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Abstract

In this paper we report on the representation of appear-
ance information in the context of 3D multi-view shape
modeling. Most applications in image based 3D modeling
resort to texture maps, a 2D mapping of shape color infor-
mation into image files. Despite their unquestionable mer-
its, in particular the ability to apply standard image tools,
including compression, image textures still suffer from limi-
tations that result from the 2D mapping of information that
originally belongs to a 3D structure. This is especially true
with 2D texture atlases, a generic 2D mapping for 3D mesh
models that introduces discontinuities in the texture space
and plagues many 3D appearance algorithms. Moreover,
the per-triangle texel density of 2D image textures cannot
be individually adjusted to the corresponding pixel obser-
vation density without a global change in the atlas map-
ping function. To address these issues, we propose a new
appearance representation for image-based 3D shape mod-
eling, which stores appearance information directly on 3D
meshes, rather than a texture atlas. We show this represen-
tation to allow for input-adaptive sampling and compres-
sion support. Our experiments demonstrate that it outper-
forms traditional image textures, in multi-view reconstruc-
tion contexts, with better visual quality and memory foot-
print, which makes it a suitable tool when dealing with large
amounts of data as with dynamic scene 3D models.

1. Introduction

Image based 3D shape modeling is the process of build-
ing digital models of shapes using real images. It finds ap-
plications in many domains, in particular with the new vir-
tual and augmented reality devices and the associated need
for 3D contents. In order to represent the reconstructed 3D
shapes, the dominant paradigm is to model them as geomet-
ric surfaces over which appearance functions are defined.
With such a model, both geometric and appearance features
fundamentally contribute to convey realism and fidelity to
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Figure 1: Image-based 3D modeling: given a set of in-
put photographs (left), a geometric mesh is computed (top),
along with an appearance function stored within the surface
mesh structure (bottom), the main focus of this paper.

the observed shapes. In this work we focus on the appear-
ance representation, which has received surprisingly little
attention from the 3D vision community. In particular, we
show that both visual quality and encoding efficiency can be
significantly improved by exploring representations beyond
traditional 2D texture maps.

Assume we are given a geometric shape model estimated
from n images, using for instance a multi-view stereo ap-
proach [12]. An optimal solution for the appearance, and
with respect to the observed information, is to keep all the
original images in the representation. This appears to be
inefficient, or even intractable, in many situations where
possibly numerous high resolution cameras, and potentially
temporal sequences of shapes, are considered. Hence, most
3D visual modeling frameworks usually resort to an appear-
ance representation in the form of a 2D regular grid of texels
whose values, typically RGB colors, are estimated from the
observed images, given the geometry. The main benefits
of these texture maps are their controlled and limited sizes
in addition to inheriting most regular 2D image tools, in-
cluding compression and filtering. On the other hand, such
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Figure 2: Visualization and surface close-up of our appearance compression scheme: Top: mesh texture. Bottom: image
texture. Left to right: high-resolution texture, texture compressed to decreasing file size.

representations present severe limitations. First, a 3D to 2D
mapping is required to associate geometric points on the
3D shape to appearance information in the 2D texture. To
this purpose, the 3D shape model is usually cut into charts
homeomorphic to discs that are parameterized with texel
coordinates. The resulting 2D texture atlases are discon-
tinuous by construction, creating unnecessary seams on the
model appearance and making local computations on the
appearance function difficult; In addition, locally adjust-
ing the per-triangle texel sampling to the density of pixels
oberving each triangle is unpractical, as it is globally bound
by the initially chosen texture resolution and would require
global optimization of the atlas mapping function.

Instead of an appearance stored in an intermediate 2D
grid, we advocate therefore for an appearance stored on the
3D shape surface with the following advantages:

• There is no need for a 3D to 2D mapping that induces
discontinuities in the representation.

• Regions on the shape with varying observed pixel den-
sities, as due to camera properties including resolu-
tions and viewpoints, as well as to self-occlusions such
as armpits on the human body, can be described with
adapted appearance samplings.

To this end we build on the mesh color representation
introduced in [24] for synthetic graphical models and pro-
pose an adaptive appearance representation for 3D image
based reconstruction. We show that this representation out-
performs traditional texture atlases with more efficient ap-
pearance representations with respect to both precision and
size. In addition, we also introduce a dedicated compres-
sion method that builds on the JPEG pipeline and allows for
effective appearance storage with our representation. The

efficiency improvements of the proposed contributions al-
low for promising image based 3D modeling applications.

