected via

a network with suitable properties. In the context of peer-
to-peer systems, desirable properties of the interconnection
graph between peers include having a small diameter, small
node degrees, and requiring many failures to disconnect a
sizeable part of the network. Yet another useful property
is the ability to obtain at low cost and via a distributed
algorithm uniform samples of nodes in the system.

It turns out that all such properties follow if the in-
terconnection graph is an expander (see [1] for a general
reference). By definition, the unoriented graph G = (V,E) is
a γ-expander for some constant γ > 0 if each set S ⊂ V of
vertices with size |S| no larger than |V |/2 is such that at least
γ|S| distinct edges in E connect S to its complement S in V .
It is an expander if it is a γ-expander for some γ ≥ Ω(1).

For instance, when the graph is an expander, uniform
samples are obtained in a distributed manner and at low
cost by running a random walk on the peer-to-peer graph:
It being an expander then ensures that only few steps (on
the order of the logarithm of the system size, measured in
number of nodes) of the walk suffice.

Because peer-to-peer systems are volatile, i.e. subject to
node arrivals and departures, it is not possible to determine
once and for all an expander graph to interconnect partici-
pating peers. Instead the graph must constantly evolve, with
the aim to preserve or restore the desired expander property.
Moreover, the graph evolution must rely on local adjust-
ments, since by design no central controller has knowledge
of the whole graph.

This has prompted research on dynamics for continuous
modification of graphs that would:

1) Rely only on local modifications of the current graph;
2) Require minimal computation and storage capabili-

ties per node;
3) Produce expanders at equilibrium;
4) Quickly reach equilibrium.

More precisely, considering graphs on a set of N nodes, by
quickly we mean requiring a number of modifications per
node that scales poly-logarithmically inN before equilibrium
is attained.

The main contribution of this paper is to propose a new
graph dynamics together with the proof that it meets these
four requirements. Its organization is as follows. Section 2
describes our proposed dynamics together with the main
result, Theorem 1. It also highlights Theorem 2, our technical
result controlling the spread of laws of random walks on
graphs at short times. Section 3 explains the proof strategy.
Section 4 explains how to deduce bounds with high proba-
bility on isoperimetric ratios from bounds on corresponding
expectations, using negative dependence properties. Section
5 derives the necessary bounds on expectations, leveraging
in particular Theorem 2. The proof of the latter constitutes
Section 6. A global outline of the proof is given in Figure 3.

We now review relevant prior work.

Related Work

Markovian local graph dynamics for peer-to-peer systems
have been considered in [2], [3], [4], [5]. In all these papers
the stationary regime for the proposed dynamics has been
identified; in the last three references, loose bounds on the
mixing time (defined below), or time to achieve equilibrium,
have been obtained. Similarly, in [6], the authors consider
the SKIP+ local graph dynamic, specifically tuned to rapidly
update the skip graph data structure.

The best known bound on the time before local graph
dynamics produce an expander graph with high probability
is O(ln2N) for the SKIP+ dynamic [6]. The context differs
from our approach, however, as this dynamic is specifically
tailored to construct a predefined topology, rather than
converge to a given equilibrium. Furthermore, it does not
fully satisfy our 2nd requirement in that it requires that each
node store various state variables (including its own state,
that of its neighbors, whether each outgoing edge is stable
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or temporary, etc.), with a complex update scheme based on
these variables.

Among the remaining papers, the tightest bound avail-
able prior to the present article was obtained in [7]. Specifi-
cally, it is shown in [7] that a discrete time Markov chain on
the set of connected d-regular graphs on N vertices creates
with high probability an expander graph after a time of
O(N2d2

√
lnN) with d of order O(lnN). This implies the

realization of this property after each node has performed
a number of updates of order O(N ln5/2(N)), i.e. a number
that is quasi-linear in the system size N .

Graph dynamics have also been considered in different
contexts. [8] considers local dynamics for producing so-called
cladograms uniformly at random, and bounds their mixing
time. [9] considers dynamics of matchings in bipartite graphs
and controls their mixing time. The motivation of [9] is
the estimation of graph descriptors using a Markov chain
Monte-Carlo approach. Finally, non-local graph dynamics
together with their mixing time have been considered in [10]
in order to sample from so-called exponential random graph
distributions.

2 MAIN RESULTS

In the sequel, we consider graphs over vertex set [N ] =
{1, . . . , N}, where N is a positive integer. Asymptotic results
will be with respect to N . We write polylog(N) to represent
O(lncN) for some positive constant c.

Consider the following setting. The vertices in [N ] are
connected by edges of three distinct types: a fixed cycle, blue
edges and red edges. The cycle is constituted of a fixed set
of edges E◦ = {(n, n+ 1) : i ∈ [N ]}, with N + 1 ≡ 1. Each
node n ∈ [N ] furthermore maintains two pointers, one blue
and one red, with respective destinations bn, rn in [N ]. The
destinations of the pointers are such that (bn) and (rn) are
permutations: each node n is the destination of exactly one
blue pointer and one red pointer. The blue edges and red
edge sets are respectively Eb = {(n, bn) : n ∈ [N ]} and
Er = {(n, rn) : n ∈ [N ]}. All edges are considered to be
unoriented.

We now consider the following continuous-time dynam-
ics. The graph evolves through alternating blue and red
phases. During each phase, only the edges of a given color
evolve, while those of the other color are kept fixed. During
a blue phase, for example, blue pointers are swapped along
graph Gr constituted of the edges in both E◦ and Er. Note
that Gr is a 4-regular multigraph.

The dynamics for a blue phase are defined as follows.
Each edge e = (i, j) of Gr maintains an internal clock, in
which the time between ticks are exponentially distributed
with mean 1 and all independent. At every tick, the two
nodes n,m ∈ [N ] such that bn = i and bm = j swap their
pointers. This effectively boils down to transposing i and j in
the permutation (bn)n∈[N ]. Such a process has been studied
in the literature, where it is known as the interchange process.
See for instance Jonasson [11] or N. Berestycki [12], where
the discrete time version of this process is analyzed.

For the red phases, the roles of blue and red pointers are
swapped; the graph containing the edges in E◦ and Eb is
denoted Gb. To clarify notations, we denote Ef the fixed
edge set during phase f , i.e. Eb if f is a red phase, Er

otherwise, and Gf the fixed graph, i.e. containing the edges
in E◦ and Ef . We finally write E◦f = Ef ∪ E◦.

