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1 INTRODUCTION
Location-Based Services (LBSs) provide invaluable assistance in
our everyday activities, however they also pose serious threats to
our privacy. Location data can, in fact, expose sensitive aspects
of the user’s private life, see for instance [4]. There is, therefore,
a growing interest in the development of mechanisms to protect
location privacy during the use of LBSs. Most of the approaches in
the literature are based on perturbing the user’s location, see, for
instance, [1, 2, 5, 6]. Obviously, the perturbation must be done with
care, in order to preserve the utility of the service.

Nowadays, the most popular methods (including all those men-
tioned above) are probabilistic, in the sense that the perturbation is
done by adding noise according to some probability distribution. In-
deed, it is generally recognized that probabilistic mechanisms offer
a better trade-off between privacy and utility. In this abstract we
focus on the approach proposed in [6], which achieves an optimal
trade-off by using linear optimization techniques. The idea is to
express the desired level of privacy in the form of linear constraints,
and the utility as the objective (linear) function to optimize.1 The
variables of the linear program are the conditional probabilities of
reporting a location y when the real one is x , and their values, once
computed, completely define the mechanism.

We consider the notion of privacy proposed in [1], called geo-
indistinguishability. A mechanism provides geo-indistinguishability
if the probability of reporting a location y when the real location is
x is “almost the same” as that of every other location x ′ at a distance
d(x ,x ′) from x , where “almost the same” means that the ratio of
the probabilities is bound by exp(ε · d(x ,x ′)), with ε being the level
of privacy we want to obtain per unit of distance. Formally:

P(y | x) ≤ exp(ε · d(x ,x ′)) · P(y | x ′) (1)

Intuitively, this means that x is “ε · ℓ-indistinguishable” from the
other locations x ′ which are at distance at most ℓ from x , where ε
represents the level of indistinguishability that we want to achieve
per unit distance. As explained in [1], geo-indistinguishability is
based on (an extended form of) differential privacy [3], and it inher-
its its appealing properties. Notably, the robustness with respect

1In [6] the authors fix the utility and optimize privacy. We do the reverse as our notion
of privacy can only be expressed as a set of constraints, not as an objective function.
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to composition, the independence from the prior, and a natural
interpretation in terms of Bayes adversaries.

For the utility lossU we use a rather general notion, namely the
expected distance between the real location and the reported loca-
tion. This is a function of the prior distribution on the locations π ,
and of the conditional probabilities that determine the mechanism:

U(P ,π ) =
∑
x,y

π (x) · P(y | x) · d(x ,y) (2)

As explained above, the optimal values P(y | x) can be deter-
mined by solving a linear program with constraints (1) and objec-
tive function (2). Unfortunately, the number of the constraints (1) is
O(n3), where n is the number of locations. Hence, due to the com-
plexity of linear programming, the method is unfeasible even when
n is relatively small. To get an idea of the dimensions, consider the
Quartier Latin in Paris, which has an area of about 1.5× 1.5 km2. If
we set the size of the locations to be 100× 100m2, we need a grid of
15× 15 = 225 cells to cover the area, which means 2253 constraints!
Reducing the granularity of the grid (i.e., considering larger cells)
is not a solution, because it degrades the meaning of the utility in
(2), as discussed in [2].

2 REDUCING THE SET OF CONSTRAINTS
We now propose a method to reduce the number of constraints of
the linear program to O(n2), thus making the application of the
method feasible for typical cases like the above one. This will be at
the price of some utility loss, i.e., our method will only approximate
the optimal solution. We will see, however, that the loss is quite
acceptable, while the gain in performance is significant.

Let X be the set of locations. Let x0,xk ∈ X, and consider a path
x1, . . . ,xk−1 ∈ X from x0 and xk . Let δ be the smallest number
such that

k−1∑
0
d(xi ,xi+1) ≤ δ · d(x0,xk ) (3)

Note that in general δ ≥ 1 because of the triangular inequality. It is
easy to see that the constraint

P(y | x0) ≤ exp(ε · d(x0,xk )) · P(y | xk ) (4)

is a consequence of all constraints of the form

P(y | xi ) ≤ exp(ε ·d (xi ,xi+1)/δ ) · P(y | xi+1) (5)

for i = 0, . . . ,k − 1. Therefore, it is sufficient to consider a set of
constraints C of the form (5), containing enough elements so to
deduce all original constraints of the form (1). Namely, it is sufficient
ensure that, for every x0,xh ∈ X, there are x1, . . . ,xh−1 ∈ X such
that all constraints (5) are in C, for i = 0, . . . ,h−1. Then, to achieve
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Figure 1: Possible paths between two locations A and B.

