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Abstract
Comparing provers on a formalization of the same problem is always a valuable exercise. In this
paper, we present the formal proof of correctness of a non-trivial algorithm from graph theory that
was carried out in three proof assistants: Why3, Coq, and Isabelle.
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1 Introduction

Graph algorithms are notoriously obscure in the sense that it is hard to grasp why exactly
they work. Therefore, proofs of correctness are more than welcome in this domain. In this
paper we consider Tarjan’s algorithm [31] for computing the strongly connected components
in a directed graph and present formal proofs of its correctness in three different systems:
Why3, Coq and Isabelle/HOL. The algorithm is treated at an abstract level with a functional
programming style manipulating finite sets, stacks and mappings, but it respects the linear
time behaviour of the original presentation.

To our knowledge this is the first time that the formal correctness proof of a non-trivial
program is carried out in three very different proof assistants: Why3 is based on a first-order
logic with inductive predicates and automatic provers, Coq on an expressive theory of higher-
order logic and dependent types, and Isabelle/HOL combines simply typed higher-order logic
with automatic provers. Crucially for our comparison, the algorithm is defined at the same
level of abstraction in all three systems, and the proof relies on the same arguments in the
three formal systems. We deliberately decided not to base our representation of the algorithm
on some specific infrastructure for program verification such as Lammich’s monadic or
imperative refinement frameworks [17, 19] for Isabelle/HOL or the existing encoding of Back
and Morgan’s refinement calculus in Coq [1], as doing so would make comparisons between
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13:2 Formal Proofs of Tarjan’s SCC Algorithm

the systems less direct. Moreover, we do not target automatic generation of executable code.
We claim that our proof is direct, readable, elegant, and that it follows Tarjan’s presentation.
Note that a similar exercise but for a much more elementary proof (the irrationality of square
root of 2) and using many more proof assistants (17) was presented in [35].

Examples of formal and informal proofs of algorithms about graphs can be found in [27,
33, 18, 28, 14, 20, 32, 22, 30, 29, 16, 8], among others. Some of them are part of a larger
library, others focus on the treatment of pointers or on concurrent algorithms. In particular,
only Lammich and Neumann [20] gave an alternative formal proof of Tarjan’s algorithm
within their framework for verifying graph algorithms in Isabelle/HOL.

We expose here the key parts of the proofs. The interested reader can access the details
of the proofs and run them on the web [9, 10, 23]. In this paper, we recall the principles
of the algorithm in Section 2; we describe the proofs in the three systems in Sections 3, 4,
and 5 by emphasizing the differences induced by the logics which are used; we conclude in
Sections 6 and 7 by commenting the developments and advantages of each proof system.

2 The algorithm

In a directed graph, two vertices x and y are strongly connected if there exists a path from
x to y and a path from y to x. A strongly connected component (scc) is a maximal set
of vertices where all pairs of vertices are strongly connected. The vertices reached by a
depth-first search (DFS) traversal in a directed graph form a spanning forest. A fundamental
property relates sccs and DFS traversal: each scc is a prefix of a single subtree in the spanning
forest (see Figure 1c). Its root is called the base of the scc. Tarjan’s algorithm [31] relies on
the detection of these bases and collects the sccs in a pushdown stack. It performs a single
DFS traversal of the graph assigning a serial number num[x] to any vertex x in the order of
the visit. It computes the following function for every vertex x:1

LOWLINK(x) = min{num[y] | x
∗=⇒ z ↪→ y ∧ x and y are strongly connected}

The relation x =⇒ z means that z is a son of x in the spanning forest, the relation ∗=⇒ is its
transitive and reflexive closure, and z ↪→ y means that there is a back edge from z to some
node y of the spanning forest (a back edge is an edge of the graph which is not an edge in
the spanning forest). In Figure 1c, =⇒ is drawn in thick lines and ↪→ in dotted lines; in
Figure 1b the table of the values of the LOWLINK function is shown. The minimum of the
empty set is assumed to be +∞ (this is a slight simplification w.r.t. the original algorithm).

The base x of an scc is found when LOWLINK(x) ≥ num[x], and the component is
formed by the nodes of the subtree in the spanning forest rooted at x and pruned of the sccs
already discovered in that subtree. As illustrated by vertices 8 or 9 in Figure 1c, notice that
LOWLINK(x) need not be the lowest serial number of a vertex accessible from x, nor of an
ancestor of x in the spanning forest. The DFS traversal sets to +∞ the serial numbers of
vertices in already discovered sccs. This allows us to compute LOWLINK as:

LOWLINK(x) = min{num[y] | x
∗=⇒ z ↪→ y}

Our implementation of graphs uses an abstract type vertex for vertices, a constant vertices
for the finite set of all vertices in the graph, and a successors function from vertices to their
adjacency set. The algorithm maintains an environment e implemented as a record of type
env with four fields: a stack e.stack, a set e.sccs of strongly connected components, a fresh
serial number e.sn, and a function e.num from vertices to serial numbers.

1 This definition relies on knowing whether nodes are strongly connected, which the algorithm is intended
to discover. This apparent circularity will be broken below.
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(c) Spanning forest.

Figure 1 The vertices are numbered and pushed onto the stack in the order of their visit by the
recursive function dfs1. When the first component {0} is discovered, vertex 0 is popped; similarly when
the second component {5, 6, 7} is found, its vertices are popped; finally all vertices are popped when the
third component {1, 2, 3, 4, 8, 9} is found. Notice that there is no back edge to a vertex with a number less
than 5 when the second component is discovered. Similarly in the first component, there is no edge to a
vertex with a number less than 0. In the third component, there is no edge to a vertex less than 1 since
we have set the serial number of vertex 0 to +∞ when 0 was popped.

type vertex
constant vertices: set vertex
function successors vertex : set vertex
type env = {stack: list vertex; sccs: set (set vertex); sn: int; num: map vertex int}

The DFS traversal is organized as two mutually recursive functions dfs1 and dfs. The
function dfs1 visits a new vertex x and computes LOWLINK(x). Furthermore it adds a new
scc when x is the base of a new scc. The function dfs takes as argument a set r of roots and
an environment e. It calls dfs1 on non-visited vertices in r and returns a pair consisting of an
integer and the modified environment. The integer is the minimum of the values computed
by dfs1 on non-visited vertices in r and the serial numbers of already visited vertices in r. If
the set of roots is empty, the returned integer is +∞.

