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Abstract

In order to protect individuals’ privacy, data have to be “well-
sanitized” ( “well-anonymized”) before sharing them, i.e. one has
to remove any personal information before sharing data. However,
it is not always clear when data shall be deemed well-sanitized. In
this paper, we argue that the evaluation of sanitized data should be
based on whether the data allows the inference of sensitive information
that is specific to an individual, instead of being centered around the
concept of re-identification. We propose a framework to evaluate the
effectiveness of different sanitization techniques on a given dataset by
measuring how much an individual’s record from the sanitized dataset
influences the inference of his/her own sensitive attribute. Our intent is
not to accurately predict any sensitive attribute but rather to measure
the impact of a single record on the inference of sensitive information.
We demonstrate our approach by sanitizing two real datasets in differ-
ent privacy models (k-anonymity, `-diversity, and differential privacy)
and evaluate/compare each sanitized dataset in our framework.

Keywords: Sanitization, Inferences, Machine Learning, k-anonymity, `-
Diversity, Differential Privacy

1 Introduction

Nowadays, organizations own large volumes of data about individuals. Shar-
ing those data provides several benefits for both organizations and individ-
uals. But, at the same time, it puts individuals’ privacy at high risk. A
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straightforward countermeasure to protect individuals’ privacy, known as
pseudoanonymization, is to exclude explicit identifiers such as name, address,
and phone number. However, it has been shown that pseudoanonymization
is not sufficient to protect individuals’ privacy as the remaining informa-
tion such as date of birth, gender, and zip code can be used to re-identify
individuals [21,22].

In order to provide more guarantees about individuals’ privacy, more so-
phisticated techniques have been proposed to sanitize data from information
that may lead to re-identification. Examples of such sanitization techniques
are mechanisms that rely on data suppression and generalization (known as
anonymization techniques) [14,18,20], and those that rely on noise addition
like in differential privacy [7]. Nevertheless, there is neither well-defined
scheme to evaluate the robustness of sanitization techniques, nor a clear un-
derstanding for “when data is regarded as well-sanitized”. The European
General Data Protection Regulation considers data as properly sanitized
(anonymized) if “data subject is no longer identifiable”. A more specific
approach can be found in the Working Party 29 opinion on 05/2014 about
“Anonymization Techniques”, which considers the following three privacy
risks: “re-identification”, “linkability” and “inference”.

In this paper, we argue that inferences should be the primary con-
cern when it comes to individuals’ privacy. In particular, we see identity
disclosure as one way among others to infer information about individu-
als. Actually, mitigating “identity disclosure” is the primary goal of pseu-
doanonymization, however, it is not always relevant to data sanitization.
Indeed, if a dataset is “completely-sanitized”, then assigning an identity
to a certain record is pointless as the records will be highly noised or ag-
gregated. However, as far as the effectiveness of sanitization is concerned,
we should be aware about the precise meaning of information inference as
preventing any kind of inferences usually lead to useless data [8]. Indeed,
the ultimate usefulness of a dataset is always to infer new information. So,
as a trade off between privacy and utility, sanitized data should not allow
the inferences of “private” information1, but at the same time, they have
to allow the inference of some “public” information about the population,
i.e., the acquisition of any generalizable knowledge. The acceptability or
unacceptability of an inference can be based on two criteria:

1. The basis of the inference: is the inference performed on the records of
one (or a small group of) individual(s) or a large group of individuals.
We will call these kinds of inferences private and public, respectively.

2. The nature of the inference: can the inference be used to discriminate

1We regard private information as defined in [13], where a distinction between “personal
information” and “private information” has been made. Private information is seen as
“secrets that you can keep by withholding your data” whereas “personal information”
could be derived from datasets in which you are not necessarily involved.
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users? Can it have a very negative (for example social or financial)
impact?

The intuition behind the first criterion is that if an adversary cannot prove
that the records of a user were used to generate the inference, then, by
definition, these records are “protected”. Note that, it might happen that a
model which is exclusively built on population characteristics also accurately
predicts some sensitive information of individuals who are member of this
population [3]. However, we do not consider this to be a privacy breach as
long as the population, which is used to build the model, is large enough.
Instead, as in [17], we believe that there are acceptable and unacceptable
disclosures: “learning statistics about a large population of individuals is
acceptable, but learning how an individual differs from the population is
a privacy breach”. For instance, inferring an attribute value about the
population of a large city, or a rule like “a man smoking between 1 and
4 cigarettes per day is 3 times more likely to die from lung cancer than a
non-smoker” should be acceptable. But, deriving some information about
the inhabitants of a building may or may not be acceptable depending on
the number of people in the building.

