
HAL Id: hal-01780385
https://hal.inria.fr/hal-01780385

Submitted on 27 Apr 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Floating-point arithmetic in the Coq system
Guillaume Melquiond

To cite this version:
Guillaume Melquiond. Floating-point arithmetic in the Coq system. 8th Conference on Real Numbers
and Computers, Jul 2008, Santiago de Compostela, Spain. pp.93-102. �hal-01780385�

https://hal.inria.fr/hal-01780385
https://hal.archives-ouvertes.fr

Floating-point arithmetic in the Coq system

Guillaume Melquiond
INRIA – Microsoft Research

guillaume.melquiond@inria.fr

Abstract

The process of proving some mathematical theorems can be greatly reduced by relying on numerically-
intensive computations with a certified arithmetic. This article presents a formalization of floating-
point arithmetic that makes it possible to efficiently compute inside the proofs of the Coq system. This
certified library is a multi-radix and multi-precision implementation free from underflow and overflow.
It provides the basic arithmetic operators and a few elementary functions.

1 Introduction

Some mathematical theorems have recently been proved by performing huge amounts of numerical
computations (e.g. Hales’ proof of Kepler’s conjecture), hence casting some doubts on the validity
of their proofs. By performing these numerical computations inside a formal system, a much higher
confidence in the theorems would have been achieved. Indeed, these systems ruthlessly track unproven
assumptions and incorrectly applied theorems, hence helping the user to perform foolproof reasoning.
Fortunately, in these systems, especially in those based on type-theoretical formalisms, the ability
to efficiently perform calculations is steadily increasing. As a consequence, the process of proving
mathematical theorems is slowly shifting from a deductive approach to a computational approach.

One of these formal systems is the Coq proof assistant [1], which is based on the calculus of induc-
tive constructions. Its formalism makes it possible to evaluate functions and to use their results inside
proofs. This system is therefore a good candidate for implementing certified yet efficient arithmetics,
and hence for using numerical computations to formally prove powerful mathematical results.

Irrespective of these considerations, floating-point arithmetic is widely used in computer programs
as a fast approximation of the traditional arithmetic on real numbers. By design (limited range, limited
precision), it is efficient for performing numerically-intensive calculations. While these calculations
are most often encountered in numerical simulations of physical phenomenons, Thomas Hales has
shown that they could also be a great help for proving some mathematical theorems. This hinted at
formalizing an effective floating-point arithmetic inside the Coq system.

A formal system is an unusual environment for developing a floating-point arithmetic, so Section 2
presents some design decisions and how this library compares to other floating-point formalizations.
Section 3 then details the implementation of the basic operators: addition, multiplication, division,
and square root. The library also encompasses some elementary functions which are described in
Section 4. Finally, some recent realizations and future works are presented in Section 5.

1

2 Floating-point arithmetic

Floating-point numbers are usually a subset of rational numbers, with some additional values for
handling exceptions (e.g. infinities). A radix β is associated to a floating-point arithmetic, and its finite
numbers can be represented as m · βe, with m and e two integers. Most common radices are β = 2,
widely available in general-purpose processors, and β = 10, often found in financial applications.
One can also find β = 16 in some older hardware, and β = 3 in exotic computers.

For the sake of realisability and/or space efficiency, a precision is usually set, that is an integer p
such that the floating-point numbers are restricted to mantissas m that are bounded: |m| < βp. For
the same reasons, exponents e are also constrained to a range [emin, emax]. For instance, the double
precision arithmetic described in the IEEE-754 standard [9] is a radix-2 arithmetic with p = 53,
emin = −1049, and emax = 971. A multi-precision library like MPFR [5] works with any precision
but still has bounded exponents, though the bounds are sufficiently big so that they do not matter
usually.

2.1 Number format

The floating-point formalization presented in this article supports any radix β ≥ 2. Indeed, because
of their simplicity, the operations described in Section 3 do not rely on the properties of a specific
radix. While any radix can be used, the library does not handle mixed-radix operations. One cannot
add a radix-2 number with a radix-3 number and obtain a radix-10 number. So the radix can be seen as
a global setting for the floating-point arithmetic. This is not the case of the precision of the numbers.
It can be set independently for each operation, and an operation will return a number with the given
precision.