Our main result is then as follows

Theorem 1. Let T = lnaN where a > 8 is a constant. After
F = dlog2Ne phases of length T , the variation distance between
the joint distribution of the sets of blue and red pointers and that
of two independent permutations uniformly distributed over the
symmetric group SN is o(1).

Corollary 1. After each node has undergone a number of local
connectivity modifications that is polylogarithmic in N , the process
has produced an expander with high probability.

Proof. By time τ := FT , a given node n ∈ [N ] has seen under
these dynamics a number of connectivity modifications Mn

that is at most a Poisson random variable with mean 8τ .
Indeed, since Gf has degree 4, the rate at which the inbound
and outbound pointers at n move are both 4, for a total
transition rate of 8.

The probability that Mn exceeds 16τ is then, by Cher-
noff’s bound for deviations of Poisson random variables
from their mean, bounded by

P(Mn ≥ 16τ) ≤ e−8τh(16τ/(8τ)) = e−8τh(2),

where h(x) := x ln(x) − x + 1 is the Cramér transform of
a unit mean Poisson random variable. Since τ is at least of
order lna+1N with a > 0, the last term is o(1/N). Thus the
probability that at least one node n ∈ [N ] undergoes more
than 16τ = polylog(N) local modifications by time τ is, by
the union bound, no more than No(1/N) = o(1).

The fact that the resulting graph GF is an expander will
be shown in Section 4, in which we introduce the necessary
technical lemmas. Note that results in [14] establish for very
similar (although not identical) random graph models that
these are expanders with high probability.

We now state another result, which will be instrumental
in Section 5, and proven in Section 6, but which we believe
could be of independent interest. For this, recall that the
Laplacian matrix L of a multi-graph G with adjacency matrix
A is by definition L = D − A, where D is the diagonal
matrix Diag({di}), di being the degree of node i (see [15] for
background on graph Laplacians).

Theorem 2. Let G = ([N ], E) be an undirected multi-graph
with maximum degree ∆, and {Xt} the continuous time random
walk on G, i.e. the Markov jump process on [N ] with jump
rates qij equal to the multiplicity of (i, j) in E. The infinitesimal
generator of {Xt} is −L, where L is the Laplacian matrix of G.
Let {πi(t)}i∈[N ] denote its law at time t. For an arbitrary initial
distribution of the random walk, for any k ≤ N/2 and S ⊂ [N ]
such that |S| ≤ k and any t ≥ 0, one has:∑

i∈S
πi(t) ≤

|S|
k + 1

+
√
k + 1e−λ

∗
2t, (1)

where

λ∗2 =
φk(G)2

2∆
, (2)

and φk(G) is defined in (3).

Remark 1. The quantity λ∗2 is of the same form as the lower
bound on the spectral gap λ2 of the Laplacian that the
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Blue pointers (bn) Red pointers (rn)

Fig. 1. Bi-color pointer interchange model

i j

m n
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Fig. 2. Swapping two red pointers along a blue edge (red phase)

Cheeger inequality gives when k = N/2. In fact for k = N/2,
the expression (3) of φk(G) coincides with this lower bound.
In this classical situation, instead of (1) one has the conclusion
that dvar(π(t),U([N ])) ≤

√
Ne−λ

∗
2t, see e.g. [16].

3 PROOF STRATEGY

To proceed, we first introduce some definitions.

Definition 1. For each k ∈ [N/2], the k-th isoperimetric
constant φk(G) of a graph G with vertex set V (G) = [N ]
and edge set E is defined as

φk(G) := min
S⊂[N ],|S|≤k

|E(S, S)|
|S|

, (3)

where S denotes the complement [N ] \ S of a set S, E(S, S)
denotes the set of edges in G between S and its complement,
and | · | denotes the cardinality of a set.

Note that the particular value φN/2(G) is often referred
to as the Cheeger constant, and plays an important role in
Lemma 3 below.

Definition 2. The collection {φk(G)}k∈[N/2] of isoperimetric
constants of graph G constitutes its isoperimetric profile.

The graph is said to be a (γ, c)-expander if, for all k ≤ N/2,
φk(G) ≥ min(γ, c/k).

Note that a graph is a γ-expander according to the
classical notion if it is a (γ,N/2)-expander according to
the above definition.

Other generalizations of the isoperimetric constant exist,
including average conductance [17] and the higher order
Cheeger inequalities [18].

Our proof consists of controlling the evolution of the
isoperimetric profile of the graph along which pointers move
from one phase to the next, establishing lower bounds on
this profile in an iterative manner.

Let β be a constant such that 1 < β < (a − 4)/4. Such
β exists by our assumption that a > 8. Let γ = ln−β N . We
show the following

Lemma 1. If, for a given phase f , the fixed graph Gf is a (γ, c)-
expander for some integer c, then with probability at least 1 −
o(1/N), Gf+1 (th fixed graph in the following phase) is a (γ, 2c)-
expander.

Notice that if Gf contained blue edges, Gf+1 contains
red edges, and vice versa.

To prove this, we first show a stronger lower bound on
the average number of pointers leaving any given set S:

Lemma 2. If, for a given phase f and integer c, Gf is a (γ, c)-
expander, then for all S ⊂ [N ] with |S| ≤ N/2,

E
∣∣Ef+1(S, S)

∣∣ ≥ 1

2γ
min(γ|S|, 2c). (4)

Lemma 1 is then deduced from Lemma 2 by invoking
some concentration inequalities together with union bounds.
Details are given in Section 4.2.

An easy consequence of Lemma 1 is the following:

Corollary 2. After F = dlog2Ne phases, with high probability
both Gb and Gr are (γ,N/2)-expanders.

Proof. Clearly, G1 is a (γ, 2)-expander. Indeed, any subset
S ⊂ [N ] of size |S| ≤ N/2 is connected by at least two edges
(that come from the cycle) to its complement S, so that

|E◦1 (S, S)| ≥ 2 ≥ min(γ|S|, 2).
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Section 3

Corollary 2

Theorem 1

Section 4

4.1
Lemma 1

4.2
Corollary 1

Section 5

Lemma 2
5.1

Small sets

5.2
Large sets

Section 6

Theorem 2

Results are mentioned in the sections
in which they are proved.

