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Abstract

In this paper, we study deep signal representations that are near-invariant to groups
of transformations and stable to the action of diffeomorphisms without losing signal
information. This is achieved by generalizing the multilayer kernel introduced
in the context of convolutional kernel networks and by studying the geometry
of the corresponding reproducing kernel Hilbert space. We show that the signal
representation is stable, and that models from this functional space, such as a large
class of convolutional neural networks, may enjoy the same stability.

1 Introduction

The results achieved by deep neural networks for prediction tasks have been impressive in domains
where data is structured and available in large amounts. In particular, convolutional neural networks
(CNNs) [14] have shown to model well the local appearance of natural images at multiple scales,
while also representing images with some invariance through pooling operations. Yet, the exact nature
of this invariance and the characteristics of functional spaces where convolutional neural networks
live are poorly understood; overall, these models are sometimes only seen as clever engineering black
boxes that have been designed with a lot of insight collected since they were introduced.

Understanding the geometry of these functional spaces is nevertheless a fundamental question. In
addition to potentially bringing new intuition about the success of deep networks, it may for instance
help solving the issue of regularization, by providing ways to control the variations of prediction
functions in a principled manner. Small deformations of natural signals often preserve their main
characteristics, such as the class label in a classification task (e.g., the same digit with different
handwritings may correspond to the same images up to small deformations), and provide a much
richer class of transformations than translations. Representations that are stable to small deformations
allow more robust models that may exploit these invariances, which may lead to improved sample
complexity. The scattering transform [5, 17] is a recent attempt to characterize convolutional
multilayer architectures based on wavelets. The theory provides an elegant characterization of
invariance and stability properties of signals represented via the scattering operator, through a notion
of Lipschitz stability to the action of diffeomorphisms. Nevertheless, these networks do not involve
“learning” in the classical sense since the filters of the networks are pre-defined, and the resulting
architecture differs significantly from the most used ones.

In this work, we study these theoretical properties for more standard convolutional architectures from
the point of view of positive definite kernels [27]. Specifically, we consider a functional space derived
from a kernel for multi-dimensional signals, which admits a multilayer and convolutional structure
that generalizes the construction of convolutional kernel networks (CKNs) [15, 16]. We show that
this functional space contains a large class of CNNs with smooth homogeneous activation functions
in addition to CKNs [15], allowing us to obtain theoretical results for both classes of models.
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The main motivation for introducing a kernel framework is to study separately data representation
and predictive models. On the one hand, we study the translation-invariance properties of the kernel
representation and its stability to the action of diffeomorphisms, obtaining similar guarantees as the
scattering transform [17], while preserving signal information. When the kernel is appropriately
designed, we also show how to obtain signal representations that are near-invariant to the action of
any group of transformations. On the other hand, we show that these stability results can be translated
to predictive models by controlling their norm in the functional space. In particular, the RKHS norm
controls both stability and generalization, so that stability may lead to improved sample complexity.

Related work. Our work relies on image representations introduced in the context of convolutional
kernel networks [15, 16], which yield a sequence of spatial maps similar to traditional CNNs, but
each point on the maps is possibly infinite-dimensional and lives in a reproducing kernel Hilbert space
(RKHS). The extension to signals with d spatial dimensions is straightforward. Since computing the
corresponding Gram matrix as in classical kernel machines is computationally impractical, CKNs
provide an approximation scheme consisting of learning finite-dimensional subspaces of each RKHS’s
layer, where the data is projected, see [15]. The resulting architecture of CKNs resembles traditional
CNNs with a subspace learning interpretation and different unsupervised learning principles.

Another major source of inspiration is the study of group-invariance and stability to the action of
diffeomorphisms of scattering networks [17], which introduced the main formalism and several proof
techniques from harmonic analysis that were keys to our results. Our main effort was to extend them to
more general CNN architectures and to the kernel framework. Invariance to groups of transformations
was also studied for more classical convolutional neural networks from methodological and empirical
points of view [6, 9], and for shallow learned representations [1] or kernel methods [13, 19, 22].

Note also that other techniques combining deep neural networks and kernels have been introduced.
Early multilayer kernel machines appear for instance in [7, 26]. Shallow kernels for images modelling
local regions were also proposed in [25], and a multilayer construction was proposed in [4]. More
recently, different models based on kernels are introduced in [2, 10, 18] to gain some theoretical
insight about classical multilayer neural networks, while kernels are used to define convex models for
two-layer neural networks in [36]. Finally, we note that Lipschitz stability of deep models to additive
perturbations was found to be important to get robustness to adversarial examples [8]. Our results
show that convolutional kernel networks already enjoy such a property.

Notation and basic mathematical tools. A positive definite kernel K that operates on a set X
implicitly defines a reproducing kernel Hilbert space H of functions from X to R, along with a
mapping ϕ : X → H. A predictive model associates to every point z in X a label in R; it consists of
a linear function f inH such that f(z) = 〈f, ϕ(z)〉H, where ϕ(z) is the data representation. Given
now two points z, z′ in X , Cauchy-Schwarz’s inequality allows us to control the variation of the
predictive model f according to the geometry induced by the Hilbert norm ‖.‖H:

|f(z)− f(z′)| ≤ ‖f‖H‖ϕ(z)− ϕ(z′)‖H. (1)

This property implies that two points z and z′ that are close to each other according to the RKHS
norm should lead to similar predictions, when the model f has reasonably small norm inH.