Be it in Coq or in other systems, integers are mathematical objects with no immediate notion of
limited range. In particular, constraining the exponents to a bounded range would be artificial. So the
formalization has neither emin nor emax. As a consequence, underflow and overflow phenomenons can
no longer occur during computations. In particular, exceptional values like signed zeros, subnormal
numbers, and infinities, are a lot less useful, and have hence been discarded from the formalization.

The unbounded range of exponents has some immediate properties. First, a floating-point operation
will only return zero when the ideal mathematical result is zero too. Second, all the results are normal
numbers, so bounds on the relative errors are always verified, which makes it easier to write floating-
point algorithms and to perform their error analysis. One no longer has to deal with the traditional
sentence: “The result is correct assuming that no underflow nor overflow occurred in the course of the
computations.”

The formalization nevertheless supports an exceptional value: Not-a-Number. It is returned by
floating-point operators, when the corresponding mathematical function on real numbers is not defined
on the inputs. For instance, a NaN will be returned when computing 1

0 and
√
−1. As usual, this

exceptional value is an absorbing element for all the floating-point operations. So the final result of a
sequence of computations will be NaN, if any of the intermediate computations had “invalid” inputs.
This is especially useful, since the pure functional programing language of Coq does not offer native
exceptions and traps, so delaying the handling of the invalid cases simplifies the use of floating-point
operators inside proofs.

2.2 Data sets and functions

Since neither the precision nor the exponent are bounded, any number m · βe can be represented
and handled within this formalization. Let us note Fβ this subset { m · βe | (m, e) ∈ Z2 } of the real

2

numbers. These numbers will be represented as pairs of integers (m, e). Notice that these pairs are
not normalized a priori, so (m, e) and (m · β, e− 1) are two different representations of the same real
number. The set Fβ will denote the whole set of floating-point numbers, that is Fβ extended with a
NaN value.

To summarize, a floating-point operation like the division will be a function with a signature de-
pending on its (implicit) first parameter β:

Fdiv : ∀β : radix, rounding→ precision→ Fβ → Fβ → Fβ

The “rounding” type contains modes for selecting a floating-point result when the ideal mathematical
value is either outside of Fβ or not representable with the required precision. The supported modes
are detailed in Section 3.1. The “precision” type denotes all the positive integers, though the results
will not be specified when precision is 1.

The library contains the following Coq theorem. It states that the floating-point division algorithm
is correct: For any two floating-point numbers x and y in radix β (bigger than 1) and for any rounding
mode and precision prec, the result of the algorithm represents the same real number than the real
quotient xy once rounded to a floating-point number. Note that this real quotient and its rounding are
defined in a purely axiomatic way in Coq: Standard real numbers are an abstract type useless for
computations.

Theorem Fdiv_correct :
forall radix mode prec (x y : float radix), 1 < radix ->
Fdiv mode prec x y = round radix mode prec (x / y).

This theorem matches the IEEE-754 requirement: “Every operation shall be performed as if it
first produced an intermediate result correct to infinite precision and with unbounded range, and then
rounded that result according to . . . ”

2.3 Computability

Several formalizations exist, for various proof assistants, and they have been successful in proving
numerous facts on floating-point arithmetic. For the sake of conciseness, only two of them will be
cited here [3, 7]. The main difference between these libraries and the one described in this paper is
in the rationale. They were designed for proving floating-point code, but not for actually computing.
For instance, the following predicate is the usual characterization of rounding to −∞ in their formal-
ization: A real number x is rounded to f in a floating-point format (radix, precision, and exponent
range) if

f ∈ format ∧ f ≤ x ∧ ∀g ∈ format , g ≤ x⇒ g ≤ f.

While this is the best definition for describing the behavior of a floating-point rounding, this pred-
icate does not provide any computational content, since there is no direct way for computing f given
this definition and x. For their verification purpose, these libraries do not need to provide explicit
algorithms for rounding values.

Note that the theorems provided by these libraries cannot be easily reused, unfortunately. Indeed,
since their goal is the verification of code relying on actual floating-point arithmetic, e.g. IEEE-
754, the bounded exponent range (especially the minimal exponent) is intimately embedded in their
formalization.