As regards the second criterion, the inference nature is partly subjective
and involves ethical and legal considerations [8]. In this paper, we focus
on the first criterion and propose a framework called Differential Inference
Testing to assess the inference basis. However, we believe that the decisions
to release a dataset should always be part of a rigorous privacy risk analysis,
which systematically identifies the risks and the potential benefits of pub-
lishing the datasets [5]; especially that, certain public inferences can still be
harmful. Namely, we make the following contributions:

• We propose an inference-based framework that can be used to evaluate
the robustness of a given sanitized dataset against a specific adversary
that is modeled by an inference algorithm (Section 3). In particular,
the adversary builds a machine learning model in order to infer an
individual’s sensitive attribute from his publicly known attributes in
the sanitized dataset. We consider the attack successful (and the data
not ”well-sanitized”) if the adversary obtains sufficiently different (but
perhaps inaccurate) results depending on whether the target individ-
ual’s record was used to train the model or not, i.e., the output of the
inference potentially leaks some individual specific information aside
from more general population characteristics. Our approach is rem-
iniscent of Differential Privacy [7], however, it also differs from that
in several aspects that we detail in Section 2.2. A key feature of our
testing procedure is that it needs to have access only to the sanitized
data itself and requires no knowledge about the sanitization technique.
Thus, it can be used to assess datasets that are sanitized by organi-
zations which may prefer not to disclose their sanitization techniques.
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Even more, the verifier (e.g., Data Protection Authority) of a saniti-
zation process does not need to understand or analytically analyze its
privacy guarantees which can be very tedious and error-prone [15].

• We use our framework to evaluate two datasets after being sanitized
in the k-anonymity, `-diversity, and differential privacy (Section 4)
models. In this paper, we consider microdata, but our solution is
general and can be applied to any type of datasets, such as aggregated
data.

In addition, the paper discusses related work in Section 2 and provides a
conclusion in Section 5.

2 Related Work

2.1 Testing Data Sanitization

To the best of our knowledge, our approach is the first one that proposes a
general practical test to evaluate sanitized datasets by making distinction
between acceptable and unacceptable inferences. Yet, there are some prior
related works [1, 4, 6, 19].

The authors of [4] propose a framework to test whether a machine learn-
ing (ML) model can predict sensitive attribute values from a given sanitized
dataset. But, they consider all types of inferences as privacy breaches. More
precisely, their framework tests, for every record, whether the ML model can
predict the true value of the sensitive attribute. If the ML model succeeds
to predict the true value (what they call “empirical utility”), then the san-
itization technique does not pass the test. Note that the framework does
not consider whether the prediction was obtained from the record of the
target individual (that was somehow poorly sanitized) or from the records
of other users (that happen to be correlated with the target individual).
By contrast, we propose a framework that does not consider data utility
(i.e., ignores the accuracy of inferences in absolute sense), but instead tests
whether an inference is private (depends on the target individual) or public.
In our framework, a dataset is deemed “well-sanitized” if it can be shown
that, for any user, the resulting inferences based on this dataset do not
depend on the contribution of a single user but on the contribution of all
users together: the inference accuracy should not change too much whether
the user’s record is included or not in the dataset. Such a dataset protects
against “private” inferences while still allowing “public” inferences.

Recently, [1] and [6] have proposed statistical techniques to identify the
violations of differential privacy. Unlike these approaches, our method con-
siders the sanitization technique as a black-box and only requires access to
the sanitized datasets. This can be a favorable feature if the sanitization
schemes are proprietary and their exact operations are not published. Also,
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our testing procedure is more general as it can be applied beyond differential
privacy.

Pyrgelis et al. [19] used machine learning for membership inference on
aggregated location data. They build a single binary classifier to predict a
given individual’s presence in the sanitized data. By contrast, we follow a
more general approach and measure how much the inference of a particular
sensitive information/attribute is affected by a single individual’s data us-
ing a specified distance measure. For this purpose, we build two classifiers;
one which predicts the sensitive attribute using all the sanitized dataset and
another one which uses the sanitized data excluding the individual’s data,
then report the difference between the output of these classifiers according
to the chosen distance measure. Of course, we can easily turn our approach
into membership inference by combining the output of the two models into a
single binary classifier to infer membership. However, the choice of different
distance measures allows to incorporate different privacy requirements into
our framework which makes our approach more general. For instance, mem-
bership may be already publicly known, but not some sensitive attributes.

2.2 Differential Inference Testing vs. Differential Privacy

Our approach is inspired by differential privacy [7]. Indeed like differential
privacy, it guarantees that the inferences one can derive from a sanitized
dataset are similar, whether or not the record of a certain individual is
included. However it differs from differential privacy in several aspects:

• Our approach provides a method to measure the robustness of san-
itized datasets, and to compare different sanitizations of the same
dataset. Differential privacy, on the other hand, is a property of the
sanitization scheme and not of the sanitized dataset.