2. Related Work

2.1. Appearance Representation.

Besides the widespread texture map representation men-
tioned before, attempts have been made for representations
beyond 2D textures in order to address their limitations.
The thorough survey of Tarini et al. [18] gives an exhaus-
tive overview on the subject. For instance Ptex [3] used by
Walt Disney Animations Studios, and Mesh Colors [24] are
particularly noteworthy as they are used in real production
pipelines in the movie industry ([10]). In both cases, they
use the intrinsic parameterisation of the model, rather than
an arbitrary mapping. While Ptex was developed for subdi-
vision surfaces, and only works with quad faces, Mesh col-
ors can be used for triangular meshes which is the 3D model
representation we consider in this work. However, works
on this model focus yet on the graphics side, either trying to
optimize it for rendering [23] or creating 3D painting tools
for artists to work with [10]. For image-based modeling in
vision applications, texture maps are still the main appear-
ance representation and, to the best of our knowledge, no
attempts have been made to replace them.

2.2. Multi-view Appearance Estimation.

Appearance representations are used to store the appear-
ance information for 3D models. In the multi-view recon-
struction context, such information is estimated by consid-
ering the color cues from several input views. In the case of
texture maps, texels are usually backprojected into input im-
ages and the corresponding pixel values are combined with:
blending approaches that average pixel colors to determine



texel values, e.g. [16, 1]; or more recently using superres-
olution strategies, as in [9, 19, 8], that allow for prior con-
straints, e.g. TV regularization, to be applied on the esti-
mated texture. In any case, the disjoint charts of a texture
atlas introduce discontinuities in the texture space that make
filtering, regularization, or any non-local computation over
the texels difficult to perform, since neighbors must be de-
termined across chart boundaries. In that respect, a repre-
sentation attached to the shape parametrisation, e.g. mesh
triangles, is much more efficient with connectivity relation-
ships that are intrinsic. In addition, it enables for adaptive
resolutions where a texture has a uniform pixel resolution.

2.3. Appearance Compression.

Reducing the memory footprint is an important issue
when streaming or storing 3D contents. This is even more
critical with dynamic scenes for which shape and appear-
ance information evolve over time. In the case of 2D tex-
tures, appearance information can be optimally compressed
using image techniques with nevertheless some differences.
Whereas most image compression techniques are optimized
for storage and transmission, and thus, focus on visual qual-
ity vs. bitrate, texture compression puts more emphasis on
random access and decoding speed [2]. State of the art
methods include ASTC (adaptive scalable texture compres-
sion) [14] and ETC (Ericsson Texture Compression), pub-
lished as iPACKMAN [17]. Putting aside the concern about
random access and decoding speed, and focusing on bit rate
instead, state of the art methods are then mostly standard
image compression techniques such as JPEG. This is ex-
tended to dynamic scenes in [4] where the standard H.264
compression format is used to compress texture frames over
time, assuming for that purpose the texture atlas to be fixed
over frames. This enables temporal redundancy to be ex-
ploited, which is an interesting feature however beyond the
scope of this paper. With mesh colors representations, for
which appearance information does not live in 2D images
but on the model representation, i.e. mesh triangles, stan-
dard image compression techniques do not directly apply.
We propose a strategy that builds on JPEG to compress
mesh color representations and to benefit therefore from its
visual quality properties without sacrificing memory space
with respect to 2D textures.

3. Appearance Models
Without loss of generality we assume that shapes are

modeled with 3D triangle meshes. As mentioned earlier
their appearances, typically color information, can be rep-
resented with 2D image textures, the traditional model, or
directly on shapes with mesh textures. In this section we
present both models, their parameterizations and sampling
properties before considering more specifically in the next
section, the 3D image based modeling context and the mesh

texture tools we introduce for that purpose.