Then, we consider notation from signal processing similar to [17]. We call a signal x a function
in L2(Ω,H), where Ω is a subset of Rd representing spatial coordinates, and H is a Hilbert space,
when ‖x‖2L2 :=

∫
Ω
‖x(u)‖2Hdu < ∞, where du is the Lebesgue measure on Rd. Given a linear

operator T : L2(Ω,H) → L2(Ω,H′), the operator norm is defined as ‖T‖L2(Ω,H)→L2(Ω,H′) :=
sup‖x‖L2(Ω,H)≤1 ‖Tx‖L2(Ω,H′). For the sake of clarity, we drop norm subscripts, from now on, using

the notation ‖ · ‖ for Hilbert space norms, L2 norms, and L2 → L2 operator norms, while | · | denotes
the Euclidean norm on Rd. Some useful mathematical tools are also presented in Appendix A.

2 Construction of the Multilayer Convolutional Kernel

We now present the multilayer convolutional kernel, which operates on signals with d spatial dimen-
sions. The construction follows closely that of convolutional kernel networks [15] but generalizes it
to input signals defined on the continuous domain Ω = Rd (which does not prevent signals to have
compact support), as done by Mallat [17] for analyzing the properties of the scattering transform; the
issue of discretization where Ω is a discrete grid is addressed in Section 2.1.
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xk–1 : Ω → Hk–1xk–1(u) ∈ Hk–1

Pkxk–1(v) ∈ Pk (patch extraction)

kernel mapping

MkPkxk–1(v) = ϕk(Pkxk–1(v)) ∈ Hk
MkPkxk–1 : Ω → Hk

xk := AkMkPkxk–1 : Ω → Hk

linear pooling
xk(w) = AkMkPkxk–1(w) ∈ Hk

Figure 1: Construction of the k-th signal representation from the k–1-th one. Note that while Ω
is depicted as a box in R2 here, our construction is supported on Ω = Rd. Similarly, a patch is
represented as a squared box for simplicity, but it may potentially have any shape.

In what follows, an input signal is denoted by x0 and lives in L2(Ω,H0), where H0 is typically
Rp0 (e.g., with p0 = 3, x0(u) may represent the RGB pixel value at location u). Then, we build
a sequence of RKHSs H1,H2, . . ., and transform x0 into a sequence of “feature maps” supported
on Ω, respectively denoted by x1 in L2(Ω,H1), x2 in L2(Ω,H2), . . . . As depicted in Figure 1,
a new map xk is built from the previous one xk–1 by applying successively three operators that
perform patch extraction (Pk), kernel mapping (Mk) in a new RKHSHk, and linear pooling (Ak),
respectively. When going up in the hierarchy, the points xk(u) carry information from larger signal
neighborhoods centered at u in Ω with more invariance, as we will formally show.

Patch extraction operator. Given the layer xk–1, we consider a patch shape Sk, defined as a
compact centered subset of Rd, e.g., a box [−1, 1]× [−1, 1] for images, and we define the Hilbert
space Pk := L2(Sk,Hk–1) equipped with the norm ‖z‖2 =

∫
Sk
‖z(u)‖2dνk(u), where dνk is the

normalized uniform measure on Sk for every z in Pk. More precisely, we now define the linear patch
extraction operator Pk : L2(Ω,Hk–1)→ L2(Ω,Pk) such that for all u in Ω,

Pkxk–1(u) = (v 7→ xk–1(u+ v))v∈Sk ∈ Pk.
Note that by equipping Pk with a normalized measure, the operator Pk preserves the norm. By
Fubini’s theorem, we have indeed ‖Pkxk–1‖ = ‖xk–1‖ and hence Pkxk–1 is in L2(Ω,Pk).

Kernel mapping operator. In a second stage, we map each patch of xk–1 to a RKHS Hk with a
kernel mapping ϕk : Pk → Hk associated to a positive definite kernel Kk. It is then possible to
define the non-linear pointwise operator Mk such that

MkPkxk–1(u) := ϕk(Pkxk–1(u)) ∈ Hk.
As in [15], we use homogeneous dot-product kernels of the form

Kk(z, z′) = ‖z‖‖z′‖κk
( 〈z, z′〉
‖z‖‖z′‖

)
with κk(1) = 1, (2)

which ensures that ‖MkPkxk–1(u)‖ = ‖Pkxk–1(u)‖ and that MkPkxk–1 is in L2(Ω,Hk). Concrete
examples of kernels satisfying (2) with some other properties are presented in Appendix B.

Pooling operator. The last step to build the layer xk is to pool neighboring values to achieve some
local shift-invariance. As in [15], we apply a linear convolution operator Ak with a Gaussian kernel
at scale σk, hσk(u) := σ−dk h(u/σk), where h(u) = (2π)−d/2 exp(−|u|2/2). Then,

xk(u) = AkMkPkxk–1(u) =

∫
Rd
hσk(u− v)MkPkxk–1(v)dv ∈ Hk.

Applying Schur’s test to the integral operator Ak (see Appendix A), we obtain that ‖Ak‖ ≤ 1. Thus,
‖xk‖ ≤ ‖MkPkxk–1‖ and xk ∈ L2(Ω,Hk). Note that a similar pooling operator is used in the
scattering representation [5, 17], though in a different way which does not affect subsequent layers.
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Multilayer construction. Finally, we obtain a multilayer representation by composing multiple
times the previous operators. In order to increase invariance with each layer, the size of the patch Sk
and pooling scale σk typically grow exponentially with k, with σk and supc∈Sk |c| of the same order.
With n layers, the final representation is given by the feature map

Φn(x0) := xn = AnMnPnAn–1Mn–1Pn–1 · · · A1M1P1x0 ∈ L2(Ω,Hn). (3)

Then, we can define a kernel Kn on two signals x0 and x′0 by Kn(x0, x
′
0) := 〈Φn(x0),Φn(x′0)〉,

whose RKHSHKn contains all functions of the form f(x0) = 〈w,Φn(x0)〉 with w ∈ L2(Ω,Hn).