• For differential privacy to hold, the sanitization must be done proba-
bilistically (typically, by adding controlled noise to the answer to the
query). Our approach, on the contrary, can also be applied to deter-
ministic techniques, such as k-anonymity [20] and `-diversity [18], as
well as to probabilistic ones.

• The possible inferences one can make in differential privacy are strictly
related to the query for which the mechanism is defined without any
further restrictions on how the inference model is built. In our case
the inferences are produced by a machine learning algorithm, which
constitutes a parameter of the framework.

• In differential privacy the metric used to compare the inferences in the
dataset with and without a certain individual is fixed and based on the
upper bound to the likelihood ration. In our setting, the comparison
is based on a parametric notion of distance between distributions.
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• Differential privacy relies on tedious and error-prone analytical analy-
ses of the privacy guarantee, while our approach uses easy-to-implement
empirical evaluation of a very similar (but weaker) guarantee [1, 16].
This also makes different sanitizations of the same dataset comparable
within our framework.

3 Differential Inference Testing

In this section, we introduce the notion of indifferentiability (Section 3.1),
then we propose a testing procedure in order to evaluate the indifferentia-
bility of a given sanitized dataset against a certain inference model (Sec-
tion 3.2).

3.1 Model

Given a sanitized dataset, our approach tests whether the inference of some
sensitive attribute(s) is influenced by the presence of any single individual
in the dataset. If the “amount” of this influence is large, then the infer-
ence leaks some private information, i.e., any information that potentially
differentiates the individual from the rest. In this case, the dataset is not
sanitized properly. Conversely, smaller influence indicates stronger saniti-
zation. In order to measure such an influence, we propose the notion of
δ-indifferentiability defined in Definition 1. Without loss of generality, we
express the sensitive attribute(s) to be inferred using a single attribute S,
which can be any function of other attributes. Note that, the explicit dis-
tinction between quasi and sensitive attributes is only for demonstration
purposes. Moreover, we assume that the contribution of every individual i
to D is a single record (qi, si) where qi represents his quasi-identifiers and
si represents his sensitive value.

Definition 1 (Indifferentiability) Let D be a dataset (Q,S) where Q is
a tuple of quasi-identifiers and S is a sensitive attribute. Let D−i denote the
dataset obtained from D by removing the record (qi, si) of individual i. Let
A be a (possibly randomized) inference algorithm, and let f be a sanitization
technique. Let Mf(D) and Mf(D−i) denote the random variables describing
the output of the modelsMf(D) andMf(D−i) which are built according to A
respectively using f(D) and f(D−i) to provide each, given a quasi-identifier
tuple from Q, a prediction distribution over the domain of the attribute S.
We say that f(D) is δ-indifferentiable with respect to A, if we have that

∀(qi, si) ∈ D, distance
(
Mf(D),Mf(D−i)

)
≤ δ

where distance is a statistical distance measure.
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Somewhat abusing the notation, M denotes both the model and the
random variable describing its output henceforth.

The evaluation of the sanitized dataset f(D) depends on the value of δ.
If δ is small enough (depending on the case study) then, for every individual
i in D, the inference about i’s sensitive value does not strongly depend on
the i’s record (i.e., public inference). On the other hand, for larger δ’s,
there may exist i’s in D such that the inference about the i’s sensitive value
depends on the i’s record (private inference).

Definition 1 does not consider any external knowledge about i or D,
however, it can be generalized in a straightforward way to capture any such
possible knowledge. For instance, in case of Bayesian inference, auxiliary in-
formation can be used to compute the prior probabilities, and thus favorizing
one value of the sensitive attribute over the others.

The inference algorithm A represents the adversarial strategy to pre-
dict/infer the value of the sensitive attribute. The choice of inference algo-
rithm A depends on the case study and is a task of the analyst. Indeed,
the differentiability δ of sanitized dataset f(D) depends on the considered
inference algorithm A. In this paper, we use Bayesian inference as an in-
ference algorithm for it is simplicity and popularity. Note that, the aim
of our framework is not to accurately predict any sensitive attribute but
rather to measure the impact of a single record on the inference of sensitive
information.

We note thatMf(D) andMf(D−i) belong to the same model family since
they are built using the same algorithm A. For instance, ifMf(D) is a neural
network then Mf(D−i) is also a neural network with the same architecture
and with the same hyper parameters, but with potentially different model
parameters as they are trained using two different training datasets f(D)
and f(D−i). In the rest of the paper, we may use M and M−i to refer to
Mf(D) and Mf(D−i), respectively. Definition 1 assumes that the output of
a model M is a vector of probability values, i.e., a prediction distribution
on the possible values of the sensitive attribute. Specifically, if there are n
possible sensitive values s1, . . . , sn, then for some record (qi, si), M(qi) =
{(s1, pi1), . . . , (sn, pin)} where pij denotesM’s confidence that si = sj . In the
rest of the document, we refer to the number of possible sensitive values
by n, and we write M(qi) = (pi1, . . . , p

i
n) when the related sensitive values

are clear from the context. Similarly for model M−i, we write M−i(qi) =
(p−i1 , . . . , p−in ).