Fig. 3. Outline of proof

Denote by Ef the event that Gf is a (γ, 2f )-expander. Thus
we have just established that event E1 holds with certainty,
and Lemma 1 entails that, for all f ≥ 1,

P(Ef+1|Ef ) ≤ o(1/N).

Thus

P(Ef+1) = P(Ef+1|Ef )P(Ef ) + P(Ef+1|Ef )P(Ef )

≤ o(1/N) + P(Ef ).

By induction on f , this yields

P(Ef+1) ≤ o(f/N).

For F = dlog2Ne, the right-hand side of this expression is
o(1), so that with high probability, the graphs GF−1 and GF
are (γ,N/2)-expanders. As the color of these two graphs
differ, this concludes the proof.

The proof of Theorem 1 is then concluded as follows:

Proof. By Corollary 2, after F = dlog2Ne phases, the
Cheeger constants φN/2(Gb) and φN/2(Gr) are at least γ.
To, proceed, recall the following definition (see e.g. Levin et
al. [16] or [12]).

Definition 3. For a Markov process on some discrete state
S , denoting πs(t) its distribution at time t conditional on the
initial state being s ∈ S , and π(∞) its stationary distribution,
its mixing time Tmix is defined as

Tmix = inf{t > 0 : sup
s∈S
||πs(t)− π(∞)||TV ≤ 1/4},

where || · ||TV denotes total variation distance.

We show that, for any fixed graph Gf , φN/2(Gf ) ≥ γ
implies that the interchange processes on Gf mixes in less
than T steps, so that in two more phases, the total variation
distance between the state of our process and its equilibrium
distribution will be o(1).

Our main tool to this end is Theorem 4.3, p. 39 in
Berestycki [12], which gives a sufficient condition for the
discrete time interchange process on a graph Gf to mix in
time T . The proof provided in [12] is a direct application
of the so-called method of distinguished paths, a classical
technique for bounding mixing times, reviewed for instance
in [12] and [16].

The continuous time analogous result reads

Theorem 3 (Theorem 4.3, p. 39, [12]). For each pair of nodes
i, j ∈ [N ], define a path γij on G connecting i and j, and let

Γ = {γij : i, j ∈ [N ]}. Denote Υ the length of the longest path
in Γ, and K the supremum over the edges e of G of the number of
paths in Γ passing through e.

The continuous time interchange process on G will have mixed
in time T provided

T ≥ 8 ln(N)ΥK/N. (5)

According to Lemma 3 below, for a d-regular (γ,N/2)-
expander with d constant, we can choose these paths such
that Υ = O(lnN/γ2) andK = O(N ln2N/γ2). Plugged into
(5), these evaluations imply that mixing has occurred by time
T provided T is large compared to ln(N)4/γ4, i.e provided
ln(N)a = ω(ln(N)4+4β). This condition holds since β <
(a− 4)/4.

Lemma 3. Let G be a d-regular graph with vertex set [N ], such
that φN/2(G) ≥ γ. One can construct a set of paths Γ = {γij :
i, j ∈ [N ]} such that the γij each have length at most Υ =
2 ln(N)d2/γ2, and such that each edge e of G is crossed by at
most 18N ln2(N)d2/γ2 paths.

Proof. Cheeger’s inequality (see e.g. Berestycki [12] Theorem
3.5, p. 30) ensures that the spectral gap for the discrete time
random walk on a d-regular graph G with φN/2(G) ≥ γ is at
least γ2/(2d2). Thus the total variation distance between the
distribution of the random walk at time Υ := 2d2 ln(N)/γ2

and the uniform distribution on G is o(1/N) (this follows e.g.
by Theorem 2.2, p. 18 in [12]). As a result, for any i ∈ [N ],
the probability that the walk started at i hits j at time Υ is
at least 1/(2N). Consider then the following randomized
construction. For each i, create 5N ln(N) independent walks
of length Υ started at i. The probability that for some
particular j ∈ [N ], no such walk issued from i hits j is
then at most

(1− 1/2N)
5N ln(N) ≤ e−5 ln(N)/2 = o(N−2).

Using the union bound, we can therefore conclude that, with
high probability, the collection of paths thus created joins
every node i to every node j.

Let us now evaluate the number of times a given edge
e = (u, v) of G is traversed by this collection of paths. This
is no larger than the number of times these paths visit node
u. For t ≤ 5N ln(N), denote by Xi(t) the number of visits
to u by the t-th path sampled with starting point i. Clearly,
Xi(t) ≤ Υ. Also,

E
∑
i∈[N ]

∑
t≤5N ln(N)

Xi(t) = 5N ln(N)
∑
i∈[N ]

Υ∑
`=0

P
(`)
iu ,
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where P (`)
iu denotes the transition probability from i to u in `

steps of the walk. However the walk is symmetric, so that
P

(`)
iu = P

(`)
ui . The above expection thus reads

E
∑
i∈[N ]

∑
t≤5N ln(N)

Xi(t) = 5N ln(N)(Υ + 1).

Let Z =
∑
i∈[N ]

∑
t≤5N ln(N)Xi(t) denote the total number

of visits to u by all paths. For any C > 0, Hoeffding’s
inequality then gives

P(Z ≥ E(Z) + CNΥ ln(N)) ≤ exp

(
−C

2N2Υ2 ln(N)2

Υ25N2 ln(N)

)
= e−C

2 ln(N)/5.

Taking C = 3, the right-hand side is o(N−1). Thus, by the
union bound, with high probability, no node u is visited more
than 9N ln(N)Υ = 18N ln2(N)d2/γ2 times by the collection
of constructed paths.

4 FROM BOUNDS IN EXPECTATION TO BOUNDS
WITH HIGH PROBABILITY

4.1 Proof of Lemma 1
Assume that Gf is a (γ, c)-expander. By Lemma 2, for each
fixed set S ⊂ [N ] with |S| ≤ N/2, we have that

E|Ef+1(S, S)| ≥ 1

2γ
min(γ|S|, 2c).

Fix k ≤ N/2. We further restrict ourselves to k > 2/γ, since
|E◦(S, S)| ≥ 2 and therefore one always has that φk ≥ γ for
k ≤ 2/γ.