The main procedure tarjan initializes the environment with an empty stack, an empty set
of sccs, the fresh serial number 0 and the constant function giving the number −1 to each
vertex. The result is the set of components returned by the function dfs called on all vertices
in the graph.
let rec dfs1 x e =

let n0 = e.sn in
let (n1, e1) = dfs (successors x) (add_stack_incr x e) in
if n1 < n0 then (n1, e1) else

let (s2, s3) = split x e1.stack in
(+∞, {stack = s3; sccs = add (elements s2) e1.sccs;

sn = e1.sn; num = set_infty s2 e1.num})
with dfs r e = if is_empty r then (+∞, e) else

let x = choose r in let r’ = remove x r in
let (n1, e1) = if e.num[x] 6= -1 then (e.num[x], e) else dfs1 x e in
let (n2, e2) = dfs r’ e1 in (min n1 n2, e2)

let tarjan () =
let e = {stack = Nil; sccs = empty; sn = 0; num = const (-1)} in
let (_, e’) = dfs vertices e in e’.sccs

In the body of dfs1, the auxiliary function add_stack_incr updates the environment by
pushing x on the stack, assigning it the current fresh serial number, and incrementing that
number in view of future calls. The function dfs1 performs a recursive call to dfs for the
adjacent vertices of x as roots and the updated environment. If the returned integer value n1
is less than the number n0 assigned to x, the function simply returns n1 and the current
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13:4 Formal Proofs of Tarjan’s SCC Algorithm

environment. Otherwise, the function declares that a new scc has been found, consisting of
all vertices that are contained on top of x in the current stack. These vertices are popped
from the stack, stored as a new set in e.sccs, and their serial numbers are all set to +∞,
ensuring that they do not interfere with future calculations of min values. The auxiliary
functions split and set_infty are used to carry out these updates.
let add_stack_incr x e = let n = e.sn in

{stack = Cons x e.stack; sccs = e.sccs; sn = n+1; num = e.num[x ← n]}
let rec set_infty s f = match s with Nil → f

| Cons x s’ → (set_infty s’ f)[x ← +∞] end
let rec split x s = match s with Nil → (Nil, Nil)

| Cons y s’ → if x = y then (Cons x Nil, s’)
else let (s1’, s2) = split x s’ in (Cons y s1’, s2) end

Figure 1 illustrates the behavior of the algorithm by an example. We presented the
algorithm as a functional program, using data structures available in the Why3 standard
library [4]. For lists we have the constructors Nil and Cons; the function elements returns
the set of elements of a list. For finite sets, we have the empty set empty, and the functions
add to add an element to a set, remove to remove an element from a set, choose to pick an
arbitrary element2 in a (non-empty) set, and is_empty to test for emptiness. We also use
maps with functions const denoting the constant function, _[_] to access the value of an
element, and _[_ ← _] for creating a map obtained from an existing map by setting an
element to a given value.

For a correspondence between our presentation and the imperative programs used in
standard textbooks, the reader is referred to [8]. The present version can be directly translated
into Coq or Isabelle functions, and it respects the linear running time of the algorithm
for straightforward implementations of the elements that we choose to leave abstract in
our presentation. Indeed, vertices could be represented by integers, +∞ by the cardinal of
vertices, finite sets by lists of integers and mappings by mutable arrays (see for instance [9]).

Thus for each environment e in the algorithm, the working stack e.stack corresponds to a
cut of the spanning forest where strongly connected components to its left are pruned and
stored in e.sccs. In this stack, any vertex can reach any vertex higher in the stack. And if a
vertex is a base of an scc, no back edge can reach some vertex lower than this base in the
stack, otherwise that last vertex would be in the same scc with a strictly lower serial number.

Our proofs of the algorithm make these arguments formal. To maintain these invariants
we will distinguish, as is common for DFS algorithms, three sets of vertices: white vertices are
the non-visited ones, black vertices are those that are already fully visited, and gray vertices
are those that are still being visited. Clearly, these sets are disjoint and white vertices can
be considered as forming the complement in vertices of the union of the gray and black ones.

The previously mentioned invariant properties can now be expressed for vertices in the
stack: no such vertex is white, any vertex can reach all vertices higher in the stack, any
vertex can reach some gray vertex lower in the stack. Moreover, vertices in the stack respect
the numbering order, i.e. a vertex x is lower than y in the stack if and only if the number
assigned to x is strictly less than the number assigned to y.

3 The proof in Why3

The Why3 system comprises the programming language WhyML used in the previous section
and a many-sorted first-order logic with inductive data types and inductive predicates to
express the logical assertions. The system generates proof obligations w.r.t. the assertions,

2 This is the only non-deterministic operation used in our development. We handle it by underspecification,
effectively showing that any implementation is correct.
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pre- and post-conditions and lemmas inserted in the WhyML program. The system is
interfaced with off-the-shelf automatic provers and interactive proof assistants.

From the Why3 library, we use pre-defined theories for integer arithmetic, polymorphic
lists, finite sets and mappings. There is also a small theory for paths in graphs. Here we
define graphs, paths and sccs as follows.
axiom successors_vertices: ∀x. mem x vertices → subset (successors x) vertices
predicate edge (x y: vertex) = mem x vertices ∧ mem y (successors x)
inductive path vertex (list vertex) vertex =

| Path_empty: ∀x: vertex. path x Nil x
| Path_cons: ∀x y z: vertex, l: list vertex.

edge x y → path y l z → path x (Cons x l) z
predicate reachable (x y: vertex) = ∃l. path x l y
predicate in_same_scc (x y: vertex) = reachable x y ∧ reachable y x
predicate is_subscc (s: set vertex) = ∀x y. mem x s → mem y s → in_same_scc x y
predicate is_scc (s: set vertex) = not is_empty s
∧ is_subscc s ∧ (∀s’. subset s s’ → is_subscc s’ → s == s’)

The predicates mem and subset denote membership and the subset relation for finite sets.
We add two ghost fields in environments for the black and gray sets of vertices. These

fields are used in the proofs but not used in the calculation of the sccs, which is checked by
the type-checker of the language.
type env = {ghost black: set vertex; ghost gray: set vertex;

stack: list vertex; sccs: set (set vertex); sn: int; num: map vertex int}

Defining a new function add_black turning a vertex from gray to black and redefining
add_stack_incr for adding a new gray vertex with a fresh serial number to the current stack,
the functions now become:
let add_black x e =