Finally, distance denotes a distance measure (such as total variation dis-
tance, KL-divergence, etc.) chosen by the analyst. The choice of distance
should depend on the privacy requirements, and it fundamentally impacts
the result of our approach.
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3.2 Testing Procedure

We propose a procedure to find, given a sanitized dataset f(D) and an infer-
ence algorithm A, the minimal distance δ such that f(D) is δ-indifferentiable
with respect to A (that is the the minimal δ that satisfies Definition 1). In
order to perform the test, one should also have access to f(D−i) for every
(qi, si) ∈ D. Nevertheless, the sanitization technique f itself is not needed
by our testing procedure. The testing procedure runs through the following
steps:

1. Choose a record (qi, si) ∈ D for some individual i.

2. Use A to build two models M and M−i respectively using datasets
f(D) and f(D−i). For example, in the case where A is a machine
learning algorithm, then f(D) and f(D−i) will act as training datasets.

3. Provide qi as an input to the modelM. The output ofM takes values
from the set of all prediction distributions which corresponds to an n-
dimensional simplex in Rn (i.e.,M(qi) = (pi1, . . . , p

i
n) over the domain

of the sensitive attribute S, where
∑n

j=1 p
i
j = 1).

4. Repeat the last step forM−i whose output also takes values from the
set of all prediction distributions (i.e., M−i(qi) = (p−i1 , . . . , p−in ) over
the domain of the sensitive attribute S, where

∑n
j=1 p

−i
j = 1).

5. Compute the distance d i = distance(M,M−i).

6. Repeat Steps 1-5 for every individual i in D.

7. Return the maximal distance d i for every i ∈ D, as δ.

The outputs of M and M−i can be described by random variables
whose output range is the n-dimensional simplex in Rn. Indeed, the sani-
tization algorithm f is a possibly randomized black-box mechanism, which
means that the output distributions of Mi and M−i can only be approxi-
mated by sampling. However, sampling from the n-dimensional simplex is
not scalable if n is large and/or there are many records in D. Hence, in
this paper, we rely on the following simplification; we approximate the dis-
tribution of every coordinate of the prediction distribution independently,
and compare the approximated distributions of the corresponding coordi-
nates. More precisely, for every 1 ≤ j ≤ n, let P ij and P−ij denote the

random variables describing the values of pij and p−ij , respectively. Then,

distance(M,M−i) =
∑n

j=1 div(P ij ,P
−i
j ), where div is a distance measure (or

divergence) between distributions. In this paper, we use the 1st Wasser-
stein distance (or Earth Mover’s Distance, shortly EMD) as such a distance
measure, that is, div(P ij ,P

−i
j ) = EMD(P ij ,P

−i
j ) = infπ

∫
R
∫
R |x − y|dπ(x, y),
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where the infimum is taken over all probability measures π on R × R with
marginals P ij and P−ij . Intuitively, EMD measures how far one has to move

the probability mass of P ij to turn it into P−ij , where ”farness” between the

values of P ij and P−ij is measured by their absolute distance2. We approxi-

mate the empirical measures of P ij and P−ij and compute the EMD between

these empirical measures (see [2] for details). In particular, if xi1, . . . , x
i
N

and x−i1 , . . . , x−iN denote the samples taken from the distributions of P ij and

P−ij , respectively, then EMD(P ij ,P
−i
j ) can be approximated by:

EMD(P̂ ij , P̂−ij ) =
1

N

N∑
k=1

|xi(k) − x
−i
(k)| (1)

where P̂ ij and P̂−ij denote the empirical measures of P ij and P−ij , respec-

tively, and xi(k) denote the kth order statistic (kth smallest value) of samples

xi1, . . . , x
i
N (analogously to x−i(k)).

We use EMD as it makes randomized and deterministic sanitizations
comparable in our framework. In particular, the uncertainty of the adver-
sary has two sources; one is measured deterministically by the inference al-
gorithm and represented by the prediction confidences of each sensitive value
in its output. The second source of uncertainty stems from the ”artificially”
introduced perturbation in the sanitization process (e.g., by the Laplace
Mechanism in differential privacy) which induces a probability distribution
on these (deterministic) confidences. Unlike traditional divergences like to-
tal variation distance or the max-ratio distance used in differential privacy,
EMD also considers the value of the inference algorithm’s output and not
only the distribution of these values.