For some set S of size k, let ` ∈ [k] be the number of
contiguous portions of the cycle it is made of, i.e. the number
of connected subgraphs in the graph (S,E◦ ∩ S2). Clearly
|E◦(S, S)| = 2`, and therefore

|E◦f+1(S, S)| = |Ef+1(S, S)|+ 2`.

Recall (see e.g. Dubashi and Ranjan [19], and Borcea et al.
[20]) that a set of random variables (Xi)i∈I is said to be neg-
atively associated if for any two functions f, g : RI → R that
are non-decreasing in each of their coordinates, and depend
on disjoint sets of variables Xi, the two random variables
f((Xi)i∈I) and g((Xi)i∈I) are negatively correlated, i.e.

E [f((Xi)i∈I)g((Xi)i∈I)] ≤ E [f((Xi)i∈I)]E [g((Xi)i∈I)] .

We will need the following two results.

Lemma 4. Conditionally on the pointer configuration at the begin-
ning of the considered phase f , the random variable |Ef+1(S, S)|
consists of the sum of negatively associated Bernoulli random
variables. Consequently, for any r ∈ (0, 1), it holds that

P
(
|Ef+1(S, S)| ≤ r(2γ)−1 min(γ|S|, 2c)

)
≤ e−(2γ)−1 min(γ|S|,2c)h(r), (6)

where h(r) := r ln(r)− r + 1.

Proof. Consider a blue phase and a given set S. Represent
the collection of termination points of pointers through the
binary variables ξi ∈ {0, 1}, i ∈ [N ] where ξi = 1 if and only

if one pointer issued from S points towards i, i.e. there exists
j ∈ S such that bj = i. Note that

|Ef+1(S, S)| =
∑
i∈S

ξi(T ).

We shall show that the variables ξi(T ), i ∈ [N ] are, condi-
tionally on their initial values ξ(0) = {ξi(0)}i∈[N ], negatively
associated. This will imply, by the results of Dubhashi
and Ranjan [19] that |Ef+1(S, S)| satisfies, conditionally on
ξ(0), the same Chernoff bounds that it would if the ξi(T )
were mutually independent. In turn, this guarantees, for all
m < M := E(|Ef+1(S, S)| | ξ(0)), that

P(|Ef+1(S, S)| ≤ m | ξ(0)) ≤ e−Mh(m/M), (7)

where h(x) := x ln(x) − x + 1. Indeed, the right-hand
side in the above inequality is the Chernoff bound of
P(Poisson(M) ≤ m), and a standard argument shows that
Chernoff bounds of sums of independent Bernoulli random
variables are tighter than the Chernoff bound where that sum
is replaced by a Poisson random variable with the same mean.
This property is in fact a special case of the so-called Bennett
inequality, see e.g. [21], Theorem 2.9 p. 35 (alternatively, see
[22], proof of Corollary A.1.7, p. 310). The announced result
(6) then follows by taking m = r(2γ)−1 min(γ|S|, 2c) in (7),
remarking that the right-hand side of (7) decreases with M ,
and thus replacing M by its previously established lower
bound, i.e. (2γ)−1 min(γ|S|, 2c).

It thus remains to prove negative association of
{ξi(T )}i∈[N ] conditionally on ξ(0). We shall in fact establish
that a stronger form of negative correlation is satisfied,
namely the strong Rayleigh property. For a precise definition,
and the fact that strong Rayleigh property implies negative
association, we refer the reader to Liggett [23].

To that end, recall that the symmetric exclusion process
consists of particles located at nodes of a graph, that each
perform independent random walks along the edges of the
graph, except that transitions that would lead to multiple
particles at the same site are not allowed. The variables
{ξi(t)} then evolve, under the interchange process dynamics,
as a symmetric exclusion process where the transition rates
of one particle along any edge are all equal to 1.

Conditionally on ξ(0), the variables ξi(0) are determin-
istic, and thus trivially satisfy the strong Rayleigh property
(see Borcea et al. [20] for a proof). Proposition 5.1 in [20]
establishes that the symmetric exclusion process preserves
the strong Rayleigh property in the following sense: the
collection of indicator variables (ξi(t))i∈[N ] satisfies the
strong Rayleigh property for all t ≥ 0 provided that
(ξi(0))i∈[N ] does. This holds in particular for (ξi(T ))i∈[N ],
which concludes the proof of the Lemma.

Lemma 5. The number of sets S ⊂ [N ] of size k that consist of `
contiguous portions of the cycle is at most N2`.

It is also upper-bounded by N
(k−1
`−1

)(N−k−1
`−1

)
.

Proof. We may enumerate such sets S by scanning the cycle
[N ] starting from 1, and identifying the first time we find a
starting point of an interval in S, then the end point of that
interval, and so on. Clearly this will produce 2` numbers in
[N ], which characterize S, hence the upper bound N2`.

To obtain the other upper bound, note that the number
of strictly positive sequences of ` integers x1, . . . , xk such
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that x1 + · · · + x` = k equals the number of non-negative
sequences of such integers such that x1 + · · ·+ x` = k − `,
and this number is well known to equal(

k − `+ `− 1

`− 1

)
.

Similarly, the number of strictly positive sequences of in-
tegers y1, . . . , y` such that y1 + · · · + y` = N − k equals(N−k−1

`−1

)
. Given a set S ⊂ [N ] of size k and made of ` distinct

intervals, let z ∈ {0, . . . , N − 1} be the smallest number of
clockwise rotations of the set such that i = 1 corresponds
exactly to the beginning (in clockwise order) of a contiguous
segment of the set. The set is then fully specified by the
lengths of its constituting segments, x1, . . . , x`, in clockwise
order, together with the lengths of the segments separating
its own segments, y1, . . . , y`. Since this construction forms
an injection from the collection of considered sets S to a
set of size N

(k−1
`−1

)(N−k−1
`−1

)
, the announced upper bound

follows.

The union bound gives us, using the first upper bound in
this last lemma, the following bound on the probability pk
that for some set S of size k, one does not have the desired
property |E◦f+1(S, S)| ≥ min(γk, 2c):

pk ≤
k∑
`=1

N2`P
(
|Ef+1(S, S)| ≤ min(γk, 2c)− 2`

)
.