{black = add x e.black; gray = remove x e.gray;
stack = e.stack; sccs = e.sccs; sn = e.sn; num = e.num}

let add_stack_incr x e =
let n = e.sn in
{black = e.black; gray = add x e.gray;
stack = Cons x e.stack; sccs = e.sccs; sn = n+1; num = e.num[x ←n]}

let rec dfs1 x e =
let n0 = e.sn in
let (n1, e1) = dfs (successors x) (add_stack_incr x e) in
if n1 < n0 then (n1, add_black x e1) else

let (s2, s3) = split x e1.stack in
(+∞, {black = add x e1.black; gray = e.gray; stack = s3;

sccs = add (elements s2) e1.sccs; sn = e1.sn; num = set_infty s2 e1.num})
with dfs r e = ... (* unmodified *)
let tarjan () =

let e = {black = empty; gray = empty;
stack = Nil; sccs = empty; sn = 0; num = const (-1)} in

let (_, e’) = dfs vertices e in e’.sccs

The main invariant (I) of our program states that the environment is well-formed:
predicate wf_env (e: env) =

let {stack = s; black = b; gray = g} = e in
wf_color e ∧ wf_num e ∧ simplelist s ∧ no_black_to_white b g ∧
(∀x y. lmem x s → lmem y s → e.num[x] ≤ e.num[y] → reachable x y) ∧
(∀y. lmem y s → ∃x. mem x g ∧ e.num[x] ≤ e.num[y] ∧ reachable y x) ∧
(∀cc. mem cc e.sccs ↔ subset cc b ∧ is_scc cc)

where lmem stands for membership in a list. The well-formedness property is the conjunction
of seven clauses. The two first clauses express elementary conditions about the colored sets
of vertices and the numbering function (see [9, 8] for a detailed description). The third clause
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13:6 Formal Proofs of Tarjan’s SCC Algorithm

states that there are no repetitions in the stack, and the fourth that there is no edge from a
black vertex to a white vertex. The next two clauses formally express the property already
stated above: any vertex in the stack reaches all higher vertices and any vertex in the stack
can reach a lower gray vertex. The last clause states that the sccs field is the set of all sccs
all of whose vertices are black.

Since at the end of the tarjan function, all vertices are black, the sccs field will contain
exactly the set of all strongly connected components. We formally express this by adding a
post-condition to the definition of the function.
let tarjan () = returns {r → ∀cc. mem cc r ↔ subset cc vertices ∧ is_scc cc}

let e = {black = empty; gray = empty;
stack = Nil; sccs = empty; sn = 0; num = const (-1)} in

let (_, e’) = dfs vertices e in assert {subset vertices e’.black};
e’.sccs

Our functions dfs1 and dfs modify the environment in a monotonic way. Namely, they
augment the set of visited vertices (the black ones); they keep invariant the set of the ones
currently under visit (the gray set); they increase the stack with new black vertices; they
also discover new sccs and they keep invariant the serial numbers of vertices in the stack,
predicate subenv (e e’: env) =

subset e.black e’.black ∧ e.gray == e’.gray
∧ (∃s. e’.stack = s ++ e.stack ∧ subset (elements s) e’.black)
∧ subset e.sccs e’.sccs ∧ (∀x. lmem x e.stack → e.num[x] = e’.num[x])

Once these invariants are expressed, it remains to locate them in the program text and to
add assertions which help to prove them. The pre-conditions of dfs1 are quite natural: the
vertex x must be a white vertex of the graph, and it must be reachable from all gray vertices.
Moreover invariant (I) must hold. The post-conditions of dfs1 are the following. Firstly, (I)
and the monotonicity property subenv hold of the resulting environment. Second, vertex x is
black at the end of dfs1. Finally we express properties of the integer value n returned by
this function, which is indeed LOWLINK(x), as noted previously. Formally, we give three
properties for characterizing n. The returned value is never higher than the number of x in
the final environment. Also, the returned value is either +∞ or the number of a vertex in
the stack reachable from x. Finally, if there is a (back) edge from a vertex y’ in the new part
of the stack to a vertex y in its old part, the returned value n must be lower or equal to the
serial number of y.
let rec dfs1 x e =
(* pre-condition *)
requires {mem x vertices ∧ not mem x (union e.black e.gray)}
requires {∀y. mem y e.gray → reachable y x}
requires {wf_env e} (* I *)
(* post-condition *)
returns {(_, e’) → wf_env e’ ∧ subenv e e’}
returns {(_, e’) → mem x e’.black}
returns {(n, e’) → n ≤ e’.num[x]}
returns {(n, e’) → n = +∞ ∨ num_of_reachable_in_stack n x e’}
returns {(n, e’) → ∀y. xedge_to e’.stack e.stack y → n ≤ e’.num[y]}

The auxiliary predicates used above are formally defined in the following way.
predicate num_of_reachable_in_stack (n: int) (x: vertex)(e: env) =

∃y. lmem y e.stack ∧ n = e.num[y] ∧ reachable x y
predicate xedge_to (s1 s3: list vertex) (y: vertex) =

(∃s2. s1 = s2 ++ s3 ∧ ∃y’. lmem y’ s2 ∧ edge y’ y) ∧ lmem y s3
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Notice that the definition of xedge_to fits the definition of LOWLINK when the back edge
ends at a vertex residing in the stack before the call of dfs1. The pre- and post-conditions
for the function dfs are quite similar up to a generalization to sets of vertices considered as
the roots of the algorithm (see [9]).