3.1. Notation

We consider the shape surfaceM, as obtained with for
instance a multi-view stereo reconstruction approach. M
is represented as an ordered set of vertices {v1 . . . vN} in
R3, and an ordered set of triangles {T1 . . . TM}, where
Ti ∈ [1, N ]3 is a triplet of vertex indices. We want to repre-
sent the appearance ofM as a dense function C :M→ C
that associates a color from a space C to every point on the
mesh. Typically, C = [0 . . . 255]3 for a discrete RGB-space
color representation. To this aim we parameterize point lo-
cations onM with barycentric coordinates and through the
following function F :

F : {1, ...,M}×]0, 1[2→M
(j, a, b) 7→ a vx + b vy + (1− a− b) vz ,

(1)

where (x, y, z) = Tj are the 3 vertex indices of triangle Tj .
The closure of the codomain of F isM. We call F−1 the
inner parameterization ofM. In other words, every point on
M can be uniquely represented by its triangle index j and
its barycentric coordinates (a, b), with the exception of ver-
tices and edges. The function C : {1, ...,M}×]0, 1[2→ C
associates then a color to any point represented by (j, a, b).

3.2. Image Texture

We recall in this section the widely used image texture
solution and discuss its properties.

3.2.1 Parameterization.

Image textures make use of an external mapping between an
image and the 3D meshM under consideration. M is di-
vided into k patches P1, ..., Pk ⊂ M, such that ∪kj=1Pj =
M. For each patch, a separate function φi : Pi → Ci ⊂
R2 is computed independently that maps 3D points in Pi

to 2D points in a chart Ci. Charts are chosen so that
∪kj=1Cj = T ⊂ [0, 1]2 and Ci ∩ Cj = ∅,∀i 6= j (see
Fig. 3). The chart building process is thus typically a non
trivial and global task, introducing discontinuities such that
the whole mappingM → T is piecewise continuous. The
mapping φ = ∪kj=1φj is typically defined per face, using
3 pairs of texture coordinates in T representing the im-
ages of its 3 vertices by φ. φ is then linearly interpolated
inside the face. Vertices and edges are duplicated along
chart discontinuities. In other words, a discrete function
φ0 : {v1 . . . vN} → T is defined on the vertices, and is then
extended to the whole surface using the inner parameteriza-
tion F−1 (1). An additional drawback of the scheme is thus
that it must ensure that color information C, or any other
surface function defined over T , should be consistent across
charts to avoid visual artifacts and apparent color seams.



Figure 3: Close-up of the image texture of a mesh, gen-
erated with the same texture atlas but different resolutions.
(Left: 80× 50, Right: 320× 200).

3.2.2 Sampling.

T is discretized with a rectangular image grid, inheriting all
the associated image tools. The sampling depends on verti-
cal and horizontal resolutions and the intially chosen map-
ping of triangles to texture space. Some texels (i.e. pixels
in the texture) inevitably fall partly within and outside the
chart union T . This means C must be extrapolated over the
chart borders to avoid artifacts. This is even more critical if
consistent filtering operations on C are to be performed.

3.2.3 Storage and Compression.

Image textures can be stored as regular image files and
buffers, with numerous possible compression schemes,
such as JPEG. The mapping function φ0 is usually stored
into the geometry file, in the form of texture coordinates.
AssumeE,N,M are respectivley the number of edges, ver-
tices and faces ofM. As shown in [15], for large triangular
meshes, the approximation M ≈ 2N is considered valid.

In general, the geometry information is represented by
N 3D points, or 3N floating point numbers, and the con-
nectivity is stored as M triplets of vertex indices, i.e. ≈ 6N
integers. For appearance, 3M texture coordinate pairs are
used, i.e. 12N floating points in the worst case scenario, or
four times the geometry information, although this can be
optimized with smart indexing. In the best case, neglecting
cross-boundary chart redundancies, this takes 2N floating
points (one pair of texture coordinates per vertex).

3.3. Mesh Texture

In contrast to image textures, the appearance information
is stored on the mesh structure with mesh textures. Con-
sequently, a 2D mapping function is not required and the
appearance information is directly sampled over the mesh
triangles, as illustrated in Figure 4. These ideas were in-
troduced in [24] and we experiment and extend them with
appearances from real images.

3.3.1 Parameterization.

Mesh textures do not require any form of external parame-
terization. Color information is defined directly on the mesh

Figure 4: Appearance samples on a mesh texture model
with triangles exhibiting varying appearance resolutions:
from left to right, R = 8, 4, 2, 1.

structure and not in any other domain. As such, it only
makes use of the inner parameterization F−1ofM (1).