We now distinguish according to whether γk ≤ 2c or not.
Case 1: γk ≤ 2c. We then have, by (6):

pk ≤
γk/2∑
`=1

N2` exp

(
−(2γ)−1γkh

(
γk − 2`

(2γ)−1γk

))
≤ N exp

(
γk ln(N)− (2γ)−1γkh(o(1))

)
= exp

(
ln(N)[1 + γk − γk(1/2) ln(N)β−1h(o(1))]

)
.

The term in square brackets is asymptotically equivalent
to −γk(1/2) ln(N)β−1, because h(o(1)) tends to 1 and β >
1. Moreover, since γk > 2, the whole exponent is large
compared to ln(N). Thus pk = o(N−r) for any fixed r > 0.

Case 2: γk > 2c. We then have

pk ≤
c∑
`=1

N2` exp

(
−(2γ)−12ch

(
2c− 2`

(2γ)−12c

))
≤ N exp

(
2c ln(N)− (2γ)−12ch(o(1))

)
= exp

(
ln(N)[1 + 2c− 2c(1/2) ln(N)β−1h(o(1))]

)
.

We can then conclude as in the previous case.

4.2 Proof of expansion at equilibrium

To complete the proof of Corollary 1, we now show that
the graph GF obtained after F = dlog2(N)e phases is an
expander, i.e. an ε-expander for some fixed ε ≥ Ω(1), thereby
strengthening the statement that it is a γ-expander. The total
variation distance between the distribution of the graph GF
and that of a cycle plus a uniform random permutation is
o(1). To show that GF is with high probability an expander,
it thus suffices to show that a cycle plus a uniform random
permutation is an expander. This is shown as follows.

For a set S ⊂ [N ] of size k, the number of edges
from the permutation starting at nodes in S and ending
at nodes in S reads

∑k
i=1 ξi, for Bernoulli random variables

ξi with mean 1 − k/N . Moreover, these random variables
are negatively associated, as follows from [19]. Chernoff
bound on their deviation from the mean is then stronger
than the corresponding bound obtained assuming they are
independent. This entails that, for r ≤ 1− k/N ,

P

(
k∑
i=1

ξi ≤ rk
)
≤ e−kD(r||1−k/N),

where D(r||s) := r ln(r/s)+(1−r) ln((1−r)/(1−s)) is the
Kullback-Leibler divergence between Bernoulli distributions
with parameters r and s.

Fix ε > 0 a small positive constant, and let k ≤ N1/3.
In particular, one has that k/N ≤ 1 − ε. We thus have, in
view of the first bound in Lemma 5, the upper-bound on the
probability pk that there exists some set S ⊂ [N ] of size k
such that |E◦F (S, S)| < εk:

pk ≤
k∑
`=1

N2`P(|Ef (S, S)| < εk − 2`)

≤
dεk/2e−1∑
`=1

N2`e−kD(ε−2`/k||1−k/N).

Since D(ε − 2`/k||1 − k/N) increases with `, we may
upper-bound each term in this last summation by
Nkεe−kD(ε||1−k/N). Its logarithm C reads

C := εk ln(N)− kD(ε||1− k/N)

= εk ln(N)− kε ln

(
ε

1− k/N

)
− (k(1− ε)) ln

(
N

1− ε
k

)
.

The second term is O(k), while the third term is for large
enough N no larger than

−k(1− ε) ln(
√
N) = −(k(1− ε)/2) lnN.

It follows that

C ≤ k{O(1) + ln(N)[ε− (1− ε)/2]},

and, assuming ε < 1/3, this is no larger than −rε ln(N),
where rε = 1−3ε

4 > 0. This yields for all k ≤ N1/3:

pk ≤ ke−rεk ln(N).

As
∑N1/3

k=1 ke−rεk ln(N) = o(1), with high probability no sub-
set S ⊂ [N ] of size |S| ≤ N1/3 is such that |E◦F (S, S)| < ε|S|.

For |S| = k ∈ [N1/3, N/2], we use the second upper
bound of Lemma 5 on the number of size k sets made of `
segments. Since this bound increases with ` for ` ≤ εk/2, we
obtain

pk ≤ kN
(
k − 1

kε/2

)(
N − k − 1

kε/2

)
e−kD(ε||1−k/N).
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Stirling’s formula implies that the logarithm of this upper
bound is no larger than

ln(kN) +
εk

2
ln

(
k − 1

kε/2

)
+ (k − 1− kε/2) ln

(
k − 1

k − 1− kε/2

)
+ kε/2 ln

(
N − k − 1

kε/2

)
+ (N − k − 1− kε/2) ln

(
N − k − 1

N − k − 1− kε/2

)
− kε ln

(
ε

1− k/N

)
− (k(1− ε)) ln

(
N

1− ε
k

)
.

The first term is at most 2 ln(N) since k ≤ N/2. Using the
inequality ln(u) ≤ u − 1, the fifth is no larger than kε/2.
It follows that the sum of the second, third, fifth and sixth
terms is upper-bounded by kf(ε) for a function f of ε such
that f(ε) = O(ε ln(1/ε)). Thus:

ln(pk) ≤ 2 ln(N) + kf(ε) + kε/2 ln

(
N − k − 1

kε/2

)
− (k(1− ε)) ln

(
N

1− ε
k

)
= 2 ln(N) + kf(ε) + kε/2 ln

(
1− (k + 1)/N

ε/2

)
+ kε/2 ln(N/k)− k(1− ε) ln(1− ε)
− k(1− ε) ln(N/k)

= 2 ln(N) + kg(ε)− k(1− 3ε/2) ln(N/k),

for some function g(ε) such that g(ε) = O(ε ln(1/ε)). This
readily implies that for small enough ε > 0, there exists a
constant sε > 0 such that, for k ∈ [N1/3, N/2], pk ≤ e−sεk.
The corresponding sum is o(1). Therefore, graph GF is with
high probability an ε-expander for some fixed constant ε > 0.

5 CONTROLLING THE MEAN

The goal of this Section is to prove Lemma 2. Let Gf be the
static graph during phase f . Gf is a 4-regular undirected
graph on [N ], and we assume it is a (γ, c)-expander:

∀k ≤ N/2, φk(Gf ) ≥ min(γ, c/k).