We now add seven assertions in the body of the dfs1 function to help the automatic
provers. In contrast, the function dfs needs no extra assertions in its body. In dfs1, when
the number n0 of x is strictly greater than the number n1 resulting from the call to its
successors, the first assertion states that n1 cannot be +∞; it helps in proving the next
assertion. The second assertion states that a lower gray vertex is reachable from x and that
thus the scc of x is not fully black at the end of dfs1. In that assertion the inequality y 6= x is
redundant, but helps showing the sccs constraint at the end of dfs1. The first four assertions
in the “else” branch show that the vertices on top of x in the current stack form a strongly
connected component and that x is the base of that scc. The final assertion helps proving
that the coloring constraint is preserved at the end of dfs1.
let n0 = e.sn in
let (n1, e1) = dfs (successors x) (add_stack_incr x e) in
if n1 < n0 then begin

assert {n1 6= +∞};
assert {∃y. y 6= x ∧ mem y e1.gray ∧ e1.num[y] < e1.num[x] ∧ in_same_scc x y};
(n1, add_black x e1) end

else
let (s2, s3) = split x e1.stack in
assert {is_last x s2 ∧ s3 = e.stack ∧ subset (elements s2) (add x e1.black)};
assert {is_subscc (elements s2)};
assert {∀y. in_same_scc y x → lmem y s2};
assert {is_scc (elements s2)};
assert {inter e.gray (elements s2) == empty};
(+∞, {black = add x e1.black; gray = e.gray; stack = s3;

sccs = add (elements s2) e1.sccs; sn = e1.sn; num = set_infty s2 e1.num})

The function inter denotes set intersection, and is_last is defined below.
predicate is_last (x: α) (s: list α) = ∃s’. s = s’ ++ Cons x Nil

All proofs are discovered by the automatic provers except for two proofs carried out
interactively in Coq. One is the proof of the black extension of the stack (from predicate
subenv in the post-condition of dfs1 ) in case n1 < n0. The provers could not find a suitable
witness for the existential quantifier, although the Coq proof is quite short. The second
Coq proof is the fifth assertion in the body of dfs1, which asserts that any y in the scc
of x belongs to s2. It is a maximality assertion which states that the set elements s2 is a
complete scc. The proof of that assertion is by contradiction. If y is not in s2, there must be
an edge from x’ in s2 to some y’ not in s2 such that x reaches x’ and y’ reaches y. There
are three cases, depending on the position of y’. Case 1 is when y’ is in sccs: this is not
possible since x would then be in sccs which contradicts x being gray. Case 2 is when y’ is
an element of s3 : the serial number of y’ is strictly less than the one of x which is n0. If
x’ 6= x, the back edge from x’ to y’ contradicts n1 ≥ n0 (post-condition 5); if x’ = x, then y’
is a successor of x and again it contradicts n1 ≥ n0 (post-condition 3). Case 3 is when y’
is white, then x’ 6= x is impossible since x’ is then black in s2 and would be the origin of a
black-to-white edge to y’ ; if x’ = x, then y’ is not white by post-condition 2 of dfs.

Some quantitative information about the Why3 proof is listed in Table 1. Alt-Ergo 2.3
and CVC4 1.5 proved the bulk of the proof obligations.3 The proof uses 49 lemmas that were
all proved automatically, but with an interactive interface providing hints to apply inlining,

3 In addition to the results reported in the table, Spass was used to discharge one proof obligation.
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13:8 Formal Proofs of Tarjan’s SCC Algorithm

Table 1 Performance results with provers in Why3-0.88.3 (in seconds, on a 3.3 GHz Intel Core i5
processor). Total time is 341.15 seconds. The two last columns contain the numbers of verification
conditions and proof obligations. Notice that there may be several VCs per proof obligation.

provers Alt-Ergo CVC4 E-prover Z3 #VC #PO
49 lemmas 1.91 26.11 3.33 70 49
split 0.09 0.16 6 6
add_stack_incr 0.01 1 1
add_black 0.02 1 1
set_infty 0.03 1 1
dfs1 77.89 150.2 19.99 13.67 79 20
dfs 4.71 3.52 0.26 58 25
tarjan 0.85 15 5
total 85.51 179.99 23.32 13.93 231 108

splitting, or induction strategies. This includes 13 lemmas on sets, 16 on lists, 5 on lists
without repetitions, 3 on paths, 5 on sccs and 7 very specialized lemmas directly involved in
the proof obligations of the algorithm. The lemma xpath_xedge states a critical condition
on paths, reducing a predicate on paths to a predicate on edges. In fact, most of the Why3
proof works on edges, which are handled more robustly by the automatic provers than paths.
Another important lemma is subscc_after_last_gray, which shows that the elements of the
stack on top of the last gray vertex form a subset of an scc. This means that a variant of
the program with the split call before the if-statement would have a simpler proof, but its
time complexity would be non-linear. The two Coq proofs are 9 and 81 lines long (the Coq
files of 677 and 680 lines include preambles that are automatically generated during the
translation from Why3 to Coq). The interested reader is refered to [9] where the full proof
is available.

The proof explained so far only showed the partial correctness of the algorithm. But after
adding two lemmas about union and difference for finite sets, termination is automatically
proved by the following lexicographic ordering on the number of white vertices and roots.
let rec dfs1 x e = variant {cardinal (diff vertices (union e.black e.gray)), 0}
with dfs r e = variant {cardinal (diff vertices (union e.black e.gray)), 1, cardinal r}

4 The proof in Coq

Coq is based on type theory and the calculus of constructions, a higher order lambda-calculus,
to express formulae and proofs. Some basic notions of graph theory are provided by the
Mathematical Components Library [21]. Our formalization is parameterized by a finite type
V for the vertices and the function successors such that successors x is the adjacency set of
any vertex x. The boolean gconnect x y indicates that a path connects the vertex x to the
vertex y. The function equivalence_partition of the library creates a partition of a set with
respect to an equivalence relation. The set gsccs of the sccs of a graph is defined as follows,
based on gconnect and the set of all vertices [set: V]:
Definition gsymconnect x y := gconnect x y && gconnect y x.
Definition gsccs := equivalence_partition gsymconnect [set: V].

Components are represented as sets of sets {set {set V}}. Various operations on sets
are available. In this proof, we use singletons [set x], unions S1 ∪ S2, differences S1 \ S2,
complements ∼: S and unions of all sets in a set of sets cover S.
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Coq offers several mechanisms for combining properties (boolean conjunction, proposi-
tional conjunction, record, inductive family), all of which have their own idiosyncracies. In
order to make the presentation more readable for a non-Coq expert, we write them all with
the n-ary propositional conjunction [∧ P1, P2, . . . & Pn]. We refer to [10] for the actual code.

The Coq formalization differs from the one in Why3: it uses natural numbers only and
does not mention colors (white, gray and black). In particular, the number ∞ is defined as
the cardinality of V, vertices with ∞+ 1 as serial number correspond to the white vertices of
the previous section and the environment is defined as a record with only two fields, a set of
sccs and the mapping assigning serial numbers to vertices:
Record env := Env {esccs : {set {set V}}; num: {ffun V → nat}}.