3.3.2 Sampling.

Sampling is a strong feature of the model governed by a sin-
gle resolution parameter. Given a triangular face Ti and its
resolution Ri, a mesh texture stores (Ri+1)(Ri+2)

2 samples
on the locations given by:

F (Ti,
m

Ri
,
n

Ri
) | 0 ≤ m ≤ Ri, 0 ≤ n ≤ Ri −m. (2)

In other words, the positions of appearance samples within
a triangle are parametrized by the barycentric coordinates

(
m

Ri
,
n

Ri
, 1− m+ n

Ri
) , (3)

associated to the triangle vertices. In practice, vertices and
edge samples are shared between adjacent faces, and they
must be treated separately. The resolution of an edge is de-
fined as the lowest resolution of its two adjacent faces. As
in [24], face resolutions can only take values that are powers
of two. This makes interpolation easier along edges with a
lower resolution than the face.

This choice of representation has several important ad-
vantages over image texture sampling. First, the sampling is
by construction hexagonal, and hence more tightly packed
and less directionally biased than the square sampling of im-
age texture. This is formalized in information theory where
hexagonal structures are shown to be optimal quantizers
over 2D regular lattices [13]. Second, there is no discon-
tinuity in the appearance model, nor any distortion. This
makes filtering more accurate and much easier to perform
in practice, as illustrated in Figure 5. Third, sampling fre-
quency can be chosen locally, at the face level, whereas it
is fixed globally with image textures (local sampling fre-
quency depends on the vertical and horizontal texture reso-
lution and the mapping function). This is particularly suit-
able for multi-view 3D modeling, as detailed in the next
section. Fourth, local editing or resolution changes do not
require a complete resampling or recharting of the mapping.



Figure 5: Illustration of a filtering operation with a texture
from real images. Three close-ups of a mesh, rendered with:
Left: the unfiltered image texture, middle: the same image
texture with a simple sharpening filter applied, right: the
mesh texture with a sharpening operation applied directly
on the mesh. Artifacts appear despite the texture being di-
lated many times in the image texture. They are due to the
seams lying too close to peaks in the color gradient.

3.3.3 Storage and Compression.

Similar to [24], we decouple geometry and color informa-
tion, to make it suitable for standard graphics pipeline. Each
vertex, edge and face stores an index to a single mesh global
color array. No compression scheme is yet available for
mesh textures and we introduce a novel approach for that
purpose in the next section 4.2.

4. Mesh Textures from Real Images

As previously discussed, mesh textures are convenient
when modeling shapes using real images. We detail in this
section the related aspects in that case, namely the strategies
for the appearance sampling and the compression.

4.1. Sampling Strategy

Given the pixel information in the observed images we
define an adaptive sampling strategy that optimally exploits
the appearance data. To this aim, we first choose a resolu-
tion level per triangle before computing the mesh texture.
Then, in a post-processing step, we downsample triangles
when they can still be accurately interpolated by the next
lower resolution level, this up to a given error threshold.
The first step depends directly on the pixel density in the in-
put images whereas the second step depends on the amount
of information present in the pixels. Figure 6 illustrates the
benefits of this sampling strategy: The uniform sampling
of texels with the image texture implies that unseen or uni-
form areas are oversampled, while others could benefit from
a denser sampling, e.g. the button on the coat. In contrast,
the mesh texture representation samples fewer points in the
hidden parts of the mesh but has a denser sampling in this
highly textured area.

Figure 6: Right: Two close-up renderings of the same col-
ored mesh, with an image texture (top) and a mesh texture
(bottom), using approximately the same number of samples,
rendered with closest point interpolation. (Close-ups of the
model on the left)

4.1.1 Adaptive Sampling

Our sampling strategy adapts the resolution Ri of the tri-
angle Ti to the number of pixels that observe this triangle.
To this aim, we assume that, for any subpart S ⊂ M of
the mesh, a function D gives a measure of the available in-
put pixels relevant to S, dependent on the coloring strategy
chosen. For example, a super-resolution strategy can define
D as the total number of pixels, in all selected views, that
project onto S. A naive blending approach will define D
as the maximum number of pixels, among all views, that
project onto S. In this paper, we implement a strategy that
selects a single best camera per triangle (see 5.1). Thus, D
measures the number of pixels in this selected view.