3

2.4 Modules

The first part of the formalization defines and proves algorithms that work for any radix. While
usable to perform floating-point computations, the purpose of this generic implementation is more of
a reference implementation. For instance, counting the number of digits of a mantissa m is performed
by increasing n until βn is bigger than |m|. This is correct yet inefficient. The issue is similar when
shifting mantissas – leftm·βn and right bm/βnc – since the shifts are performed by powering followed
by a multiplication or a division.

The Z integers provided by Coq’s standard library are represented as list of bits. As a consequence,
when the radix is β = 2, mantissa operations can be performed much more efficiently. For instance,
shifts can be computed by adding zeros at the head of the list or removing the first elements, since the
least-significant bits are stored first. So the library has been specialized for specific radices in order to
improve performances.

This specialization is achieved thanks to the module system of Coq. First of all, an interface (mod-
ule type) FloatOps contains the signature and the specification of all the floating-point operations.
A module that implements this interface must therefore provide a set of floating-point operators and a
proof that these functions return the exact same results as the functions of the reference implementa-
tion. For instance, if the module M has type FloatOps, the M.add function is a floating-point adder
and the M.add_correct theorem proves its correction. An important point is that the radix is no
longer a parameter of the floating-point operations.

The first implementation of this interface is the module functor GenericOps. Given a radix,
it generates a module of type FloatOps which is a simple wrapper around the reference imple-
mentation. For instance, Module M := GenericOps Radix10 generates a module M which
provides decimal floating-point arithmetic. The second implementation is provided by the functor
SpecificOps. Given a set of functions for performing special operations on mantissas (e.g. shifts),
this functor generates an improved module that directly manipulates integers at the digit level. For in-
stance, SpecificOps StdZRadix2 takes advantage of the representation of the integers as lists
in order to speed up radix-2 floating-point computations.

The implementation can be sped up even further by replacing the bit lists with binary trees of fixed-
size integers [6]. The binary-tree structure allows for divide-and-conquer algorithms, e.g. Karatsuba’s
multiplication. Moreover, Coq can use 31-bit machine integers for representing the leafs of the trees.
This considerably reduces the memory footprint of the integers, and makes it possible to delegate
arithmetic computations on the leafs to the processor. Arithmetic operations are no longer performed
one bit after the other, but by blocks of 31 bits at once. As a consequence, the module SpecificOps
BigIntRadix2 is currently the fastest radix-2 implementation, when evaluating expressions with
Coq’s virtual machine.

3 Basic operators

This section presents the implementation of the basic arithmetic operators. These operators have
been developed with a simple design on purpose, so that they can be easily proved correct. As a
consequence, this Coq library does not follow MPFR’s laudable philosophy: “The complexity should,
while preserving correct rounding, depend on the precision required on the result rather than on the
precision given on the operands.” When working at constant precision, this issue fortunately does not
matter.

4

3.1 Rounding

If the result x of an exact operation can be represented as a pair (m, e) with |m| < βp, then this
floating-point value should be returned by the associated operator running at precision p. Otherwise,
a floating-point number near x is chosen according to a rounding direction and is returned by the
floating-point number.

Let us assume that x is a positive real number. Let e = blogβ xc − p + 1 and m = bx · β−ec.
Both m · βe and (m+ 1) · βe can be represented by floating-point numbers with mantissas of p digits.
Moreover, they are respectively the biggest number smaller than x and the smallest number bigger
than x. These are the two candidates toward which x can be rounded.

We first need to have the position of x relatively to these two numbers. Let us pose d = x ·β−e−m.
By construction, d is in the range [0, 1). If d is 0, then x is equal to m · βe. This position is called
pos_Eq in the library. Otherwise, d is either smaller than 1

2 (pos_Lo), equal to 1
2 (pos_Mi, x is

half-way between m · βe and (m+ 1) · βe), or bigger (pos_Hi).
Choosing the correctly-rounded value is therefore a simple case study. For instance, when rounding

to nearest the number x at position pos_Hi, the floating-point value (m+1, e) is returned. This four-
position system is strictly equivalent to the usual hardware approach of using two bits: the rounding bit
and the sticky bit [4]. The four rounding directions of the IEEE-754 standard are supported: toward
zero, toward −∞, toward +∞, and to nearest (with tie breaking to numbers with even mantissa).
New rounding modes can easily be supported, as long the discontinuity points are either floating-point
numbers or half-way between consecutive ones.