Given an environment e, the set of visited vertices is visited e (the vertices with serial number
less or equal to ∞), the current fresh serial number is sn e (the cardinality of the set of
visited vertices), and the stack is stack e (the list of elements x which satisfy num e x < sn e,
sorted by increasing serial number).

Another difference with the Why3 algorithm is the definition of dfs1 and dfs as two
separate, rather than two mutually recursive functions. As in the Why3 program, dfs1 takes
a vertex x, and dfs a set of vertices roots, in addition to an environment e. In order to
prepare for the combination of the two functions, they also take function parameters that
will represent the recursive calls.
Definition dfs1 dfs x e :=

let: (n1, e1) as res := dfs (successors x) (visit x e) in
if n1 < sn e then res else (∞, store (stack e1 \ stack e) e1).

Definition dfs dfs1 dfs (roots : {set V}) e :=
if [pick x in roots] isn’t Some x then (∞, e) else
let: (n1, e1) := if num e x ≤ ∞ then (num e x, e) else dfs1 x e in
let: (n2, e2) := dfs (roots \ [set x]) e1 in (minn n1 n2, e2).

The expression visit x e represents the environment where x gets the next serial number, and
store produces an environment that contains an additional strongly connected component.

Then, the two functions are glued together in a recursive function rec where the parameter
k controls the maximal recursive height.
Fixpoint rec k r e := if k is k’.+1 then dfs (dfs1 (rec k’)) (rec k’) r e else (∞, e).

If k is not zero (i.e. it is a successor of some k’), rec calls dfs taking care that its parameters
can only use recursive calls to rec with a smaller recursive height, here k’. This ensures
termination. A dummy value is returned in the case where k is zero. Finally, the top level
tarjan calls rec with the proper initial arguments.
Definition tarjan := let: (_, e) := rec (∞ ∗ (∞.+2)) V (Env ∅ [ffun⇒ ∞.+1]) in esccs e.

Initially, the roots are all the vertices (V ) and the environment has no component and all
vertices are not visited (their number is ∞+ 1). As both dfs and dfs1 cannot be applied
more than the number of vertices, the value ∞ ∗ (∞+ 2) encodes the lexicographic product
of the two maximal heights. It gives rec enough fuel to never encounter the dummy value
so tarjan correctly terminates the computation. This allows us to separate the proof of the
termination from the algorithm itself, and this last statement is of course proved formally
later as theorem rec_terminates.

The invariants of the Coq proof are usually shorter than in the Why3 proof since they
do not mention colors. We first define well-formed environments and their valid extension:
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Definition wf_env e := [∧ esccs e ⊆ gsccs,
∀ x, num e x < ∞ → num e x < sn e,
∀ x, (num e x = ∞) = (x ∈ cover (esccs e)) &
∀ x y, num e x ≤ num e y < sn e → gconnect x y].

Definition subenv e1 e2 := [∧ esccs e1 ⊆ esccs e2,
∀ x, num e1 x < ∞ → num e2 x = num e1 x &
∀ x, num e2 x < sn e1 → num e1 x < sn e1].

Then we state that new visited vertices are the ones reachable by paths accessible from roots
with non-visited vertices (i.e. by white paths in the colored setting). The function nexts such
that nexts D X returns the set of vertices reachable from the set X by a path which only
contains vertices in D except maybe the last one.
Definition outenv (roots : {set V}) (e e’ : env) := [∧
∀ x y, x ∈ stack e’ \ stack e → y ∈ stack e’ \ stack e → gconnect x y,
∀ x, x ∈ stack e’ \ stack e → ∃ y, y ∈ stack e ∧ gconnect x y &
visited e’ = visited e ∪ nexts (∼: visited e) roots ].

The post-condition is the conjunction of these three properties and the characterization of
the output rank:
Definition dfs_spec (ne’ : nat ∗ env) (roots : {set V}) e := let: (n, e’) := ne’ in
[∧ n = \min_(x in nexts (∼: visited e) roots) inord (num e’ x),

wf_env e’, subenv e e’ & outenv roots e e’].

Here, the argument ne’ is the result of a dfs. The output rank n is the minimum of the serial
numbers of the vertices which can be reached from the roots through a path where all the
vertices except maybe the last one were not already visited. Note that this characterization
differs from the notion of LOWLINK, which requires that the last vertex was visited.

Finally, we express correctness as the implication between pre- and post-conditions:
Definition dfs_correct dfs (roots : {set V}) e := wf_env e →
(∀ x y, x ∈ stack e → y ∈ roots → gconnect x y) → dfs_spec (dfs roots e) roots e.

Definition dfs1_correct dfs1 x e := wf_env e → x /∈ visited e →
(∀ x y, x ∈ stack e → y ∈ [set x] → gconnect x y) → dfs_spec (dfs1 x e) [set x] e.

Although these invariants are expressed differently from the formulation in Why3, they reflect
essentially the same ideas. Compared to a first version of the formal model that was more
closely aligned with the Why3 representation, this more abstract version made it possible to
reduce by approximately 50% the size of the Coq proofs. The two central theorems are:
Lemma dfsP dfs1 dfsrec (roots : {set V}) e : (∀ x, x ∈ roots → dfs1_correct dfs1 x e) →

(∀ x, x ∈ roots → ∀ e1, subenv e e1 → dfs_correct dfsrec (roots \ [set x]) e1) →
dfs_correct (dfs dfs1 dfsrec) roots e.

Lemma dfs1P dfs x e : dfs_correct dfs (successors x) (visit x e) →
dfs1_correct (dfs1 dfs) x e.

They state that dfs and dfs1 are correct if their respective recursive calls are correct. The
proof of the first lemma is straightforward since dfs simply iterates on a list. It mostly
requires book-keeping between what is known and what needs to be proved. This is done
in about 54 lines. The second one is more intricate and requires 124 lines. Gluing these
two theorems together and proving termination gives us an extra 12 lines to prove, and the
correctness of tarjan then follows directly in 19 lines of straightforward proof.
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Table 2 Distribution of the numbers of lines of the 43 proofs in the file tarjan_nocolors.

Number of lines 1 2 3 4 5 6 11 12 16 19 54 124
Number of proofs 19 7 5 2 1 2 2 1 1 1 1 1

Theorem rec_terminates k (roots : {set V}) e :
k ≥ #|∼: visited e| ∗ (∞.+1) + #|roots| → dfs_correct (rec k) roots e.