The following lemma shows that this representation preserves all information about the signal at each
layer, and each feature map xk can be sampled on a discrete set with no loss of information. This
suggests a natural approach for discretization which we discuss next. For space limitation reasons, all
proofs in this paper are relegated to Appendix C.

Lemma 1 (Signal preservation). Assume thatHk contains linear functions 〈w, ·〉 with w in Pk (this
is true for all kernels Kk described in Appendix B), then the signal xk–1 can be recovered from a
sampling of xk = AkMkPkxk–1 at discrete locations as soon as the union of patches centered at
these points covers all of Ω. It follows that xk can be reconstructed from such a sampling.

2.1 From Theory to Practice: Discretization and Signal Preservation

The previous construction defines a kernel representation for general signals in L2(Ω,H0), which
is an abstract object defined for theoretical purposes, as often done in signal processing [17]. In
practice, signals are discrete, and it is thus important to discuss the problem of discretization, as done
in [15]. For clarity, we limit the presentation to 1-dimensional signals (Ω = Rd with d = 1), but the
arguments can easily be extended to higher dimensions d when using box-shaped patches. Notation
from the previous section is preserved, but we add a bar on top of all discrete analogues of their
discrete counterparts, e.g., x̄k is a discrete feature map in `2(Z, H̄k) for some RKHS H̄k.

Input signals x0 and x̄0. Discrete signals acquired by a physical device are often seen as local
integrators of signals defined on a continuous domain (e.g., sensors from digital cameras integrate the
pointwise distribution of photons that hit a sensor in a spatial window). Let us then consider a signal x0

in L2(Ω,H0) and s0 a sampling interval. By defining x̄0 in `2(Z,H0) such that x̄0[n] = x0(ns0) for
all n in Z, it is thus natural to assume that x0 =A0x, where A0 is a pooling operator (local integrator)
applied to an original signal x. The role of A0 is to prevent aliasing and reduce high frequencies;
typically, the scale σ0 of A0 should be of the same magnitude as s0, which we choose to be s0 = 1 in
the following, without loss of generality. This natural assumption will be kept later in the analysis.

Multilayer construction. We now want to build discrete feature maps x̄k in `2(Z, H̄k) at each
layer k involving subsampling with a factor sk w.r.t. x̄k–1. We now define the discrete analogues of
the operators Pk (patch extraction), Mk (kernel mapping), and Ak (pooling) as follows: for n ∈ Z,

P̄kx̄k–1[n] := e
−1/2
k (x̄k–1[n], x̄k–1[n+ 1], . . . , x̄k–1[n+ ek − 1]) ∈ P̄k := H̄ekk–1

M̄kP̄kx̄k–1[n] := ϕ̄k(P̄kx̄k–1[n]) ∈ H̄k
x̄k[n]=ĀkM̄kP̄kx̄k–1[n] := s

1/2
k

∑
m∈Z

h̄k[nsk −m]M̄kP̄kx̄k–1[m]=(h̄k ∗ M̄kP̄kx̄k–1)[nsk] ∈ H̄k,

where (i) P̄k extracts a patch of size ek starting at position n in x̄k–1[n] (defining a patch centered
at n is also possible), which lives in the Hilbert space P̄k defined as the direct sum of ek times H̄k–1;
(ii) M̄k is a kernel mapping identical to the continuous case, which preserves the norm, like Mk;
(iii) Āk performs a convolution with a Gaussian filter and a subsampling operation with factor sk.
The next lemma shows that under mild assumptions, this construction preserves signal information.

Lemma 2 (Signal recovery with subsampling). Assume that H̄k contains the linear functions 〈w, ·〉
for all w ∈ P̄k and that ek ≥ sk. Then, x̄k–1 can be recovered from x̄k.

We note that this result relies on recovery by deconvolution of a pooling convolution with filter h̄k,
which is stable when its scale parameter, typically of order sk to prevent anti-aliasing, is small enough.
This suggests using small values for ek, sk, as in typical recent convolutional architectures [30].
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Links between the parameters of the discrete and continuous models. Due to subsampling, the
patch size in the continuous and discrete models are related by a multiplicative factor. Specifically, a
patch of size ek with discretization corresponds to a patch Sk of diameter eksk−1sk−2 . . . s1 in the
continuous case. The same holds true for the scale parameter of the Gaussian pooling.

2.2 From Theory to Practice: Kernel Approximation and Convolutional Kernel Networks

Besides discretization, two modifications are required to use the image representation we have
described in practice. The first one consists of using feature maps with finite spatial support, which
introduces border effects that we did not study, but which are negligible when dealing with large
realistic images. The second one requires finite-dimensional approximation of the kernel maps,
leading to the convolutional kernel network model of [15]. Typically, each RKHS’s mapping is
approximated by performing a projection onto a subspace of finite dimension, a classical approach to
make kernel methods work at large scale [12, 31, 34]. One advantage is its compatibility with the
RKHSs (meaning that the approximations live in the respective RKHSs), and the stability results we
will present next are preserved thanks to the non-expansiveness of the projection.

It is then be possible to derive theoretical results for the CKN model, which appears as a natural
implementation of the kernel constructed previously; yet, we will also show in Section 5 that the
results apply more broadly to CNNs that are contained in the functional space associated to the kernel.