Our goal is to prove that for any fixed set S of size k ≤ N/2,
by the end of phase f (i.e. after T time steps), the expected
number of pointers connecting S to S satisfies

E|Ef+1(S, S)| ≥ 1

2γ
min(γk, 2c).

The proof is divided into two parts, arguing differently
depending on the size k of S. Let kc = 4c/γ; sets of size k
with k ≤ kc (respectively k > kc) will be referred to as small
sets (respectively large sets).

5.1 Small sets: from partial expansion to partial spread
Let us now use Theorem 2 to prove the conclusion of
Lemma 2 for small values of k.

For a fixed set S of size k ≤ kc, and a fixed node i ∈ S,
let Xi(t) denote the location of the pointer issued from i at

time t. Under the dynamics we consider, Xi(t) corresponds
to an ordinary random walk on the graph Gf . Moreover,
the assumptions of Lemma 2 guarantee that the graph Gf
satisfies

φ3k(Gf ) ≥ min(γ, c/(3k)) ≥ min(γ, c/(3kc)) = γ/12.

By Theorem 2, one therefore has

P(Xi(T ) ∈ S) ≤ |S|
3k

+
√

3k + 1e−λ
∗
2T ,

where λ∗2 = φ3k(Gf )2/(2∆) ≥ γ2/1152.
Recall that T = ln(N)a and that γ = ln(N)−β . Further-

more, 1 < β < (a− 4)/4, implying that a− 2β > 1. We then
have

P(Xi(T ) ∈ S) ≤ 1

3
+
√

3k + 1 exp
(
− ln(N)a−2β/1152

)
≤ 1/2.

Summing over i ∈ S, we obtain that the expected number
of pointers issued from S that point into S at the end of the
phase is no larger than k/2, and therefore that

E|Ef+1(S, S)| ≥ k/2 ≥ 1

2γ
min(γk, 2c).

5.2 Large sets
Consider a fixed set S of size k such that kc < k ≤ N/2,
and define πi(t) to be 1/k times the probability that a
pointer issued from S targets i, conditionally on the initial
configuration of these pointers at the beginning of the phase
(corresponding to t = 0). Let π(i)(t) denote the i-th largest
value in (πj(t) : j ∈ [N ]), and π[m](t) :=

∑
i∈[m] π(i)(t)

denote the cumulative mass that the probability distribution
π(t) puts on the m nodes where its mass is the largest.

One clearly has that

π(i)(0) =
1

k
1Ii∈[k].

We now establish a property of the time derivative d
dtπ[m](t):

Lemma 6. Under the assumptions of Lemma 1 that φm(Gf ) ≥
min(γ, c/m) for all m ∈ [N ], one has the inequalities

d

dt
π[m](t) ≤ −4

cm∑
j=1

(
π(m−j+1) − π(m−j+1+cm)

)
, (8)

where cm = bmin(γm, c)/4c.

Proof. Assume to simplify notation that the permutation
which sorts nodes i in [N ] in decreasing order of πi is the
identity, so that πi(t) = π(i)(t). The time derivative of π[m]

then reads
d

dt
π[m](t) =

∑
i∈[m]

∑
j>m

1I(i,j)∈E◦f (πj − πi).

Indeed, changes in the mass π[m] result from interchange of
pointer extremities i, j with i ≤ m and j > m, which occur at
unit rate for (i, j) ∈ E◦f ; when one such interchange occurs,
the expected change to π[m] is precisely πj − πi. Now the
number of such edges is by assumption at least min(γm, c).
Moreover, the number of such edges adjacent to any node is
at most 4, because the graph has degree bounded by 4.
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The value of the right-hand side in the above equation,
because the πi are sorted in decreasing order, is minimized
when the edges crossing the cut between [m] are adjacent to
nodes with index closest to m. The degree constraint then
implies the upper bound (8).

Let c′ := bc/4c and I := {i : k − (2/3)kc ≤ i ≤
k + (2/3)kc}. We now introduce an auxiliary process
{νi(t)}i∈[N ],t>0 defined via:

νi(0) =
1

k
1Ii∈[k], i ∈ [N ],

d

dt
νi(t) = 41Ii∈I

[
(νi−c′(t)− νi(t))1Ii−c′∈I

+ (νi+c′(t)− νi(t))1Ii+c′∈I
]
, i ∈ [N ], t > 0.

The probability distribution ν(t) is readily interpreted as
the law at time t of a random walk started with uniform
distribution on [k], that jumps from i to i+ c′ (resp., i− c′)
at rate 4, provided both i and the destination i± c′ lie in I .

Denoting ν[m](t) :=
∑
j∈[m] νj(t) for all m ∈ [N ], we

then have the following

Lemma 7. For all t > 0, m ∈ [N ], it holds that

π[m](t) ≤ ν[m](t).

Proof. Introduce the differences δm(t) := π[m](t)− ν[m](t). It
is readily seen that δm(0) = 0 for all m ∈ [N ]. Inequality (8)
of Lemma 6 implies that

d

dt
π[m](t) ≤ −4

c′∑
j=1

[
1Im−j+1∈I1Im−j+1+c′∈I

×
(
π(m−j+1) − π(m−j+1+c′)

) ]
. (9)

Indeed, each term in the summation of the right-hand side
of (8) is non-negative. The j-th term in the summation in the
right-hand side of (9) is included only if m− j + 1 ∈ I and
m− j + 1 + c′ ∈ I . The first condition implies that

m− j + 1 ≥ k − 2
kc
3
≥ kc

3
=

4c

3γ
·

In turn this implies that γm ≥ c, so that cm = c′. Thus the
summation in the right-hand side of (9) runs over a subset of
indices in the summation in the right-hand side of (8), and
(9) follows from (8).

By definition of νi(t), one has

d

dt
ν[m](t) = −4

c′∑
j=1

[
1Im−j+1∈I1Im−j+1+c′∈I

×
(
ν(m−j+1) − ν(m−j+1+c′)

) ]
. (10)

For all m ∈ [N ], there thus exists an integer im ≥ 0 such
that m− im ≥ 1, m+ im ≤ N and

d

dt
π[m](t) ≤ −4

(
2π[m] − π[m−im] − π[m+im]

)
,

d

dt
ν[m](t) = −4

(
2ν[m] − ν[m−im] − ν[m+im]

)
,

so that
d

dt
δm ≤ −4 (2δm − δm−im − δm+im) .