Theorem tarjan_correct : tarjan = gsccs.

We now provide some quantitative information. The Coq contribution consists of two
files. Module extra_nocolors defines the bigmin operator and some notions of graph theory
that we intend to add to Mathematical Components. This file is 294 lines long. The main
module is tarjan_nocolors and is 605 lines long. It is compiled in 12 seconds with a memory
footprint of 800 Mb (3/4 of which are resident) on a Intel® i7 2.60GHz quad-core laptop
running Linux. The proofs are performed in the SSReflect proof language [15] with very
little automation. The proof script is mostly procedural, alternating book-keeping tactics
(move) with transformational ones (mostly rewrite and apply), but often intermediate steps
are explicitly declared with the have tactic. There are more than fifty of such intermediate
steps in the 320 lines of proof of the file tarjan_nocolors. Table 2 gives the distribution of
the numbers of lines of these proofs. Most of them are very short (26 are at most 2 lines
long) and the only complicated proof is the one corresponding to the lemma dfs1P.

5 The proof in Isabelle/HOL

Isabelle/HOL [24] is the encoding of simply typed higher-order logic in the logical framework
Isabelle [26]. Unlike Why3, it is not primarily intended as an environment for program
verification and does not contain specific syntax for stating pre- and post-conditions or
intermediate assertions in function definitions. Although logics and formalisms for program
verification have been developed within Isabelle/HOL (e.g., [19]), we decided to express our
formalization in plain Isabelle/HOL: our main objective is to compare a proof of a significant
algorithm in different proof assistants. The constructions that we use are universally available
and do not rely on any elaborate infrastructure that would make comparisons more difficult.

We start by introducing a locale, fixing parameters and assumptions for the remainder of
the proof. Unlike in Why, where the set type constructor represents finite sets, we explicitly
assume that the set of vertices is finite.
locale graph =

fixes vertices :: ν set and successors :: ν ⇒ ν set
assumes finite vertices and ∀v ∈ vertices. successors v ⊆ vertices

We introduce reachability using an inductive predicate definition, rather than via an explicit
reference to paths as in Why3. Isabelle then generates appropriate induction theorems.
inductive reachable where

reachable x x
| [[y ∈ successors x; reachable y z]] =⇒ reachable x z

The definition of strongly connected components mirrors that used in Why3. The follow-
ing lemma states that SCCs are disjoint; its one-line proof is found automatically using
Sledgehammer [3], which heuristically selects suitable lemmas from the set of available facts
(including Isabelle’s library), invokes several automatic provers, and finally reconstructs a
proof that is checked by the Isabelle kernel.
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definition is_subscc where
is_subscc S ≡ ∀x ∈ S. ∀y ∈ S. reachable x y

definition is_scc where
is_scc S ≡ S 6= {} ∧ is_subscc S ∧ (∀S’. S ⊆ S’ ∧ is_subscc S’ −→ S’ = S)

lemma scc_partition:
assumes is_scc S and is_scc S’ and x ∈ S ∩ S’
shows S = S’

Environments are represented by records with the same components as in Why3, and the
definition of the well-formedness predicate is also essentially identical to Why3.4

record ν env =
black :: ν set gray :: ν set
stack :: ν list sccs :: ν set set sn :: nat num :: ν ⇒ int

definition wf_env where wf_env e ≡
wf_color e ∧ wf_num e ∧ distinct (stack e) ∧ no_black_to_white e

∧ (∀x y. y � x in (stack e) −→ reachable x y)
∧ (∀y ∈ set (stack e). ∃g ∈ gray e. y � g in (stack e) ∧ reachable y g)
∧ sccs e = { C . C ⊆ black e ∧ is_scc C }

We now define the two mutually recursive functions dfs1 and dfs that expect as arguments a
vertex x and a set of vertices roots, as well as an environment.
function (domintros) dfs1 and dfs where

dfs1 x e =
(let (n1,e1) = dfs (successors x) (add_stack_incr x e) in

if n1 < int (sn e) then (n1, add_black x e1)
else (let (l,r) = split_list x (stack e1) in

(+∞, (| black = insert x (black e1), gray = gray e,
stack = r, sn = sn e1, sccs = insert (set l) (sccs e1),
num = set_infty l (num e1) |) ))) and

dfs roots e =
(if roots = {} then (+∞, e)
else (let x = SOME x. x ∈ roots;

res1 = (if num e x 6= -1 then (num e x, e) else dfs1 x e);
res2 = dfs (roots - {x}) (snd res1)
in (min (fst res1) (fst res2), snd res2) ))

The function keyword introduces the definition of a recursive function. Isabelle checks that
the definition is well-formed and generates appropriate simplification and induction theorems.
Because HOL is a logic of total functions, two proof obligations are introduced: the first one
requires the user to prove that the cases in the function definitions cover all type-correct
arguments; this holds trivially for the above definitions. The second obligation requires
exhibiting a well-founded ordering on the function parameters that ensures the termination
of recursive function invocations, and Isabelle provides a number of heuristics that work in
many cases. However, the functions defined above will in fact not terminate for arbitrary
calls, in particular for environments that assign the serial number −1 to non-white vertices.
The domintros attribute instructs Isabelle to consider these functions as “partial”. More
precisely, it introduces an auxiliary predicate that represents the domains for which the
functions are defined. This “domain condition” appears as a hypothesis in the simplification
rules that mirror the function definitions. In particular, a function call can be replaced
by the right-hand side of the definition only if the domain predicate holds. Isabelle also
introduces (mutually inductive) rules for proving when the domain condition is known (or
assumed) to hold. Our first objective is therefore to establish sufficient conditions that ensure

4 We use the infix operator � to denote precedence in lists.
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the termination of the two functions. Assuming the domain condition, we prove that the
functions never decrease the set of colored vertices and that vertices are never explicitly
assigned the number −1 by our functions. Denoting the union of gray and black vertices as
colored, we show that the algorithm only colors vertices and never assigns them −1. We then
prove that the triples