The position system does not have to be restricted to powers of the radix though. Its generalization
will give the correctness proof of the division operator for free (Section 3.3). The library defines a
correctly_located predicate to express that the mantissa m and the position pos are correctly
chosen for a given scale . This predicate holds when:

x = m× scale if pos is pos_Eq
m× scale < x < (m+ 1

2)× scale if pos is pos_Lo
. . .

For arbitrary numbers x and scale , the position and m are not computable.1 But they are when we
already know an integerm′ and a position pos ′ for a scale scale/n, with n a positive integer. Indeed,m
is then bm′/nc, and the position is given by the adjust_pos function of the library, which compares
the remainder m′− n×bm′/nc with bn2 c. For instance, the new position is pos_Mi if the remainder
is n−1

2 and the old position is pos_Mi too.

3.2 Addition and multiplication

The set Fβ is actually a ring for the addition and the multiplication inherited from the real numbers.
For instance, given two numbers (m1, e1) and (m2, e2), the pair (m1 ·m2, e1 + e2) represents their
product. For the addition, the mantissas have first to be aligned so that the two numbers are repre-
sented with the same exponent. The mantissas can then be added. Functions for exact addition and
exact multiplication are therefore provided. This ring structure also helps in defining and proving the
rounded operators.

Indeed, if the mantissa of the exact result (m, e) has less than p digits, this is also the correctly-
rounded result. Otherwise, (m,pos_Eq) correctly locates the number m · βe with the scale βe. So

1More generally, rounding operators are functions that are not continuous, so they are not computable on the set of real
numbers.

5

it can be scaled down to the lower precision p by using the algorithm of Section 3.1. Once done, the
new position is used to decide which number to return.

Notice that, for the floating-point rounded addition, this approach is especially inefficient when the
exponents e1 and e2 are far from each other, as it requires a huge shift followed by a long addition.
For instance, the sum of 1 · β10000 and 1 · β0 involves a 10001-digit addition, while the result is more
or less trivial for small precisions, depending on the rounding direction. A better approach would be
to extract from the inputs the mantissa parts that actually matter in the rounded result.

3.3 Division and square root

For division and square root, one cannot expect to compute the exact values first. It is nonetheless
possible to perform divisions and square roots on integer mantissas and to obtain an exact integer
remainder.

Given two positive numbers (m1, e1) and (m2, e2), the division operator first computes the lengths
of the mantissas l1 = 1 + blogβm1c and l2 = 1 + blogβm2c. The integer n = max(l2 + p− l1, 0) is
such that the integer quotient q = bm1 ·βn/m2c has at least p digits. The exact result m1/m2 ·βe1−e2
of the division is correctly located by (m1 · βn,pos_Eq) with the scale βe1−e2−n/m2. So it can first
be scaled down by a factor m2, which gives a new location with q as a mantissa. It can then be scaled
again by a factor βk if q has p+ k digits. In the end, we get a location of x whose scale is a power of
β and whose mantissa has p digits exactly. This is sufficient to get the correctly-rounded value of x.

The square root algorithm cannot rely on these changes of scales. It is nonetheless similar. Indeed,
in Section 3.1, the rounding algorithm relies on the remainder of the euclidean division. So it can be
adapted so that it uses the remainder of the integer square root. In order to compute the rounded result
of the square root of (m, e), the operator first computes the length l of m. It then chooses the first
integer n bigger than max(2p− l−1, 0) and such that e−n is an even integer. The integer square root
s = b

√
m · βnc has at least p digits. The remainder is r = m · βn − s2. If r is zero, the exact result is

at the (s,pos_Eq) location with a scale β(e−n)/2. Otherwise, the position is obtained by comparing
r to s + 1

2 , which is the half-distance between s2 and (s + 1)2. Since r and s are both integer, they
can actually be compared directly. Finally, the location is scaled down again so that the mantissa has
exactly p digits.

4 Elementary functions

For the basic operations, the exact real result can either be represented directly as a floating-point
number, or with the help of a representable remainder. This is no longer the case for elementary
functions. Except for a few trivial inputs, e.g. 0, one can only compute non-singleton ranges enclosing
the exact result. This is nonetheless sufficient in order to get correct rounding, as shown by Ziv’s
iterative process [10].