Example. Consider the dataset presented in Table 1a. It has two quasi-
identifier attributes: “Age” (an integer) and “Gender” (M:Male or F:Female),
and a sensitive attribute: “Disease” which can take two values (Flu and
Cancer). Table 2 represents a 2-anonymous version of this dataset (as every
record is syntactically indistinguishable from at least another record consid-
ering their quasi-identifiers)3.

Let i denote the individual that corresponds to record 4 from Table 1a.
If we know that i is a 53 years old male, then we can infer from Table 2a the
following prediction distribution about his disease: Pr[Flu | (53,M)] = 2

3
and Pr[Cancer | (53,M)] = 1

3 , i.e., M(q4) = {(Flu, 23), (Cancer, 13)}, as
(53,M) belongs to the second equivalence class of Table 2a which is composed
of the last three records (Step 3). Notice that we used a very simple inference
algorithm A here for simplicity (i.e., computing the probability of a sensitive

2EMD permits different “farness” measures other than the absolute difference |x− y|.
We chose this metric due to its simplicity and fast computation.

3In our example, the sanitization technique f is k-anonymity [20].
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Table 1: Original dataset, and related result.

(a) Dataset.

# Age Gender Disease

1 28 M Flu

2 36 M Flu

3 47 F Cancer

4 53 M Flu

5 72 F Flu

(b) M(qi), M−i(qi), and d i.

# M(qi) M−i(qi) d i

1 (1, 0) (1/2, 1/2) 1

2 (1, 0) (1/2, 1/2) 1

3 (2/3, 1/3) (1, 0) 2/3

4 (2/3, 1/3) (1/2, 1/2) 1/3

5 (2/3, 1/3) (1/2, 1/2) 1/3

value conditioned on the values of all the quasi-identifiers), though one can
use any sophisticated inference model in practice.

Now, if we remove the 4th record from the original dataset (Table 1a)
then apply 2-anonymity we obtain Table 2b. It is important to remove the
record from the original dataset before applying sanitization again. Hence,
the new sanitized dataset f(D−4) (after removing the record) can be differ-
ent from the first sanitized dataset f(D) (obtained by sanitizing the whole
original dataset). The prediction distribution after removing the 4th record
is M−i(q4) = {(Flu, 12), (Cancer, 12)} (Step 4).

Finally, considering EMD distance, then d i = distance(M4,M−4) =

distance(M(q4),M−i(q4)) =
∑n

j=1

∣∣∣p4j − p−4j ∣∣∣ = 1
3 (Step 5) sinceM(q4) and

M−i(q4) are the only possible output ofM andM−4, respectively (i.e., the
sanitization scheme is deterministic). After repeating the previous steps for
every record in the dataset (Step 6), the maximal distance δ = max

i∈D
d i can

be computed (that is the the minimal distance that satisfies Dentition 1),
which is δ = 1 = max{1, 1, 23 ,

1
3 ,

1
3} in our example. Table 1b depicts the

distributions M(qi),M−i(qi) and the distance di for every record i in the
dataset of Table 1a.

Notice that using a different distance metric the results can completely
change. For example, if distance denotes the total variation distance (TVD),
then distance(M4,M−4) = distance(M(q4),M−i(q4)) = 1 + 1 = 2 which
suggests that the data is blatantly non-private as distance(Mi,M−i) ≤ n
for any i.

4 Evaluation

4.1 Datasets

We demonstrate our approach using two datasets: the UCI Adult (Census
Income) dataset4 and the “General Demographics” dataset from Internet

4https://archive.ics.uci.edu/ml/datasets/Adult
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Table 2: 2-anonymous versions of Table 1a.

(a) f(D) (with i = 4).

# Age Gender Disease

1 < 45 M Flu

2 < 45 M Flu

3 ≥ 45 {M, F} Cancer

4 ≥ 45 {M, F} Flu

5 ≥ 45 {M, F} Flu

(b) f(D−4) (without i = 4).

# Age Gender Disease

1 < 45 M Flu

2 < 45 M Flu

3 ≥ 45 {M, F} Cancer

5 ≥ 45 {M, F} Flu

Usage data5. Table 3 summarizes, for each dataset, its size (|D|), number
of distinct record (|D†|), quasi-identifiers (QI), and sensitive attribute (SA)
as well as the number of values that SA can take (n).

Table 3: Datasets description.

Dataset Adult Internet Usage

|D| 10,000 9,799

|D†| 7,960 7,049

QI

“age”, “education” “age”, “race”
“marital status” “education attainment”
“hours per week” “major occupation”
“native country” “marital status”

SA “occupation” “household income”

n 14 9

4.2 Sanitization

For sanitization techniques, we consider the basic Mondrian k-anonymity [10],
Mondrian `-diversity [11], and data perturbation required to satisfy differ-
ential privacy [7].