3 Stability to Deformations and Translation Invariance

In this section, we study the translation-invariance and the stability of the kernel representation
described in Section 2 for continuous signals under the action of diffeomorphisms. We use a
similar characterization of stability to the one introduced by Mallat [17]: for a C1-diffeomorphism
τ : Ω→ Ω, let Lτ denote the linear operator defined by Lτx(u) = x(u− τ(u)), the representation
Φ(·) is stable under the action of diffeomorphisms if there exist two constants C1 and C2 such that

‖Φ(Lτx)− Φ(x)‖ ≤ (C1‖∇τ‖∞ + C2‖τ‖∞)‖x‖, (4)

where ∇τ is the Jacobian of τ , ‖∇τ‖∞ := supu∈Ω ‖∇τ(u)‖, and ‖τ‖∞ := supu∈Ω |τ(u)|. As
in [17], our results will assume the regularity condition ‖∇τ‖∞ < 1/2. In order to have a translation-
invariant representation, we want C2 to be small (a translation is a diffeomorphism with ∇τ = 0),
and indeed we will show that C2 is proportional to 1/σn, where σn is the scale of the last pooling
layer, which typically increases exponentially with the number of layers n.

Note that unlike the scattering transform [17], we do not have a representation that preserves the
norm, i.e., such that ‖Φ(x)‖=‖x‖. While the patch extraction Pk and kernel mapping Mk operators
do preserve the norm, the pooling operators Ak may remove (or significantly reduce) frequencies
from the signal that are larger than 1/σk. Yet, natural signals such as natural images often have high
energy in the low-frequency domain (the power spectra of natural images is often considered to have
a polynomial decay in 1/f2, where f is the signal frequency [33]). For such classes of signals, a
large fraction of the signal energy will be preserved by the pooling operator. In particular, with some
additional assumptions on the kernels Kk, it is possible to show [3]:

‖Φ(x)‖ ≥ ‖An · · ·A0x‖.
Additionally, when using a Gaussian kernel mapping ϕn+1 on top of the last feature map as a
prediction layer instead of a linear layer, the final representation Φf (x) := ϕn+1(Φn(A0x)) preserves
stability and always has unit norm (see the extended version of the paper [3] for details). This suggests
that norm preservation may be a less relevant concern in our kernel setting.

3.1 Stability Results

In order to study the stability of the representation (3), we assume that the input signal x0 may be
written as x0 = A0x, where A0 is an initial pooling operator at scale σ0, which allows us to control
the high frequencies of the signal in the first layer. As discussed previously in Section 2.1, this
assumption is natural and compatible with any physical acquisition device. Note that σ0 can be taken
arbitrarily small, making the operator A0 arbitrarily close to the identity, so that this assumption does
not limit the generality of our results. Moreover, we make the following assumptions for each layer k:
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(A1) Norm preservation: ‖ϕk(x)‖ = ‖x‖ for all x in Pk;
(A2) Non-expansiveness: ‖ϕk(x)− ϕk(x′)‖ ≤ ‖x− x′‖ for all x, x′ in Pk;
(A3) Patch sizes: there exists κ > 0 such that at any layer k we have

sup
c∈Sk
|c| ≤ κσk−1.

Note that assumptions (A1-2) imply that the operators Mk preserve the norm and are non-expansive.
Appendix B exposes a large class of homogeneous kernels that satisfy assumptions (A1-2).

General bound for stability. The following result gives an upper bound on the quantity of interest,
‖Φ(Lτx)−Φ(x)‖, in terms of the norm of various linear operators which control how τ affects each
layer. The commutator of linear operators A and B is denoted [A,B] = AB −BA.
Proposition 3. Let Φ(x)=Φn(A0x) where Φn is defined in (3) for x in L2(Ω,H0). Then,

‖Φ(Lτx)− Φ(x)‖ ≤
(

n∑
k=1

‖[PkAk−1, Lτ ]‖+ ‖[An, Lτ ]‖+ ‖LτAn −An‖
)
‖x‖ (5)

In the case of a translation Lτx(u) = Lcx(u) = x(u − c), it is easy to see that pooling and
patch extraction operators commute with Lc (this is also known as covariance or equivariance to
translations), so that we are left with the term ‖LcAn − An‖, which should control translation
invariance. For general diffeomorphisms τ , we no longer have exact covariance, but we show below
that commutators are stable to τ , in the sense that ‖[PkAk−1, Lτ ]‖ is controlled by ‖∇τ‖∞, while
‖LτAn −An‖ is controlled by ‖τ‖∞ and decays with the pooling size σn.

Bound on ‖[PkAk−1, Lτ ]‖. We begin by noting that Pkz can be identified with (Lcz)c∈Sk isomet-
rically for all z in L2(Ω,Hk–1), since ‖Pkz‖2 =

∫
Sk
‖Lcz‖2dνk(c) by Fubini’s theorem. Then,

‖PkAk−1Lτz − LτPkAk−1z‖2 =

∫
Sk

‖LcAk−1Lτz − LτLcAk−1z‖2dνk(c)

≤ sup
c∈Sk
‖LcAk−1Lτx− LτLcAk−1z‖2,

so that ‖[PkAk−1, Lτ ]‖ ≤ supc∈Sk ‖[LcAk−1, Lτ ]‖. The following result lets us bound
‖[LcAk−1, Lτ ]‖ when |c| ≤ κσk−1, which is satisfied under assumption (A3).
Lemma 4. Let Aσ be the pooling operator with kernel hσ(u) = σ−dh(u/σ). If ‖∇τ‖∞ ≤ 1/2,
there exists a constant C1 such that for any σ and |c| ≤ κσ, we have

‖[LcAσ, Lτ ]‖ ≤ C1‖∇τ‖∞,
where C1 depends only on h and κ.