Now given the number D(Ti) of pixels in triangle Ti we
need to find the appropriate appearance resolution Ri for
that triangle. For such a resolution, the number of appear-
ance samples in the triangle is approximately:

(Ri − 2)(Ri − 1)

2
+

3

2
(Ri − 1) +

3

6
=

1

2
R2

i , (4)

counting samples within the triangle as full, samples over
edges as shared with 2 triangles and samples on vertices as
shared, on average, among 6 triangles. Given this number,
for each triangle Ti, we choose the smallest possible resolu-
tion Ri that is a power of two and such that:

1

2
λR2

i < D(Ti) , (5)

where the parameter λ can be chosen depending on the ex-



pected rendering quality. Typically, λ = 2 in our experi-
ments.

4.1.2 Downsampling

Real world objects often present large regions with more
or less uniform appearances. In such a region, irrespec-
tive of the resolution Ri, the appearance samples of a tri-
angle will carry redundant color information. In order to
account for that, we downsample triangles that fall into this
category. More precisely, for each triangle Ti, we consider
all sample points associated to the current resolution level
and compare their color values with the ones they would get
by just interpolating the next lower-resolution level. Look-
ing back at equations (2) and (3), these are samples with
barycentric coordinates m odd, or n odd, or both. Denoting
o = R−m− n, we compute the average difference as:

E =
8

3n(n+ 1)
× (Σm + Σn + Σo) , (6)

with:

Σm =
∑

m even, n,o odd

d(s(m,n,o),
s(m,n−1,o+1) + s(m,n+1,o−1)

2
) ,

(7)
where s(m,n,o) is the color of the sample with barycen-
tric coordinates (m,n, o) and d is the L2 distance in cor-
responding color space. If E is less than a threshold Tds,
we downsample the triangle appearance and verify again at
the next lower resolution. In our experiments, Tds ∈ [0, 80]
for varying visual quality (with color values in [0, 255]).

4.2. Mesh Texture Compression

One of the important features with image textures is the
ability to apply efficient compression schemes and to sig-
nificantly reduce the amount of data while keeping good
visual quality. In order to make mesh textures an efficient
appearance modeling tool as well, we also give them this
ability.

4.2.1 Strategy

Image compression is a widely studied problem for which
optimal solutions have been proposed. Since mesh tex-
tures store color information in 2D (triangular) lattices,
we believe that the existing schemes already provide ef-
ficient solutions with, furthermore, standard components.
Most state-of-the-art lossy image compression and texture
compression methods, including JPEG, ASTC or ETC, fol-
low a block-based approach, first introduced by Delp and
Mitchell with Block Truncating Coding in 1979 [5], in
which they decompose the image into rectangular blocks
and encode each block independently. We draw inspiration
from JPEG [20] and adapt it to mesh textures. We first give

Figure 7: Example of the PCA decomposition for triangles
of resolution 8 for one of our test meshes. Each triangle
represents one component, from most to least relevant (i.e.
biggest to smallest eigenvalue) in reading order. The first
few components (which are most preversed by the quanti-
zation step) encode low frequency information.

an outline of our method below. The full process is then
detailed in the next subsection (4.2.2).

Vector space – The triangles of a mesh texture are not
2D regular grids but they constitute anyway natural ’block’
candidates. However, block sizes are predetermined and
cannot be chosen arbitrarily: we need to be able to pro-
cess blocks of varying size. Since we only allow resolution
levels that are powers of two, the number of potential block
sizes is limited (typically 4 or 5). We process each block
size (i.e. each vector space) independently.

Space transform – In our case, blocks are triangular
rather than rectangular and we cannot apply DCT directly.
While solutions have been proposed to adapt DCT to trian-
gular shapes (e.g. [6]), we opted for a different approach
based on PCA decompositions, this after having tested
both methods. While this transformation has little physi-
cal meaning compared to DCT, it is an effective tool for
identifying the few components that encompass most of the
variations in the data. Besides, we believe the main com-
ponents also tend to cover low-frequency variations that are
most relevant to the human visual system. (See figure 7).

Discarding irrelevant components – Similar to JPEG,
we downsample chroma components. Coefficients in the
PCA basis are quantized based on a specific quantization
matrix.

Entropy coding – Huffman coding and run-length en-
coding: We choose to compute Huffman tables for each
case (i.e. mesh), rather than use predefined ones, as in stan-
dard JPEG. We compute separate Huffman tables for each
resolution level. The PCA decomposition gives us a natural
writing order for coefficients (as opposed to the zigzagging
needed for JPEG).