(vertices - colored e, {x}, 1)
(vertices - colored e, roots, 2)

for the arguments of dfs1 and dfs, respectively, decrease w.r.t. lexicographical ordering on
finite subset inclusion and < on natural numbers across recursive function calls, provided
that colored_num holds when the function is called and that x is a white vertex. These
conditions are therefore sufficient to ensure that the domain condition holds:5

theorem dfs1_dfs_termination:
[[x ∈ vertices - colored e; colored_num e]] =⇒ dfs1_dfs_dom (Inl(x,e))
[[roots ⊆ vertices; colored_num e]] =⇒ dfs1_dfs_dom (Inr(roots,e))

The proof of partial correctness follows the same ideas as the proof presented for Why3.
We define the pre- and post-conditions of the two functions as predicates in Isabelle. For
example, the two predicates for dfs1 are defined as follows:
definition dfs1_pre where dfs1_pre e ≡

wf_env e ∧ x ∈ vertices ∧ x /∈ colored e ∧ (∀g ∈ gray e. reachable g x)
definition dfs1_post where dfs1_post x e res ≡

let n = fst res; e’ = snd res
in wf_env e’ ∧ subenv e e’ ∧ roots ⊆ colored e’
∧ (∀x ∈ roots. n ≤ num e’ x)
∧ (n = +∞ ∨ (∃x ∈ roots. ∃y in set (stack e’). num e’ y = n ∧ reachable x y))

We now prove the following theorems:
The pre-condition of each function establishes the pre-condition of every recursive call
appearing in the body of that function. For the second recursive call in the body of dfs
we also assume the post-condition of the first recursive call.
The pre-condition of each function, plus the post-conditions of each recursive call in the
body of that function, establishes the post-condition of the function.

Combining these results, we establish partial correctness:
theorem dfs_partial_correct:

[[dfs1_dfs_dom (Inl(x,e)); dfs1_pre x e]] =⇒ dfs1_post x e (dfs1 x e)
[[dfs1_dfs_dom (Inr(roots,e)); dfs_pre roots e]] =⇒ dfs_post roots e (dfs roots e)

We now define the initial environment and the overall function. It is then trivial to show
that the arguments to the call of dfs in the definition of tarjan satisfy the pre-condition
of dfs. Putting together the theorems establishing termination and partial correctness, we
obtain the desired total correctness results.
definition init_env where init_env ≡

(| black = {}, gray = {}, stack = [], sccs = {}, sn = 0, num = λ_. -1 |)
definition tarjan where tarjan ≡

sccs (snd (dfs vertices init_env))
theorem dfs_correct:

dfs1_pre x e =⇒ dfs1_post x e (dfs1 x e)
dfs_pre roots e =⇒ dfs_post roots e (dfs roots e)

theorem tarjan_correct:
tarjan = { C . is_scc C ∧ C ⊆ vertices }

5 Observe that Isabelle introduces a single predicate dfs1_dfs_dom corresponding to the two mutually
recursive functions whose domain is the disjoint sum of the domains of both functions.
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Table 3 Distribution of interactions in the Isabelle proofs.

i = 1 i ≤ 5 i ≤ 10 i ≤ 20 i ≤ 30 i = 35 i = 43 i = 48
28 8 4 1 2 1 1 1

The intermediate assertions that were inserted in the Why3 code guided the overall proof
in Isabelle: they are established either as separate lemmas or as intermediate steps within
the proofs of the above theorems. Similarly to the Coq proof, the overall induction proof
was explicitly decomposed into individual lemmas as laid out above. In particular, whereas
Why3 identifies the predicates that can be used from the function code and its annotation
with pre- and post-conditions, these assertions appear explicitly in the intermediate lemmas
used in the proof of theorem dfs_partial_correct. The induction rules that Isabelle generated
from the function definitions were helpful for finding the appropriate decomposition of the
overall correctness proof.

We extensively used sledgehammer in the development of these proofs for invoking
automatic back-end provers, including the superposition provers E, Spass, and Vampire,
and the SMT solvers CVC4 and Z3. Nevertheless, we found that in comparison to Why3,
significantly more user interactions were necessary in order to guide the proof. On several
occasions, the external back-end reported finding a proof, but the subsequent attempt to
reconstruct a proof in Isabelle failed: sledgehammer mainly records the lemmas that are used
by the automatic back-end and then invokes proof tools (such as metis) that can generate
a detailed proof that can be certified by the Isabelle kernel, but these tools may not find
a proof even when the original automatic prover succeeded. When automatic proof fails,
the user has to decompose the proof into smaller steps. Although decomposition was often
straightforward, a few steps were not so obvious and required designing a rather detailed
proof strategy. Table 3 indicates the distribution of the number of interactions used for the
proofs of the 46 lemmas the theory contains. These numbers cannot be compared directly to
those shown in Table 2 for the Coq proof because an Isabelle interaction is typically much
coarser-grained than a line in a Coq proof. As in the case of Why3 and Coq, the proofs of
partial correctness of dfs1 (split into two lemmas following the case distinction) required the
most effort. It took about one person-month to carry out the case study, starting from an
initial version of the Why3 proof. Processing the entire Isabelle theory on a laptop with a
2.7 GHz Intel® Core i5 (dual-core) processor and 8 GB of RAM takes 35 CPU seconds.

6 General comments about the proof

Our formal proofs refer to colors, finite sets, and the stack, although the informal correctness
argument is about properties of strongly connected components in spanning trees. The
algorithmician would explain the algorithm with spanning trees as in Tarjan’s article. It
would be nice to extract a program from such a proof, but the program does not explicitly
manipulate spanning trees, and the proof should be given in terms of variables and data that
appear in the program.

A first version of the formal proof used ranks in the working stack and a flat representation
of environments by adding extra arguments to functions for the black, gray, scc sets and
the stack. The automatic provers of Why3 worked very well with this representation. But
after remodelling the proof in Coq and Isabelle/HOL, it appeared to be cleaner to gather
these extra arguments in records and have a single extra argument for environments. Also
ranks disappeared in favor of the num function and the precedence relation, which are
easier to understand. Why3’s automatic provers have more difficulties with the inlining of
environments, but with a few hints they could still succeed.
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Proving the correctness of Tarjan’s algorithm requires surprisingly few, and entirely
elementary, concepts of finite graphs. With the exception of the use of the Mathematical
Components library for Coq, we therefore did not use existing libraries formalizing advanced
concepts of graph theory [12, 25].