A similar result is obtained in Mallat [17, Lemma E.1] for commutators of the form [Aσ, Lτ ], but we
extend it to handle integral operators LcAσ with a shifted kernel. The proof (given in Appendix C.4)
relies on the fact that [LcAσ, Lτ ] is an integral operator in order to bound its norm via Schur’s test.
Note that κ can be made larger, at the cost of an increase of the constant C1 of the order κd+1.

Bound on ‖LτAn−An‖. We bound the operator norm ‖LτAn−An‖ in terms of ‖τ‖∞ using the
following result due to Mallat [17, Lemma 2.11], with σ = σn:
Lemma 5. If ‖∇τ‖∞ ≤ 1/2, we have

‖LτAσ −Aσ‖ ≤
C2

σ
‖τ‖∞, (6)

with C2 = 2d · ‖∇h‖1.

Combining Proposition 3 with Lemmas 4 and 5, we immediately obtain the following result.
Theorem 6. Let Φ(x) be a representation given by Φ(x) = Φn(A0x) and assume (A1-3). If
‖∇τ‖∞ ≤ 1/2, we have

‖Φ(Lτx)− Φ(x)‖ ≤
(
C1 (1 + n) ‖∇τ‖∞ +

C2

σn
‖τ‖∞

)
‖x‖. (7)
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This result matches the desired notion of stability in Eq. (4), with a translation-invariance factor that
decays with σn. The dependence on a notion of depth (the number of layers n here) also appears
in [17], with a factor equal to the maximal length of scattering paths, and with the same condition
‖∇τ‖∞ ≤ 1/2. However, while the norm of the scattering representation is preserved as the length
of these paths goes to infinity, the norm of Φ(x) can decrease with depth due to pooling layers,
though this concern may be alleviated by using an additional non-linear prediction layer, as discussed
previously (see also [3]).

3.2 Stability with Kernel Approximations

As in the analysis of the scattering transform of [17], we have characterized the stability and shift-
invariance of the data representation for continuous signals, in order to give some intuition about the
properties of the corresponding discrete representation, which we have described in Section 2.1.

Another approximation performed in the CKN model of [15] consists of adding projection steps on
finite-dimensional subspaces of the RKHS’s layers, as discusssed in Section 2.2. Interestingly, the
stability properties we have obtained previously are compatible with these steps. We may indeed
redefine the operator Mk as the pointwise operation such that Mkz(u) = Πkϕk(z(u)) for any map z
in L2(Ω,Pk), instead of Mkz(u) = ϕk(z(u)); Πk : Hk → Fk is here a projection operator onto a
linear subspace. Then,Mk does not necessarily preserve the norm anymore, but ‖Mkz‖ ≤ ‖z‖, with a
loss of information corresponding to the quality of approximation of the kernel Kk on the points z(u).
On the other hand, the non-expansiveness of Mk is satisfied thanks to the non-expansiveness of
the projection. Additionally, the CKN construction provides a finite-dimensional representation
at each layer, which preserves the norm structure of the original Hilbert spaces isometrically. In
summary, it is possible to show that the conclusions of Theorem 6 remain valid for this tractable CKN
representation, but we lose signal information in the process. The stability of the predictions can then
be controlled through the norm of the last (linear) layer, which is typically used as a regularizer [15].

4 Global Invariance to Group Actions

In Section 3, we have seen how the kernel representation of Section 2 creates invariance to translations
by commuting with the action of translations at intermediate layers, and how the last pooling layer on
the translation group governs the final level of invariance. It is often useful to encode invariances
to different groups of transformations, such as rotations or reflections (see, e.g., [9, 17, 22, 29]).
Here, we show how this can be achieved by defining adapted patch extraction and pooling operators
that commute with the action of a transformation group G (this is known as group covariance or
equivariance). We assume that G is locally compact, so that we can define a left-invariant Haar
measure µ—that is, a measure on G that satisfies µ(gS) = µ(S) for any Borel set S ⊂ G and g in G.
We assume the initial signal x(u) is defined on G, and we define subsequent feature maps on the
same domain. The action of an element g ∈ G is denoted by Lg, where Lgx(u) = x(g−1u). Then,
we are interested in defining a layer—that is, a succession of patch extraction, kernel mapping, and
pooling operators—that commutes with Lg , in order to achieve equivariance to the group G.

Patch extraction. We define patch extraction as follows

Px(u) = (x(uv))v∈S for all u ∈ G,
where S ⊂ G is a patch centered at the identity. P commutes with Lg since

PLgx(u) = (Lgx(uv))v∈S = (x(g−1uv))v∈S = Px(g−1u) = LgPx(u).

Kernel mapping. The pointwise operatorM is defined as in Section 2, and thus commutes with Lg .

Pooling. The pooling operator on the group G is defined in a similar fashion as [22] by

Ax(u) =

∫
G

x(uv)h(v)dµ(v) =

∫
G

x(v)h(u−1v)dµ(v),

where h is a pooling filter typically localized around the identity element. It is easy to see from the
first expression of Ax(u) that ALgx(u) = LgAx(u), making the pooling operator G-equivariant.
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In our analysis of stability in Section 3, we saw that inner pooling layers are useful to guarantee
stability to local deformations, while global invariance is achieved mainly through the last pooling
layer. In some cases, one only needs stability to a subgroup of G, while achieving global invariance
to the whole group, e.g., in the roto-translation group [21], one might want invariance to a global
rotation but stability to local translations. Then, one can perform pooling just on the subgroup to
stabilize (e.g., translations) in intermediate layers, while pooling on the entire group at the last layer
to achieve the global group invariance.