4.2.2 Encoding and Implementation.

We present here the full encoding pipeline in more details.
For our compression scheme, edge colors are duplicated.
While this introduces redundancy in the data, it allows us to
compress edges’ color information within the 2D signal of
the triangles. More importantly, it completely eliminates the
need for indexing between geometry and color data. Vertex
colors are stored separately and left uncompressed. The en-
coding process is as follows:
• Triangles are reordered per resolution level R, from

highest to lowest. Each set of triangles with a given resolu-
tion is processed independently.
• RGB data is transformed into Y CbCr. Chroma com-

ponents are downsampled to the next lower resolution. This
means eliminating between 1/2 (ifR = 2) and 3/4 (asymp-
totic behaviour when R increases) of chroma samples.
• A PCA decomposition is computed for each value of

R.
• The coordinates of faces in this new space are

quantized. We choose quantization vectors of the form
Floor(1 + ai + bi2) times a normalization factor, where
i is the PCA component index. i ranges from 0 for the main
component, to (DT −1), and a and b are chosen empirically
(in our experiments, a = 1, and b ∈ [0.01, 0.1] for varying
bitrates).
• The mean vector and eigen vectors of the PCA decom-

position are also quantized (e.g. on 12 bits per coefficient).
• Barring some implementation details, we then follow

the standard JPEG pipeline, except that coefficients are not
subdivided into several channels. Resolution changes are
written using a specific JPEG marker. They are followed
by the quantization table and the list of PCA eigenvectors
(and mean), signaled by their own marker as well. Then,we
write the Huffman tables used for this part of the data, and
finally, the entropy-coded data.

The geometry data is written in another file. It includes
a list of vertices (3D points) with one color per vertex, and
a list of faces, i.e. three vertex indices. Faces are written
following the order used in the compressed color file.

The color data of each face takes up a varying number
of bytes in the encoded signal, which cannot be predicted.
Thus, for rendering, data must be decoded before being
loaded on memory (which is also the case with JPEG tex-
tures, but not with ETC or ASTC, for example ([17, 14]).

5. Evaluation
In order to demonstrate the benefit of mesh texture in

the context of multi-view shape reconstruction, we report in
this section on comparisons between image and mesh tex-
tures given reconstructed shapes and their observed images.
The criteria we consider are visual quality or fidelity to the
original images and size which, we believe, are the most

critical properties of the appearance in our context.
We first detail the appearance function that associates a

color to any point on the shape surface (section 5.1).. This
function is used with both image and mesh textures in the
comparisons. We then render views of our models for com-
parisons, both in terms of sampling (section 5.2) and com-
pression ratio (section 5.3) and with respect to the criteria
mentioned. Additional experiments with more data are in-
cluded in the supplementary material.

5.1. Appearance Function

Given a mesh and its associated observed images from
different viewpoints, we compute a continuous function that
gives a color value for each point on the surface mesh. Vari-
ous strategies can be considered for that purpose, from sim-
ple blending to super-resolution approaches. Our objective
is primarily to compare appearance representations and not
to evaluate appearance function, we opt therefore for an ef-
fective best view strategy that select for each mesh face the
best view available. The key aspects are as follows:

Computing visibility: Each input image Ii is upsam-
pled, and visibility for every (face,view) pair is computed
at the sub-pixel level, which gives more precision on the
available appearance information.

Assigning Views: In real acquisition setups, the cam-
era properties are inaccurate and the input views are conse-
quently misaligned and inconsistent. Averaging pixel infor-
mation over different images is therefore likely to severely
blur the appearance. Following many works in that respect,
e.g. [11, 7, 22], we assign a single view to each face of the
shape model. In practice, we select the most informative
view with the largest number of visible subpixels.

Blending views: The view assignment can be seen as
weighing the input views by a function ω0 that depends on
the position on the surface and the view index. Choosing a
view j for face T means

∀i ∈ {1, ..., I},∀p ∈]0, 1[2 ,

ω0(T ,p, i) =

{
1 if i = j

0 otherwise .