4.2.1 k-anonymity and `-diversity

The Mondrian sanitization algorithm modifies the records by generalizing
the quasi-identifiers until each record becomes syntactically indistinguish-
able from k − 1 other records (k-anonymity), or the correct sensitive value
of any individual cannot be predicted with probability more than 1/` (`-
diversity)6. After being generalized, the data is then published with the
related sensitive values.

5http://www.cc.gatech.edu/gvu/user_surveys/survey-1997-10
6Using only f(D) as a background knowledge for inference.
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4.2.2 Differential Privacy

As for differential privacy, noisy statistics of the microdata are computed
which are then used to compute the prediction distribution of each record.
In particular, contrary to k-anonymity and `-diversity, differential privacy
provides weak utility when it is directly applied on microdata. Instead of
generating sanitized microdata, the differentially private prediction distribu-
tions M(qi) and M−i(qi) are directly computed from the original dataset,
and these distributions are compared in Step 5 of the Differential Inference
Test described in Section 3. In other words, our differential private saniti-
zation technique f is coupled with a simple inference algorithm A that we
describe below.

The sanitization technique f consists of releasing the perturbed condi-
tional probabilities Pr[s|q] for all sensitive attribute value s and value of
quasi-identifier tuple q. These conditional probabilities are directly used as
the prediction distributions M(qi) and M−i(qi) in our Differential Infer-
ence Test (see Section 3). Specifically, in order to obtain the differential
private prediction distributions M(qi) and M−i(qi) for a quasi-identifier
tuple qi = (qi1, . . . , q

i
m), we compute

Pr[sk|qi] =
Pr[sk, q

i]

Pr[qi]
(2)

In Eq. (2), we calculate the joint probability Pr[sk, q
i] as

Pr[sk, q
i] =

Cik∑
i

∑
k Cik

(3)

and the marginal probability Pr[qi] as

Pr[qi] =
∑
k

Pr[sk, q
i] (4)

where Cik = 1 + max(0, |{(q, s) ∈ D : q = qi ∧ s = sk}| + noise) and the
noise is drawn from the Laplacian distribution L(0, 1/ε) with zero mean and
variance 2/ε2. This perturbation technique is also referred to as the Laplace
Mechanism in the literature of differential privacy7. Note that the addition
of 1 to Cik is the standard Laplacian correction in order to avoid zero value
of the denominator in Eq. (3).

The privacy guarantee of differential privacy comes from the randomness
of the Laplace Mechanism; if the variance of the added noise is larger, we
have stronger guarantee (i.e., smaller ε), and the reverse direction holds for
small variance. Differential privacy is formally defined in Definition 2.

7The scale parameter of the Laplace noise is adjusted to the global sensitivity of the
counts Cik which is 1 in our application.
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Definition 2 (ε-differential privacy [7]) A sanitization algorithm f guar-
antees ε-differential privacy if for any database D and D′, differing on
at most one record, and for any possible output O ⊆ Range(f), e−ε ≤
Pr[f(D)∈O]
Pr[f(D′)∈O] ≤ e

ε.

In our case, the range of f is the space of all prediction distributions
(i.e., vectors from an n-dimensional simplex), and an output O of f is a
random vector from this space.

4.3 Pre-processing

Many sanitization techniques (such as Mondrian) generalize the attribute
values according to a specific generalization hierarchy. In order to feed the
learning algorithm with generalized data in our experiments, we use an en-
coding mechanism that is relative to the target record selected in Step 1 of
our testing procedure (see Section 3.2) and works as follows: a generalized
quasi-attribute value q′ (e.g., an interval or set) is represented by 1, if the
corresponding quasi-attribute value q′′ of the target record can also be gen-
eralized to q′ (i.e., q′′ is inside q′ if q′ is an interval, or q′′ is a member of q′

if it is a set). Otherwise, q′ is represented by 0.
For example, consider the two generalized records:

r1 = ([15, 25],Female, {France,Germany})
r2 = ([17, 20],Male, {Italy,Germany})

Assuming that the target record, which is selected in the first step of our
testing procedure, is rt = (16,Male,France), then r1 and r2 will be encoded
as follows: encode(r1, rt) = (1, 0, 1) because 16 ∈ [15, 25], Male 6= Female,
and France ∈ {France,Germany}. Similarly, encode(r2, rt) = (0, 1, 0) be-
cause 16 /∈ [17, 20], Male = Male, and France /∈ {Italy,Germany}.

An advantage of this encoding technique is that it depends on the target
record which will be used as an input for the inference model. This may
increase the sensitivity to the presence of the target record in the dataset,
and thus help to better capture the difference between the two intended
distributions. Another advantage of this approach is that it is very fast to
compute and has to be done only once for each record (other approaches
may require different encodings of the same record for the computation of
M and M−i). Nevertheless, any encoding mechanism can be used in our
framework as long as the encodings of each record is sufficiently different
from that of the target record.