In the above, as is easily seen, necessarily i1 = 0, so that
we have the boundary condition δ1 ≤ 0. Also, since π[N ] =
ν[N ] = 1, we have δN = 0. The previous equation then
implies that necessarily, the supremum over m ∈ [N ] of
δm cannot become positive, because its derivative is always
non-positive.

By the previous lemma, an upper bound on π[k](T ) is
provided by ν[k](T ). However the latter quantity is simpler
to analyze. It can be interpreted as 1/k times the average
number of points of (2/3)kc random walks initialized at each
point in [k−(2/3)kc, k] which fall within [k] at time T . These
walks proceed with jumps of size ±c′ at rate 4, constrained
to not leave interval I = [k − (2/3)kc, k + (2/3)kc].

For a given initial condition i ∈ [k− (2/3)kc], the number
of sites it can visit is of the order of (4/3)kc/c

′ = Θ(ln(N)β).
Classical results on the nearest neighbor random walk on
an interval [M ] state that it mixes in time of the order of
M2 [16]. Thus each of the random walks just introduced mix
in time O(ln(N)2β) = o(T ), because 2β < a. We therefore
have the following evaluation:

π[k](T ) ≤ ν[k](T ) ≤ 1− (2/3)kc
k

(1/2− o(1)) .

The expected number E|Ef+1(S, S)| is then lower-bounded
by

E|Ef+1(S, S)| ≥ (2/3)kc(1/2− o(1))

= [1/3− o(1)]4c/γ

≥ 1

2γ
(2c).

The announced result follows.

6 PROOF OF THEOREM 2
Proof. In vector form the law π(t) of the random walk on
G at time t reads π(t) = e−tLπ(0), where L is the graph’s
Laplacian. Its entries πi(t) are thus linear combinations of n
functions of the form e−λjt, where λj are the eigenvalues of
L, and so is the difference πi(t)− πj(t). It can be shown by
induction on N that such linear combinations of N distinct
exponential functions are either identically zero in t, or admit
at most N − 1 distinct roots in t. Thus for any i 6= j, either
πi(t) 6= πj(t) except perhaps for finitely many t, or else
πi(t) = πj(t) for all t ≥ 0.

We can thus split R+ into finitely many intervals I(1) =
[0, t1), I(2) = [t1, t2), . . ., and on each interval I(j) determine
a particular permutation σ(j) of [N ] such that for all j, and
all t ∈ Ij , one has

πσ(j)(1)(t) ≥ πσ(j)(2)(t) ≥ · · · ≥ πσ(j)(N)(t).

For t in any given interval I(j), we will maintain an auxil-
iary probability distribution on [k+1], denoted {νi(t)}i∈[k+1].
This distribution can be interpreted as that of a random walk
on a graph G(j) with node set [k + 1], obtained from G as
follows. We identify node σ(j)(i) in G with node i in G(j) for
all i ∈ [k], and collapse all nodes σ(j)(u), u > k to form node
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k + 1. All edges are then preserved, so that the adjacency
matrix a(j) of G(j) is given by

a(j)
u,v = aσ(j)(u),σ(j)(v), u, v ∈ [k],

a
(j)
u,k+1 =

N∑
v=k+1

aσ(j)(u),σ(j)(v), u ∈ [k],

where a is the adjacency matrix of G. For convenience, we
denote by π(i)(t) the i-th largest entry of distribution π(t).
Thus for t ∈ I(j), π(i)(t) = πσ(j)(i)(t).

The result of the theorem will then follow from the
combination of two ingredients. We first show in Lemma 8
below that, for all t, one has the following bound:

π(i)(t) ≤ νi∧(k+1)(t), i ∈ [N ], t ≥ 0. (11)

We then establish in Lemma 9 below that for all j, the
second smallest eigenvalue λ(j)

2 of the Laplacian of G(j) is
lower-bounded by λ∗2 given in (2), where crucially ∆ is the
largest node degree in G, not in G(j).

This readily implies the L2 control∑
i∈[k+1]

∣∣∣∣νi(t)− 1

k + 1

∣∣∣∣2 ≤ e−2λ∗2t.

Cauchy-Schwarz inequality then gives the following control
on variation distance:∑

i∈[k+1]

|νi(t)− 1/(k + 1)| ≤
√
k + 1e−λ

∗
2t.

Together, these two results entail that for all s ≤ k,∑
i∈[s]

π(i)(t) ≤
s

k + 1
+
√
k + 1e−λ

∗
2t, (12)

which is the announced result.

Lemma 8. The distributions π(t), ν(t) verify bound (11).

Proof. The bound trivially holds at t = 0. We can establish
it by induction on each interval I(j). Let us consider one
such interval, and assume that the property holds at its left
end. For notational simplicity we will assume that σ(j) is the
identity, so that on this interval πi(t) = π(i)(t). Introduce the
notation

δi(t) := πi(t)− νi∧(k+1)(t), i ∈ [N ].

For any pair of vertices (i, j) in [N ], write i ∼ j if i and j are
neighbors in G. One has the following time derivatives

d

dt
πi =

∑
j∈[k]
j∼i

(πj − πi) +
∑
j /∈[k]
j∼i

(πj − πi), i ∈ [N ],

d

dt
νi =

∑
j∈[k]
j∼i

(νj − νi) +
∑
j /∈[k]
j∼i

(νk+1 − νi), i ∈ [k],

d

dt
νk+1 =

∑
i/∈[k]

∑
j∈[k]
j∼i

(νj − νk+1).

By the previous display one has for i ∈ [k]:

d

dt
δi =

∑
j∈[N ],j∼i

(δj − δi). (13)

Note that, because the values πi are sorted, for all j /∈ [k],
πj−πk+1 ≤ 0. This together with the expression for the time
derivative of πk+1 yield

d

dt
πk+1 ≤

∑
j∈[k],j∼k+1

(πj − πk+1).

Thus

d

dt
δk+1 ≤

∑
j∈[k]
j∼k+1

(πj − πk+1)−
∑
i/∈[k]

∑
j∈[k]
j∼i

(νj − νk+1)

=
∑
j∈[k]
j∼k+1

(δj − δk+1)−
∑

i/∈[k+1]

∑
j∈[k]
j∼i

(νj − νk+1).