(8)

To avoid visible seams between triangles, we compute an
estimate of ω0 for each vertex by averaging its value on ad-
jacent faces. Weights are then interpolated smoothly be-
tween vertices, i.e. for the image i, a face t = {v1, v2, v3},
a location p = (a, b, c) within t, we use the function ω de-
fined by:

ω(x(t,p), i) = a ω0(v1, i)+b ω0(v2, i)+c ω0(v3, i) . (9)

Finally, the color C of each surface point is defined by

∀x ∈M, C(x) =

I∑
i=1

(
Ii
(
πi(x)

)
× ω(x, i)

)
, (10)



Figure 8: Result on the test mesh: score averaged over all
viewpoints. (red) Image textures, (blue) Mesh textures.

where {I1 . . . II} are the input images with their respective
3D-2D projection operators {πi}.

5.2. Sampling

We evaluate our method on real data, captured with
multi-camera platforms. The input data and the recon-
structed mesh are provided by the authors of [12]. It pro-
vides 64 different input views of the same scene, and in-
cludes an image texture, computed with a method based on
conformal maps. We use a leave-one-out evaluation strat-
egy, removing a given input view, and comparing it against
the projection of appearances computed using the remain-
ing views. We sample the function C defined in equa-
tion (10) with varying parameters. Charts in image textures
are dilated to prevent artifacts and for a fair comparison with
mesh textures. We use two different metrics for such com-
parison: the Multi-scale Structural Similarity (MS-SSIM)
from [21], and the more recent Learned Perceptual Image
Patch Similarity (LPIPS) from [25]. We compare images
within the mesh silhouette only in the images. Figure 8
shows some numerical results. MS-SSIM measures a simi-
larity, thus higher scores are better, contrary to LPIPS which
measures the perceptual difference. In this case, MS-SSIM
seems ill-suited for a meaningful analysis, given the very
small range of variation. At high resolution, sampling is not
a limiting factor, and the error is mostly due to the imper-
fect geometry and color function C. As we progressively
decrease the number of samples, LPIPS shows our repre-
sentation tends to retain more visual information.

5.3. Compression Evaluation

To evaluate our compression method, we pick a high-
resolution texture image and texture mesh of the same mesh,
with a similar number of samples and a similar score on
both metrics. We compress them with varying quantiza-
tion matrices (or compression ratio for JPEG), and compare
the results, using the same process as in the previous sec-
tion, except that this time, we use a single model that we
backproject on different input views. Figure 9 demonstrates
that our representation outperforms the image texture, espe-
cially at low bitrates. Figure 2 displays the artifacts inher-

Figure 9: Result on the test mesh: score averaged on dif-
ferent viewpoints. Image textures shown in red, mesh tex-
tures in blue. The original image texture takes 5.6 MB
(3072 × 3072) for 2940k texels. The original mesh texture
takes 5.5 MB, for 3007k color samples.

ent to both methods. If we zoom in, we can already notice
small discontinuities with the image textures, because of
seams in the texture in that case. As we compress the texture
with increasingly high compression ratios, blocky artifacts
start to appear along the seams, and finally, on the whole
mesh. By comparison our mesh texture method yields tri-
angular blocky artifacts that seem less perceptible, probably
because they follow an irregular pattern. Besides, our PCA
decomposition basis is computed specifically for the mesh,
contrary to the more general DCT decomposition.

6. Conclusion

We have studied the benefits of representing color in-
formation directly on 3D meshes in the context of multi-
view image-based appearance modeling. More specifically,
we have compared the use of our proposed mesh texture
pipeline, with the more widespread use of texture maps.
First, taking advantage of its sampling flexibility over the
surface triangles, we were able to formulate a smart locally-
adaptive sampling strategy, which we show to be more effi-
cient than uniform sampling in the image-based appearance
modeling context. Second, we introduce a novel compres-
sion strategy dedicated to our mesh-embedded color infor-
mation, and show that it is effective enough to outperform
classic texture storage in terms of the perceptual fidelity vs
storage capacity tradeoff, especially at low bit rates. The
results obtained validate this scheme as a practical solu-
tion, even when dealing with large amounts of data. For
future work, it would be interesting to implement compres-
sion strategies with a fixed bit rate, so that meshes could
be rendered directly from their compressed mesh texture.
Additionally, one could try to build temporally consistent
mesh textures, to represent the appearance of a moving ob-
ject across several frames in a compact way. Finally, we
would like to combine this framework with a state-of-the-
art superresolution algorithm, to see if additional quality
performance can be achieved with this representation.
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