5 Link with Convolutional Neural Networks

In this section, we study the connection between the kernel representation defined in Section 2 and
CNNs. Specifically, we show that the RKHSHKn obtained from our kernel construction contains
a set of CNNs on continuous domains with certain types of smooth homogeneous activations. An
important consequence is that the stability results of previous sections apply to this class of CNNs.

CNN maps construction. We now define a CNN function fσ that takes as input an image x0 in
L2(Ω,Rp0) with p0 channels, and builds a sequence of feature maps, represented at layer k as a
function zk in L2(Ω,Rpk) with pk channels; it performs linear convolutions with a set of filters
(wik)i=1,...,pk , followed by a pointwise activation function σ to obtain intermediate feature maps z̃k,
then applies a linear pooling filter and repeats the same operations at each layer. Note that here, each
wik is in L2(Sk,Rpk–1), with channels denoted by wijk ∈ L2(Sk,R). Formally, the intermediate map
z̃k in L2(Ω,Rpk) is obtained for k ≥ 1 by

z̃ik(u) = nk(u)σ
(
〈wik, Pkzk–1(u)〉/nk(u)

)
, (8)

where z̃k(u) = (z̃1
k(u), . . . , z̃pkk (u)) in Rpk , and Pk is the patch extraction operator, which operates

here on finite-dimensional maps. The activation involves a pointwise non-linearity σ along with a
quantity nk(u) that is independent of the filters and that will be made explicit in the sequel. Finally,
the map zk is obtained by using a pooling operator as in Section 2, with zk = Akz̃k, and z0 = x0.

Homogeneous activations. The choice of non-linearity σ relies on Lemma B.2 of the appendix,
which shows that for many choices of smooth functions σ, the RKHSsHk defined in Section 2 con-
tains the linear functions z 7→ ‖z‖σ(〈g, z〉/‖z‖) for all g in Pk. While this homogenization involving
the quantities ‖z‖ is not standard in classical CNNs, we note that (i) the most successful activation
function, namely rectified linear units, is homogeneous—that is, relu(〈g, z〉) = ‖z‖relu(〈g, z〉/‖z‖);
(ii) while relu is nonsmooth and thus not in our RKHSs, there exists a smoothed variant that satisfies
the conditions of Lemma B.2 for useful kernels. As noticed in [35, 36], this is for instance the case
for the inverse polynomial kernel described in Appendix B, In Figure 2, we plot and compare these
different variants of relu. Then, we may now define the quantities nk(u) := ‖Pkxk−1(u)‖ in (8),
which are due to the homogenization, and which are independent of the filters wik.

Classification layer. The final CNN prediction function fσ is given by inner products with the
feature maps of the last layer:

fσ(x0) = 〈wn+1, zn〉,
with parameters wn+1 in L2(Ω,Rpn). The next result shows that for appropriate σ, the function fσ
is inHKn . The construction of this function in the RKHS and the proof are given in Appendix D. We
note that a similar construction for fully connected networks with constraints on weights and inputs
was given in [35].
Proposition 7 (CNNs and RKHSs). Assume the activation σ satisfies Cσ(a) < ∞ for all a ≥ 0,
where Cσ is defined for a given kernel in Lemma B.2. Then the CNN function fσ defined above is in
the RKHSHKn , with norm

‖fσ‖2 ≤ pn
pn∑
i=1

‖win+1‖22Bn,i,

whereBn,i is defined recursively byB1,i = C2
σ(‖wi1‖22) andBk,i = C2

σ

(
pk–1

∑pk–1
j=1 ‖w

ij
k ‖22Bk–1,j

)
.

The results of this section imply that our study of the geometry of the kernel representations, and
in particular the stability and invariance properties of Section 3, apply to the generic CNNs defined
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Figure 2: Comparison of one-dimensional functions obtained with relu and smoothed relu (sReLU)
activations. (Left) non-homogeneous setting of [35, 36]. (Right) our homogeneous setting, for
different values of the parameter w. Note that for w ≥ 0.5, sReLU and ReLU are indistinguishable.

above, thanks to the Lipschitz smoothness relation (1). The smoothness is then controlled by the
RKHS norm of these functions, which sheds light on the links between generalization and stability.
In particular, functions with low RKHS norm (a.k.a. “large margin”) are known to generalize better to
unseen data (see, e.g., the notion of margin bounds for SVMs [27, 28]). This implies, for instance, that
generalization is harder if the task requires classifying two slightly deformed images with different
labels, since this requires a function with large RKHS norm according to our stability analysis. In
contrast, if a stable function (i.e., with small RKHS norm) is sufficient to do well on a training set,
learning becomes “easier” and few samples may be enough for good generalization.
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A Useful Mathematical Tools

In this section, we present preliminary mathematical tools that are used in our analysis.

Harmonic analysis. We recall a classical result from harmonic analysis (see, e.g., [32]), which
was used many times in [17] to prove the stability of the scattering transform to the action of
diffeomorphisms.
Lemma A.1 (Schur’s test). LetH be a Hilbert space and Ω a subset of Rd. Consider T an integral
operator with kernel k : Ω× Ω→ R, meaning that for all u in Ω and x in L2(Ω,H),

Tx(u) =

∫
Ω

k(u, v)x(v)dv, (9)

where the integral is a Bochner integral (see, [11, 20]) whenH is infinite-dimensional. If

∀u ∈ Ω,

∫
|k(u, v)|dv ≤ C and ∀v ∈ Ω,

∫
|k(u, v)|du ≤ C,

for some constant C, then, Tx is always in L2(Ω,H) for all x in L2(Ω,H) and we have ‖T‖ ≤ C.