When designing a formal representation of an algorithm, one has to decide at what level
of abstraction the algorithm should be modeled. For example, the Coq formalization shows
that one can represent Tarjan’s algorithm and proof using just serial numbers and the set of
strongly connected components found so far, and that the stack used in the algorithm and
the colors used in the proof can be reconstructed. The Why3 and Isabelle representations
make these elements explicit: coloring of vertices is frequently used when reasoning about
graph algorithms, and including the stack allows us to capture the linear time complexity of
the algorithm.

There is always a tension between the concision of the proof, its clarity and its relation
to the real program. Our presentation aimed at comparing different proof assistants, and
we have allowed for a few redundancies while staying at the algorithmic level rather than
capturing an implementation.

7 Conclusion

The formal proof expressed in this article was initially designed and implemented in Why3 [8]
as the result of a long process, nearly a two-year half-time work with many attempts of
proofs about various graph algorithms (depth first search, Kosaraju strong connectivity,
bi-connectivity, articulation points, minimum spanning tree). Why3 has a clear separation
between programs and the logic. It makes the correctness proof quite readable for a
programmer. Also first-order logic is easy to understand. Moreover, one can prove partial
correctness without caring about termination.

Another important feature of Why3 is its interface with various off-the-shelf theorem
provers (mainly SMT provers). Thus the system benefits from the current technology in
theorem provers. Clerical sub-goals can be delegated to these provers, which makes the
overall proof shorter and easier to understand. Although the proof must be split in more
elementary pieces, this has the benefit of improving its readability. Several hints about
inlining or induction reasoning are still needed, and two Coq proofs were used. Technically,
the automatic provers and the translations from the Why3 representation to their input
languages are part of the trusted code base: proofs are not checked independently. The
system records sessions and facilitates incremental proofs. However, the automatic provers
are sometimes no longer able to handle a proof obligation after seemingly minor modifications
to the formulation of the algorithm or the predicates, making the proof somewhat unstable.

The Coq and Isabelle proofs were inspired by the Why3 proof. Their development
therefore required much less time although their text is longer. We do not know if the final
proof would have been significantly different had the initial proof been developed in another
system than Why3. The Coq proof uses SSReflect and the Mathematical Components
library, which helps reduce the size of the proof compared to classical Coq. The proof also
uses the bigops library and several other higher-order features which makes it more abstract.

In Coq, one could prove termination using well-foundedness [2, 5], but because of nested
recursion the Function command fails, and both Equations and Program Fixpoint require the
addition of an extra proof argument to the function. Instead, we define the functionals dfs1
and dfs and recombine them in rec and tarjan by recursion on a natural number used as fuel.
We prove partial correctness on functionals and postpone termination on rec.
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Table 4 Characteristics of the three formal systems for our case study.

Why3 Coq Isabelle/HOL
expressivity - + +
readability + - +
stability w.r.t changes - + +
ease of use - - -
automation + - +
partial correctness vs. termination + - -
trusted base - + +
lines of automatic proof 395 0 314 ui
lines of manual proof 90 898 1690

Our Coq proof does not use significant automation.6 All details are explicitly expressed,
but many of them were already present in the Mathematical Components library. Moreover,
a proof certificate is produced and a functional program could in principle be extracted. The
absence of automation makes the system very stable to use since the proof script is explicit,
but it requires a higher degree of expertise from the user.

The Isabelle/HOL proof can be seen as a mid-point between the Why3 and Coq proofs.
It uses higher order logic and the level of abstraction is close to the one of the Coq proof,
although more readable in this case study. The proof makes use of Isabelle’s extensive
support for automation. In particular, sledgehammer [3] was very useful for finding individual
proof steps. It heuristically selects lemmas and facts available in the context and then calls
automatic provers (SMT solvers and superposition-based provers for first-order logic). When
one of these provers finds a proof, sledgehammer attempts to find a proof that can be certified
by the Isabelle kernel, using various proof methods such as combinations of rewriting and
first-order reasoning (blast, fastforce etc.), calls to the metis prover or reconstruction of
SMT proofs through the smt proof method. Unlike in Why3, the automatic provers used to
find the initial proof are not part of the trusted code base because ultimately the proof is
checked by the kernel. The price to pay is that the degree of automation in Isabelle is still
significantly lower compared to Why3. Adapting the proof to modified definitions was fast:
the Isabelle/jEdit GUI eagerly processes the proof script and quickly indicates those steps
that require attention.

The Isabelle proof also faces the termination problem to achieve general consistency.
We chose to delay handling termination, using the domintros attribute. The proofs of
termination and of partial correctness are independent; in particular, we obtain a weaker
predicate ensuring termination than the one used for partial correctness. Although the basic
principle of the termination proof is similar to the Coq proof and relies on considering
functionals of which the recursive functions are fixpoints, its technical formulation based on
an appropriate well-founded order is closer to informal arguments that programmers would
give and avoids low-level reasoning about fuel.

One strong point of Isabelle/HOL is its nice LATEX output and the flexibility of its parser,
supporting mathematical symbols. Combined with the hierarchical Isar proof language [34],
the proof is in principle understandable without actually running the system.

6 Hammers exist for Coq [11, 13] but unfortunately they currently perform badly when used in conjunction
with the Mathematical Components library.
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In the end, the three systems Why3, Coq, and Isabelle/HOL are mature, and each one has
its own advantages w.r.t. readability, expressivity, stability, ease of use, automation, partial-
correctness, code extraction, trusted base and length of proof (a subjective assessment appears
in Table 4). Coming up with invariants that are both strong enough and understandable
was by far the hardest part in this work. This effort requires creativity and understanding,
although proof assistants provide some help: missing predicates can be discovered by
understanding which parts of the proof fail. We think that formalizing the proof in all
three systems was very rewarding and helped us better understand the state of the art in
computer-aided deductive program verification. We would welcome further comparisons
based on implementations of this quite challenging case study in other formal systems.7

Our work has not considered how the systems that we have used could have helped us
generate an executable implementation of this algorithm, leave alone an efficient one, to
imperative programs and concrete data structures. Formal refinement enables proceeding
from the high-level correctness argument down to actually executable code, and there is
support for verifying imperative programs in general-purpose proof assistants (e.g., [6, 7, 19]).
However, the existing frameworks differ significantly, making comparisons quite difficult.

A final and totally different remark is about teaching of algorithms. Do we want students to
formally prove algorithms, or to present algorithms with assertions, pre- and post-conditions,
and make them prove these assertions informally as exercises? In both cases, we believe that
our work could make a useful contribution.
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