13



4.4 Differential Inference Test

4.4.1 Inference algorithm

For the purpose of inference A and the computation of the prediction dis-
tributionsM(qi) andM−i(qi), we use a Naive Bayes classifier8. in the case
of k-anonymity and `-diversity, and the noised conditional probabilities in
Eq. (3) in the case of differential privacy. In both cases, the inference al-
gorithms use the encoded sanitized data to build the models M and M−i.
The Naive Bayes classifier has been used by several prior works [3, 4, 12]
to perform inference on sanitized data. Although Naive Bayes makes the
simplistic assumption that the quasi-identifiers are independent, it usually
performs remarkably well, especially when the size of the training dataset is
not so large.

After choosing the encoding mechanism and the inference algorithm, we
proceed according to the Differential Inference Test described in Section 3.2:
for every record ri in the dataset, we train a model M where D includes
ri, and also train another model M−i where D−i excludes ri. Then, the
corresponding two prediction distributions ofM andM−i are approximated
by sampling, and the distance d i = distance(M,M−i) is computed for every
i. Finally, we obtain the minimal distance δ that satisfies Dentition 1, i.e.,
δ = max

i∈D
d i. In what follows, “minimal δ” refers to the minimal distance δ

that satisfies Dentition 1.
We emphasize that the (in)differentiability of a sanitized dataset depends

on the inference algorithm A, which represents the adversarial algorithm to
infer sensitive information from the dataset. This is in stark contrast to dif-
ferential privacy, which provides the same guarantee (i.e., the same ε value)
against all inference algorithms. On the other hand, (in)differentiability
(in Definition 1) can be empirically evaluated unlike differential privacy (in
Definition 2) which relies on analytical evaluation that is often tedious and
error-prone.

4.5 Results

4.5.1 k-anonymity and `-diversity

Adult Dataset Figure 1 depicts the minimal δ (that satisfies Dentition 1
in the case of Adult dataset) depending on the privacy parameter (k or
`). The cases of k = 1 and ` = 1 implies the absence of sanitization, i.e.,
the testing procedure is applied directly on the original data without any
sanitization.
From Figure 1, we can notice that:

8We use the Bernoulli Naive Bayes from the sklearn python module http://

scikit-learn.org/stable/index.html.
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Figure 1: Minimal δ (Adult data).

• δ is smaller for `-diversity than for k-anonymity when k and ` have
identical values. This is expected as, unlike k-anonymity, `-diversity
was designed to mitigate inference attacks, though not the same type
of inference that we measure in our approach. Specifically, `-diversity
addresses the absolute accuracy of inferences, where privacy breach
occurs if the sensitive attribute of an individual can be inferred with
too large accuracy. By contrast, we focus on the relative accuracy
of inferences, i.e., the difference in inference accuracy caused by the
inclusion/exclusion of an individual’s record.

• δ decreases when the privacy parameter (k or `) increases, however
not monotonically. For instance, counterintuitively, the minimal δ
increases when k increases from 8 to 16 and when ` increases from 2
to 3.

The second observation above shows that increasing the value of the privacy
parameter may decrease the privacy guarantees against private inferences
for some individuals (worst-case privacy), even if the guarantees on average
(average-case privacy) can be stronger. In particular, Figure 2 presents the
Cumulative Distribution Function (CDF) of d i. The CDF is the sum of the
relative frequencies for all values that are less than or equal to the given
value of d i. Figure 2 shows that, for both k-anonymity and `-diversity, the
majority of d i values are smaller for larger k or `. The CDF illustrates
the level of the average-case privacy, which increases if the value of the
privacy parameter also increases (as one could expect for k-anonymity and
`-diversity). This emphasizes the fact that average-case privacy, which is
usually adopted by companies and governments’ regulations, does not always
imply worst-case privacy, which is considered in our framework. Indeed,
Dentition 1 has to be satisfied for every record in the dataset.

A closer investigation reveals that there are only few outlier records with
large value of d i when ` = 3 or k = 16. For example, when ` = 3, there is
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only one record ri whose d i value is greater than 10−1 (for this record, d i =
0.21), which is the minimal δ in this case. Similarly, for 16-anonymity, there
are only 3 outlier records which have much larger d i values than others.

In order to achieve stronger sanitization (smaller δ), we remove the out-
lier records identified above from the original dataset, then repeat the entire
testing procedure to compute a new value of minimal δ (remember that it is
not sufficient to remove the outlier records only from the sanitized dataset).
For ` = 2, we obtain the following new values of minimal δ: 0.165 for ` = 2
and 0.092 for ` = 3, what one naturally expects when ` increases.
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Figure 2: CDF of d i (Adult data).