Note that while the proofs of the lemma above are typically given for real-valued functions
in L2(Ω,R), the result can easily be extended to Hilbert space-valued functions x in L2(Ω,H). In
order to prove this, we consider the integral operator |T | with kernel |k| that operates on L2(Ω,R+),
meaning that |T | is defined as in (9) by replacing k(u, v) by the absolute value |k(u, v)|. Then,
consider x in L2(Ω,H) and use the the triangle inequality property of Bochner integrals:

‖Tx‖2 =

∫
Ω

‖Tx(u)‖2du ≤
∫

Ω

(∫
Ω

|k(u, v)|‖x(v)‖dv
)2

du = ‖|T ||x|‖2,

where the function |x| is such that |x|(u) = ‖x(u)‖ and thus |x| is in L2(Ω,R+). We may now apply
Schur’s test to the operator |T | for real-valued functions, which gives ‖|T |‖ ≤ C. Then, noting that
‖|x|‖ = ‖x‖, we conclude with the inequality ‖Tx‖2 ≤ ‖|T ||x|‖2 ≤ ‖|T |‖2‖x‖2 ≤ C2‖x‖2.

The following lemma shows that the pooling operators Ak defined in Section 2 are non-expansive.

Lemma A.2 (Non-expansiveness of pooling operators). If h(u) := (2π)−d/2 exp(−|u|2/2), then
the pooling operator Aσ defined for any σ > 0 by

Aσx(u) =

∫
Rd
σ−dh

(
u− v
σ

)
x(v)dv,

has operator norm ‖Aσ‖ ≤ 1.

Proof. Aσ is an integral operator with kernel k(u, v) := σ−dh((u− v)/σ). By change of variables,
we have ∫

Rd
|k(u, v)|dv =

∫
Rd
|k(u, v)|du =

∫
Rd
h(u)du = 1,

since h is a standard Gaussian and thus integrates to 1. The result follows from Schur’s test.

Kernel methods. We now recall a classical result that characterizes the reproducing kernel Hilbert
space (RKHS) of functions defined from explicit Hilbert space mappings (see, e.g., [23, §2.1]).
Theorem A.1. Let ψ : X → H be a feature map to a Hilbert space H , and let K(z, z′) :=
〈ψ(z), ψ(z′)〉H for z, z′ ∈ X . LetH be the Hilbert space defined by

H := {f = 〈w,ψ(·)〉H , w ∈ H}
‖f‖2H := inf

w∈H
{‖w‖2H , f = 〈w,ψ(·)〉H}.

ThenH is the RKHS associated to kernel K.

A consequence of this result is that RKHS of the kernel Kn(x, x′) = 〈Φn(x),Φn(x′)〉 defined
from the last layer representations Φn(x) ∈ L2(Ω,Hn) introduced in (3) contains functions of
the form f : x 7→ 〈w,Φ(x)〉 with w ∈ L2(Ω,Hn), and the RKHS norm of such a function
satisfies ‖f‖ ≤ ‖w‖L2(Ω,Hn).
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B Choices of Basic Kernels

In this section, we characterize the basic kernels Kk that may be used in the construction of the
multilayer convolutional kernel described in Section 2. We recall here the shape of these kernels,
which operate on a given Hilbert spaceH0. We consider, for z, z′ inH0,

K(z, z′) = ‖z‖‖z′‖κ
( 〈z, z′〉
‖z‖‖z′‖

)
, (10)

which is positive definite when κ admits a Maclaurin expansion with only non-negative coeffi-
cients [24, 27]—that is, κ(u) =

∑+∞
j=0 bju

j with bj ≥ 0 for all j and all u in [−1,+1]. Let ϕ(·)
denote the kernel mapping associated to K, so that K(z, z′) = 〈ϕ(z), ϕ(z′)〉.

For our stability analysis, we desire the following properties:
• norm preservation: ‖ϕ(z)‖ = ‖z‖; this is ensured by the condition κ(1) = 1.
• non-expansive mapping: ‖ϕ(z)− ϕ(z′)‖ ≤ ‖z − z‖.

Even though our stability results make the non-expansive assumption, they can be easily extended
to Lipschitz continuous mappings. Then, the Lipschitz constants would appear in the upper-bounds
from Section 3, and the stability constants would depend exponentially in the number of layers,
which we would like to avoid. Below, we give a simple lemma to characterize kernels with the
non-expansiveness property, and show that it applies to a large class of useful examples.
Lemma B.1 (Non-expansive homogeneous kernel mappings). Let K be a kernel of the form (10). If
κ is convex, κ(1) = 1, and 0 ≤ κ′(1) ≤ 1, where κ′ denotes the first derivative of κ, then the kernel
mapping is non-expansive.

Proof. First, we notice that

‖ϕ(z)− ϕ(z′)‖2 = K(z, z) +K(z′, z′)− 2K(z, z′) = ‖z‖2 + ‖z′‖2 − 2‖z‖‖z′‖κ(u),

with u = 〈z, z′〉/(‖z‖‖z′‖). Since κ is convex, we also have κ(u) ≥ κ(1) + κ′(1)(u − 1) =
1 + κ′(1)(u− 1), and

‖ϕ(z)− ϕ(z′)‖2 ≤ ‖z‖2 + ‖z′‖2 − 2‖z‖‖z′‖ (1− κ′(1) + κ′(1)u)

= (1− κ′(1))
(
‖z‖2 + ‖z′‖2 − 2‖z‖‖z′‖

)
+ κ′(1)

(
‖z‖2 + ‖z′‖2 − 2〈z, z′〉

)
= (1− κ′(1)) |‖z‖ − ‖z′‖|2 + κ′(1)‖z − z′‖2

≤ ‖z − z′‖2,
where we used the fact that 0 ≤ κ′(1) ≤ 1. Note that if we make instead the assumption that
κ′(1) > 1, the same derivation shows that the kernel mapping is Lipschitz with constant

√
κ′(1).