Formalizing this process in Coq, however, depends on theorems that are currently out of scope. So
the elementary functions do not return the correctly-rounded result, they return an interval enclosing
the exact mathematical result. Fortunately, this interval is sufficient when proving inequalities on real-
valued expressions. So the Coq tactics that depend on this floating-point library do not need the correct
rounding.

The library currently supports the functions cos, sin, tan, arctan. The implementation of other
elementary functions like exp and log is a work in progress. The library relies on an exact division
by 2 for floating-point numbers, so the elementary functions cannot be used when the radix is odd.

6

4.1 Series evaluation and interval arithmetic

The elementary functions can be evaluated thanks to simple power series whose terms happen to be
alternating and decreasing for small inputs (say 0 ≤ x2 ≤ 1

4). For instance,

arctanx = x ·
∞∑
i=0

(−1)i · (x
2)i

i+ 1

From |x| ≤ 1
2 , we can decide how many terms are needed so that the remainder of the series is

guaranteed to be smaller than a threshold β−k. For instance, when β ≤ 4, k terms are sufficient. This
does not mean that the function will compute that many terms, it just means that k is the explicitly-
constructed decreasing argument that permits to define the recursive summation. Actually, the function
tests the current term against the threshold and stops as soon as it is smaller.

A careful error analysis would then permit to define and to prove an algorithm for evaluating trun-
cated summation with an absolute error less than β−k too. As a consequence, the relative error is less
than βk−2 when computing arctan this way, since |x| ≤ 1

2 . We therefore have a way to compute
arbitrarily small ranges enclosing arctanx.

Unfortunately, this error analysis is currently out of scope. As a replacement, a small kernel of
floating-point interval arithmetic was implemented and proved in Coq. So the summation of the series
is instead performed with intervals at precision k. This takes into account both the rounding errors
and the series remainder, and it trivially ensures that arctanx is contained in the computed range. But
the relative width of the range is no longer guaranteed to be smaller than βk−2 and hence to converge
toward zero when k increases. This prevents the completion of a proof that Ziv’s process actually
terminates for this implementation.

4.2 Argument reduction

In order to get an input xwith an absolute value smaller than 1
2 , an argument reduction is performed.

For the three direct trigonometric functions, angle-halving formulas are used:

cos(2 · x) = 2 · (cosx)2 − 1
sign(sin(2 · x)) = sign(sinx) · sign(cosx)

These formulas give cosx and the sign of sinx for any x. The values sinx and tanx are then
reconstructed thanks to the following formulas:

sinx = sign(sinx) ·
√

1− (cosx)2

tanx = sign(sinx) · sign(cosx) ·
√

(cosx)−2 − 1

These functions have been arbitrarily restricted to values smaller than 220. Outside this domain, they
return NaN. This should hopefully be sufficient for the purpose of proving theorems with numerical
computations.

The arctan function, however, is defined on the whole set of floating-point numbers. The argument
is first reduced to x > 0 by using the parity of the function. The result is then computed thanks to the
power series on the domain [−1

3 ,
1
2], after a potential reduction with the following formulas:

arctanx =

{
π
4 + arctan x−1

x+1 for x ∈ [12 , 2]
π
2 − arctan 1

x for x ≥ 2

7

The result reconstruction of arctan involves the constant π
4 . It is computed thanks to Machin’s

formula 4 · arctan 1
5 − arctan 1

239 , which needs the computation of arctan for small arguments only.
In order not to recompute this constant for every arctan evaluation, it is stored inside a co-inductive
object. The i-th element of the co-inductive object is defined as an interval computed at precision 31 · i
with Machin’s formula and hence containing π

4 . A co-inductive object can be seen as an infinite list.
One can destroy it into two elements: its head and its tail which is again an infinite list. Whenever
a co-inductive object is destroyed, Coq computes the value of its head. Moreover, Coq remembers
this value, so that it can be instantly reused the next time a function destroys the co-inductive object.
Therefore the interval constant for π at a given precision (with a granularity of 31 digits) is computed
only once per Coq session.

5 Conclusion

5.1 MPFR test data

The elementary functions of this library have been compared to the corresponding MPFR radix-2
functions. The MPFR library is shipped with test files containing input values and the expected results
for these functions at a precision of 53 bits. Except for arctan, the test files were trimmed to inputs
smaller than 220 due to the argument reduction described in Section 4.2.