Figure 2: Worst-case value of δ as a function of c.

the original level ε of indistinguishability (i.e., of location privacy),
it is sufficient to solve a new linear programwith the same objective
function and set of constraints C. Note that in general the solution
of the new program will give an utility inferior to the original one,
because the constraints in C are stricter (i.e., enforce more privacy,
due to the division by δ ) than the original constraints.

We construct C as follows: For every x ∈ X, we consider all
x ′ ∈ X such that d(x ,x ′) ≤ R, where R is some fixed distance.
Then, for every y ∈ X, we add a constraint of the form (5), where
xi = x and xi+1 = x ′. To make sure that we have enough elements
in C, we assume the following density hypothesis: Let ch(X) be the
convex hull of X (represented as points in the map, for instance, the
centers of the cells). Then:

∀y ∈ ch(X) ∃x ∈ X : d(y,x) ≤ ρ (6)

where ρ is some fixed distance. Note that to connect every pair of
points in X it is necessary and sufficient to have R ≥ 2ρ.

The execution time depends on the cardinality of C, which, for
fixed R, is O(n2) (n being the number of locations in X). The car-
dinality of C is also proportional to R2, so from the point of view
of efficiency it is convenient to keep R as small as possible. On the
other hand, the utility is monotonic on R, hence the choice of R
must take into account the trade-off between efficiency and utility.

The utility loss depends on the expansion factor δ introduced in
(2), which in turn depends on R and ρ. The analysis of the worst-
case for δ can be done by the geometrical construction illustrated
in Figure 1. Given two locations A and B, the lines in red represent
the possible paths between A and B guaranteed by the density
hypothesis (6). Figure 2 shows the graph of the worst-case δ as a
function of the ratio c = R/ρ . (Due to the condition R ≥ 2ρ, δ is
not defined for c < 2.) We note that δ becomes very high when c is
close to 2, but it approximates rapidly the ideal value 1 as c grows.

3 EVALUATION
In this section we evaluate our method and compare with the op-
timal approach. We consider a set of locations disposed along the
intersection points of a grid, and we set the distance u between
two adjacent locations as the unit distance, i.e., all distances will be
expressed in terms of u. The results illustrated in this section are
valid for any value of u. For the example of the Quartier Latin, for
instance, we could consider u = 100 m.

We note that in such grid of locations, ρ = 1/√2. Indeed, the
points at maximum distance from any location are the centers of

the cells, which are at distance 1/√2 from the corners of their cell.
Concerning the prior, we consider a uniform distribution. We also
fix ε = ln 2/2, whichmeans a level of indistinguishability 2 in a radius
of 2u. For instance, for u = 100 m, a user would have protection 2
in a radius of 200 m, i.e., from the point of view of an adversary,
the user’s real location could be no more than twice more likely
than any location within 200 m from it.

We experimented with grids from 8× 8 = 64 up to 15× 15 = 225
locations, and values of c from 2.8 (R = 1.98) to 4.2 (R = 2.97),
using an Intel machine (no TSX) 2VCPUs 2.3 GHz, 4GB RAM. The
resulting computation times and utilities are shown in Figure 3. We
did not evaluate the performance of the optimal method for more
than 169 locations because it was taking too much time: with 169
locations it took 3, 275 minutes (more than 2 days), and with 196
locations it was still running after several days.

We can see that with 225 locations like in the example of the
Quartier Latin, the optimal method would be completely unfeasible.
With our method and c = 2.8 it takes 226 minutes (note that this
computation is just to build the mechanism, so it is done only
once; afterwards, the use of the mechanism is immediate), and the
utility loss is not much higher than that of the optimal method. For
instance, on 169 locations, they are 3.77 and 3.49, respectively.
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Figure 3: Execution time and utility loss.

4 FUTUREWORK
As future work, we plan to improve the bound on δ , use a prior
based on real location data, and compare our method also with the
one based on Laplacian noise and remapping proposed in [2].
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