(14)

Let us argue by contradiction, and assume that there
exists t ∈ R+ and i ∈ [N ] for which δi(t) > 0. Let
δ(t) := supj∈[N ] δj(t). As the πj are sorted in decreasing
order, one also has δ(t) = supj∈[k+1] δj(t).

Since the δj(t) are linear combinations of finitely many
exponentials, we can then identify an interval J = [a, b] such
that on J , for some i ∈ [k + 1], δ(t) = δi(t), and moreover
δ(a) = 0, δ(t) > 0, t ∈ (a, b].

Assume that i ∈ [k]. From expression (13), we see that on
J , d

dtδ = d
dtδi ≤ 0. This contradicts the fact that δ > 0 on

(a, b].
Assume then that i = k + 1. Then on J one has that, for

all j ∈ [k], since the πj are sorted,

νk+1 = πk+1 − δk+1 ≤ πk+1 ≤ πj = νj + δj ≤ νj + δk+1.

Thus for all j ∈ [k], νk+1 − νj ≤ δk+1. It then follows from
(14) that

d

dt
δk+1 ≤ 0 + αδk+1,

where α =
∑
i/∈[k+1]

∑
j∈[k],j∼i(1). Gronwall’s lemma (see

e.g. [24]) then implies that δk+1 ≤ 0 on J , a contradiction.

Remark 2. When we move from interval I(j) to I(j+1) one
can check that the meaning of distribution ν is preserved: we
may change the permutation sorting the entries πi, which
results in a change in the graph used to define the evolution
of ν, but while the vertex to which νi refers may change, in
that case the corresponding mass does not change.

Lemma 9. Given a graph G on vertex set [N ] with maximal
degree ∆ and for fixed k < n, associated isoperimetric constant
φk(G), consider the graph G′ obtained by collapsing N − k nodes
into a single node as previously described. Then the resulting
Laplacian matrix L has spectral gap at least λ2 ≥ λ∗2, where
λ∗2 := φk(G)2

2∆ .

Proof. Without loss of generality we assume nodes k +
1, . . . , N of G have been collapsed into node k + 1 of G′.
Let f be an eigenvector of L associated with its second
smallest eigenvalue λ2. We can always choose f such that
fk+1 ≤ 0.

Define gv = max(fv, 0), v ∈ [k + 1], and thus gk+1 = 0.
Let W = {v ∈ [k + 1] : fv > 0}. Letting (auv)u,v∈[N ] denote
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the adjacency matrix of graphG and du the degree of u ∈ [N ],
one has

λ2

∑
u∈W

f2
u =

∑
u∈W

(Lf)ufu

=
∑
u∈W

dufu − ∑
v∈[k+1]

auvfv

 fu
=
∑
u∈W

∑
v∈[k+1]

auv[fu − fv]fu

=
∑
u∈W

∑
v∈W

auv(fu − fv)fu

+
∑
u∈W

∑
v/∈W

auv(fu − fv)fu

≥
∑
u∈W

∑
v∈W

auv(fu − fv)fu +
∑
u∈W

∑
v/∈W

auvf
2
u

= 〈Lg, g〉

Thus

λ2 ≥
〈Lg, g〉
〈g, g〉

=: K.

On the other hand,

∑
(uv)∈E

auv(gu + gv)
2 = 2

∑
(uv)∈E

auv(g
2
u + g2

v)

−
∑

(uv)∈E

auv(gu − gv)2

≤ 2
∑
v∈V

dvg
2
v

≤ 2∆〈g, g〉,

where we have used the fact that gk+1 = 0 to upper bound
each product dvg2

v by ∆g2
v .

By Cauchy-Schwarz inequality,

 ∑
(uv)∈E

auv|g2
u − g2

v |

2

≤

 ∑
(uv)∈E

auv(gu − gv)2

 ∑
(uv)∈E

auv(gu + gv)
2

 .
Combined, these bounds give

K =

(∑
(uv)∈E auv(gu − gv)2

)(∑
(uv)∈E auv(gu + gv)

2
)

〈g, g〉
∑

(uv)∈E auv(gu + gv)2

≥

(∑
(uv)∈E auv|g2

u − g2
v |
)2

2∆〈g, g〉2
·

Let 0 = t0 < t1 · · · < tm be the distinct values taken by the
gv . For i = 0, . . . ,m, let Vi := {v ∈ V : gv ≥ ti}. Thus for

i > 0, (k + 1) /∈ Vi. Let

M :=
∑

(uv)∈E

auv|g2
u − g2

v |

=
m∑
i=1

∑
(uv)∈E,gv<gu=ti

auv(g
2
u − g2

v)

=
m∑
i=1

∑
u:gu=ti

∑
v:gv=tj
j<i

auv(t
2
i − t2i−1 + · · ·

· · · − t2j+1 + t2j+1 − t2j )

=
m∑
i=1

∑
u∈Vi

∑
v/∈Vi

auv(t
2
i − t2i−1)

=
m∑
i=1

e(Vi, V i)(t
2
i − t2i−1)

≥ φk(G)
m∑
i=1

|Vi|(t2i − t2i−1)

= φk(G)
m∑
i=1

t2i (|Vi| − |Vi+1|)

= φk(G)〈g, g〉.

Combined, these results yield

λ2 ≥ K ≥
(φk(G)〈g, g〉)2

2∆〈g, g〉2
= λ∗2.
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Laurent Massoulié graduated from the Ecole
Polytechnique, Palaiseau, France, in 1991, and
received the Ph.D. degree in automatic control
from Paris Sud University, Orsay, France, in 1995.
He is a researcher at Inria where he leads the
Microsoft Research-Inria Joint Centre, and a
Professor at the Applied Mathematics Centre of
Ecole Polytechnique.

His research focuses on probabilistic modeling
and design of algorithms for machine learning as
well as “large networks,” including P2P and social

networks. He has held positions with France Telecom R&D from 1995
to 1999, Microsoft Research, Cambridge, U.K., from 1999 to 2006, and
Technicolor, Paris, France, from 2006 to 2012. Dr. Massoulié has served
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