The strategy for computing the values in Coq is as follows. An interval enclosing the exact result
is computed with an internal precision pi. If both bounds round to the same floating-point number at
precision 53, then this number is the correctly-rounded result. Otherwise the interval is too wide and
the computation starts again at precision pi+1 = bpi × 3

2c. And so on until a result is returned. The
starting precision is arbitrarily set to 63, as is the 3

2 multiplier. Note that this Ziv strategy does not
require any termination proof, since the input set is fixed, so a suitable upper bound on i can be found
by experimenting.

The following table gives average values for the number of processor cycles it takes to compute
the correctly-rounded result for every test input on an Intel Core 2 processor. Note that these results
are only meant to give a rough idea of the relative performance of the implementations, since the
evaluation strategy is plain arbitrary and the input values are unusually large. The second column
contains the number of input values, and the ratio with respect to the non-trimmed files. The third and
fourth columns show the speed of Coq, when using fast binary-tree integers and standard Z integers
respectively.

Function Tested values Coq speed Coq Z speed MPFR speed
arctan 870 (100%) 20 · 106 10 · 107 57 · 103

cos 1289 (91%) 27 · 106 20 · 107 21 · 103

sin 1120 (89%) 32 · 106 81 · 107 21 · 103

tan 1297 (81%) 36 · 106 83 · 107 22 · 103

First noticeable point: Computing a value with Coq is about 1000 times slower than computing it
with an optimized C program. This is the expected magnitude and it may be acceptable for proving
theorems with numerical computations. Second, using the standard integers only incur an additional
slowdown of 7 for arctan and cos. This one is a bit surprising, since integer computations are much
faster on the processor, so the slowdown should be bigger. This may be explained by the small size of
the integers and by the fact that some common operations are trivial on standard integers, e.g. shifts.

Third, there is yet another slowdown when Coq computes sin and tan with standard integers. This
is due to the square root when reconstructing the final result. The square root on standard integers

8

not only returns the integer result, it also returns a proof that this integer is the correct result. In the
type-theoretical setting of Coq, this proof is an explicit function whose type depends on the integer
input. Therefore Coq wastes a long time building this term, while it is irrelevant from a computational
point of view. This explains why the binary-tree integers are much faster there, as the correctness of
their square root is not embedded in its computation but it is guaranteed by a separate theorem.

These tests also helped to detect an unexpectedly unproven (and wrong!) theorem in the Coq library
that formalizes native 31-bit integer computations. They also showed that the test values of MPFR
were not as difficult as they could be, since the Coq functions could almost always get the correct
result at the second iteration, hence with an internal precision of 94 bits.

5.2 Proving theorems

Implementing floating-point arithmetic in Coq is only a way to efficiently prove mathematical the-
orems. So some tactics have been developed in order to automatically prove bounds on real-valued
expressions. These tactics are based on interval arithmetic and are similar to some existing PVS strate-
gies [8]. They also support bisection search, and a bit of automatic differentiation for doing interval
evaluation with Taylor’s order-1 decomposition. As a consequence, these Coq tactics are able to au-
tomatically handle a theorem originally proved in PVS [2] by using the exact same formal methods
but without relying on an external oracle. This theorem was stating a tight bound on the relative error
between Earth local radius

rp(φ) =
a√

1 + (1− f)2 × tan2 φ

and a degree-10 polynomial with single-precision floating-point coefficients that was approximating
it. The original PVS proof was composed of about 10000 generated scripts and it took several hours to
check all of them on a 48-core machine in 2005. The Coq proof, a 25-line script, took a few minutes
to check on a single core in 2008.

While the Coq tactics are performing too many computations because there is no oracle, they benefit
from the use of floating-point arithmetic. Indeed, PVS’ interval strategies are using rational numbers as
bounds. As a consequence, the numbers that appear in the intermediate computations of the PVS proof
carry thousands of digits, since all the bounds are computed exactly. On the contrary, the floating-point
bounds in the Coq proof were all rounded outwards to a precision of 30 bits. So the computations were
not slowed down by the size of the numbers, which explains the tremendous speed up that was achieved
on this example.

5.3 Future works

The floating-point formalization described in this article is part of the Coq library available at

http://www.msr-inria.inria.fr/~gmelquio/soft/coq-interval/

The long-term goal is to develop and adapt numerical methods for a proof assistant, so that com-
putational proofs like Hales’ one can be completely checked inside a formal system. Implementing a
floating-point arithmetic inside Coq is a step toward this goal, and there is still space for improvements.