Internet Usage Dataset Figures 3 and 4 present the minimal δ and the
CDF of d i, respectively, for the Internet Usage dataset. The results confirm
the conclusion that average-case guarantees against private inferences often
differs from the worst-case guarantees in practice due to the existence of
a few outlier records with much worse privacy guarantee than the average.
However, on average, increasing the privacy parameters k and ` results in
stronger guarantee against private inferences using the Mondrian sanitiza-
tion scheme.

4.5.2 Differential Privacy

Adult Dataset Figure 5 presents the CDF and δ for the Adult dataset
in the case of differential privacy (DP). We quantized the “age” and “hours
per week” attributes, each, into 5 quantiles. This results into 2952 distinct
records (instead of 7960) out of 10K records. ε =∞ corresponds to the case
when no Laplace noise is added to the counts in Eq (2).

We performed N = 25K samples per record in order to have an esti-
mate of the prediction distribution for every individual. From these noisy
predictions, we can compute the minimal δ (in Figure 5a) as it is described
in Section 3.2. The minimal δ curve shows that smaller ε indeed yields
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Figure 3: Minimal δ (Internet Usage data).
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Figure 4: CDF of d i (Internet Usage data).

stronger protection, for every individual, against private inferences, as δ is
monotonically decreasing with ε as one would expect.
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Figure 5: CDF and δ (DP, Adult data, N = 25K).
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Internet Usage Dataset Figure 6 presents the CDF and δ for the In-
ternet Usage dataset. Again, we have quantized the “age” attribute into 5
quantiles. This results into 2926 distinct records (instead of 7049) out of
9799 records.
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Figure 6: CDF and δ (DP, Internet Usage data, N = 25K).

The CDF and minimal δ curves (in Figure 6) show similar trends to
the Adult dataset and confirm our observation that, for every individual,
smaller ε yields stronger protection against private inferences.

Finally, we note that, for both datasets, the values of δ are smaller for k-
anonymity and `-diversity on average than for differential privacy (Figures 1,
3, 5, and 6). Hence, differential privacy even with ε = 0.1 may provide
weaker protection on average against private inferences if we use the EMD
distance measure defined in Eq. (1), but it is worst-case guarantee is superior
to k-anonymity and even to `-diversity if ` < 5.

4.5.3 Computation time

All the experiments that are presented above were conducted on a machine
with a 2.6 GHz Intel Core i7 Processor and 16 GB RAM. Table 4 summarizes
the average computation time of the differential inference test per privacy
parameter (excluding the raw data case, i.e., where k = ` = 1 and ε =
∞). Note that the computation can be substantially improved since the
sanitizations of the dataset (per user) are highly parallelizable.

Table 4: Average computation time.

Dataset k-Anonymity `-Diversity Differential Privacy

Adult data 60m 24s 76m 6s 5h 41m 51s

Internet data 47m 30s 50m 12s 4h 23m 22s
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5 Conclusion

This paper presents an inference-based framework to evaluate the effective-
ness of sanitization performed on a given dataset. In particular, we empiri-
cally measured how the sanitized dataset prevents the private inferences of
sensitive attribute values. We demonstrated the usage of this framework on
two datasets. Our framework allows to compare different sanitized datasets
that might use different privacy models, such as k-anonymity, `-diversity or
differential privacy. It can potentially be employed by companies or DPAs
(Data Protection Authorities) to test the robustness of sanitized datasets.
It is important to note that our solution tests the robustness of sanitized
datasets, not that of the underlying sanitization technique.

Our case study shows that `-diversity and k-anonymity can provide
stronger average protection against private inferences in our framework than
differential privacy if ε is chosen to be too large. This result should be han-
dled with caution, since these techniques have quite different adversary mod-
els and some attacks which are hard to be modeled using a machine learn-
ing algorithm in our framework can have devastating effect on `-diversity
and k-anonymity yet still difficult to launch against a differentially private
dataset [9]. In particular, our model considers only a specific adversar-
ial inference attack as well as some potentially defined extra background
knowledge of the adversary. We also showed that increasing the value of k
and ` results in stronger protection on average, but can also entail weaker
worst-case guarantee when each individual is considered.

We believe that there is a need for a toolkit to test the robustness of
sanitized datasets by implementing different re-identification or inference
attacks. Our framework could be one component of such a toolkit. One
benefit of the proposed testing tool is that the sanitized dataset is analyzed
as a “black box”, i.e. the sanitization algorithm does not need to be pub-
lished. It is enough for the verifier to get access to an oracle that, given a
dataset, outputs its sanitized version. We believe this is a desirable prop-
erty for at least two reasons: (i) many companies are unwilling, for different
reasons, to publish their sanitization algorithms, and (ii) the verifier does
not need to go through the difficulty of understanding and analyzing the
underlying algorithm.

In the proposed framework, the verifier can use his favorite inference
models. This paper uses a Naive Bayes classifier, but other classifiers could
be used. Evaluating our framework with other classifiers is part of our future
work.
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