Obviously, new elementary functions should be added, so that the usual ones at least are available.
Fortunately, with a suitable argument reduction, functions like exp and log can also be expressed as
alternating series. So their implementation and formal proof should closely match the ones for the
existing functions, hence making them straightforward.

More importantly, the interval evaluation of elementary functions should be replaced by a static
error analysis. There are currently no formal methods for doing this kind of analysis for multi-precision

9

http://www.msr-inria.inria.fr/~gmelquio/soft/coq-interval/

algorithms, so this will first require to build a comprehensive formalism. Not counting the ability to
actually certify multi-precision algorithms, there are two benefits to a formalized static analysis. First,
removing intervals will speed up the functions a bit. Second, it will allow to implement Ziv’s strategy
and get correctly-rounded results without relying too much on axioms.

While correct rounding is not needed for proofs, it would be a great help in writing MPFR-based
oracles. Indeed, since correct rounding allows for portable results, a numerical computation that suc-
ceeds in the oracle would also succeed in Coq. As a consequence, it would become possible to care-
fully craft the oracle so that the proofs it generates need as few computations as possible to prove a
given theorem in Coq.

The other way around, having portable results makes it possible to directly perform the extraction of
a high-level numerical algorithm written in Coq to a compilable language (e.g. Ocaml) with bindings
to the arithmetic operators and elementary functions of MPFR. That way, both the development and
the certification of a numerical application could be done in Coq, while its execution would be as fast
as currently possible for a multi-precision code.

References

[1] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development. Coq’Art: the Calculus
of Inductive Constructions. Texts in Theoretical Computer Science. Springer-Verlag, 2004.

[2] M. Daumas, G. Melquiond, and C. Muñoz. Guaranteed proofs using interval arithmetic. In P. Montuschi
and E. Schwarz, editors, Proceedings of the 17th IEEE Symposium on Computer Arithmetic, pages 188–
195, Cape Cod, MA, USA, 2005.

[3] M. Daumas, L. Rideau, and L. Théry. A generic library of floating-point numbers and its application to
exact computing. In Proceedings of the 14th International Conference on Theorem Proving in Higher
Order Logics, pages 169–184, Edinburgh, Scotland, 2001.

[4] M. D. Ercegovac and T. Lang. Digital Arithmetic. Morgan Kaufmann Publishers, 2004.
[5] L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, and P. Zimmermann. MPFR: A multiple-precision binary

floating-point library with correct rounding. ACM Transactions on Mathematical Software, 33(2), 2007.
[6] B. Grégoire and L. Théry. A purely functional library for modular arithmetic and its application to certi-

fying large prime numbers. In U. Furbach and N. Shankar, editors, Proceedings of the 3rd International
Joint Conference on Automated Reasoning, volume 4130 of Lectures Notes in Artificial Intelligence, pages
423–437, Seattle, WA, USA, 2006.

[7] J. Harrison. A machine-checked theory of floating-point arithmetic. In Y. Bertot, G. Dowek,
A. Hirschowitz, C. Paulin, and L. Théry, editors, Proceedings of the 12th International Conference on
Theorem Proving in Higher Order Logics, volume 1690 of Lecture Notes in Computer Science, pages
113–130, Nice, France, 1999.

[8] C. Muñoz and D. Lester. Real number calculations and theorem proving. In J. Hurd and T. Melham,
editors, Proceedings of the 18th International Conference on Theorem Proving in Higher Order Logics,
volume 3603 of Lecture Notes in Computer Science, pages 195–210, Oxford, UK, 2005.

[9] D. Stevenson et al. An American national standard: IEEE standard for binary floating point arithmetic.
ACM SIGPLAN Notices, 22(2):9–25, 1987.

[10] A. Ziv. Fast evaluation of elementary mathematical functions with correctly rounded last bit. ACM
Transactions on Mathematical Software, 17(3):410–423, 1991.

10

	Introduction
	Floating-point arithmetic
	Number format
	Data sets and functions
	Computability
	Modules

	Basic operators
	Rounding
	Addition and multiplication
	Division and square root

	Elementary functions
	Series evaluation and interval arithmetic
	Argument reduction

	Conclusion
	MPFR test data
	Proving theorems
	Future works