We are now in shape to list three a few kernels of interest that match the above assumptions. Given
two vectors z, z′ inH0 with unit norm, we consider the following functions κ:

• homogeneous Gaussian kernel

κRBF(〈z, z′〉) = eα(〈z,z′〉−1) = e−
α
2 ‖z−z

′‖2 with α ≤ 1.

Note that if α > 1, the kernel mapping is expansive, but is still Lipschitz with constant α.
• homogeneous polynomial kernel of degree 22

κpoly(〈z, z′〉) =
1

4
(1 + 〈z, z′〉)2.

• homogeneous inverse polynomial kernel

κinv-poly(〈z, z′〉) =
1

2− 〈z, z′〉 .
2Note that the polynomial kernel of degree p can be defined here: κpoly(〈z, z′〉) = 1

pp
(p− 1+ 〈z, z′〉)p. For

simplicity, we only consider the case p = 2 in this section.
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• homogeneous arc-cosine kernel of degree 1 [7]:

κacos(〈z, z′〉) =
1

π
(sin(θ) + (π − θ) cos(θ)) with θ = arccos(〈z, z′〉).

• homogeneous Vovk’s real polynomial kernel of degree 3:

κvovk(〈z, z′〉) =
1− 〈z, z′〉3
3− 3〈z, z′〉 =

1

3

(
1 + 〈z, z′〉+ 〈z, z′〉2

)
.

For all of these kernels, it is indeed easy to see that the assumptions of Lemma B.1 are satisfied. We
note that the inverse polynomial kernel was used in [35, 36]; below, we will use extend some of their
results to characterize large subsets of functions that live in the corresponding RKHSs.

B.1 Description of the RKHSs

We consider now the kernels described previously. All of them are build with a function κ that
admits a polynomial expansion κ(u) =

∑+∞
j=0 bju

j with bj ≥ 0 for all j and all u in [−1,+1]. We
will now characterize these functional spaces by following the same strategy as [35, 36] for the
non-homogeneous Gaussian and inverse polynomial kernels on Euclidean spaces. Using the previous
Maclaurin expansion, we can define the following explicit feature map for any z inH0:

ψ(z) =
(√

b0‖z‖,
√
b1z,

√
b2‖z‖−1z ⊗ z,

√
b2‖z‖−1z ⊗ z,

√
b2‖z‖−1z ⊗ z ⊗ z, . . .

)
=
(√

bj‖z‖1−jz⊗j
)
j∈N

,

where z⊗j denotes the tensor product of order j of the vector z in H0. Technically, the explicit
mapping lives in the Hilbert space ⊕nj=0 ⊗j H0, where ⊕ denotes the direct sum of Hilbert spaces,
and with the abuse of notation that ⊗0H0 is simply R. Then, we have that K(z, z′) = 〈ψ(z), ψ(z′)〉.
The next lemma extends the results of [35, 36] to our class of kernels; it shows that the RKHS
contains simple “neural network” activation functions σ that are smooth and homogeneous.
Lemma B.2 (Activation functions and RKHSs). Let us consider a function σ : [−1, 1] → R that
admits a polynomial expansion σ(u) :=

∑∞
j=0 aju

j . Consider one of the previous kernels K with
explicit feature map ψ(z) = (

√
bj‖z‖1−jz⊗j)j∈N, and assume that aj = 0 if bj = 0 for all j. Define

the function C2
σ(λ2) :=

∑∞
j=0(a2

j/bj)λ
2j . Let w such that C2

σ(‖w‖2) <∞. Then, the RKHS of K
contains the function f : z 7→ ‖z‖σ(〈w, z〉/‖z‖), with RKHS norm ‖f‖ ≤ Cσ(‖w‖2).

Proof. By first considering the restriction of K to unit-norm vectors z, the proof is very similar
to [35, 36]:

σ(〈w, z〉) =

+∞∑
j=0

aj〈w, z〉j =

+∞∑
j=0

aj〈w⊗j , z⊗j〉 = 〈w̄, ψ(z)〉,

where

w̄ =

(
aj√
bj
w⊗j

)
j∈N

.

Then, the norm of w̄ is

‖w̄‖2 =

+∞∑
j=0

a2
j

bj
‖w⊗j‖2 =

+∞∑
j=0

a2
j

bj
‖w‖2j = C2

σ(‖w‖2) < +∞.

Using Theorem A.1, we conclude that f is in the RKHS of K, with norm ‖f‖ ≤ Cσ(‖w‖2). Finally,
we extend the result to non unit-norm vectors z with similar calculations and we obtain the desired
result.

Some interesting activation functions are discussed in the main part of the paper, including smoothed
versions of rectified linear units. The next corollary was also found to be useful in our analysis.
Corollary B.1 (Linear functions and RKHSs). All RKHSs considered in this section contain the
linear functions of the form z 7→ 〈w, z〉 for all w inH0.
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C Proofs of Stability Results

C.1 Proof of Lemma 1

Proof. We denote by Ω̄ the discrete set of sampling points considered in this lemma. The assumption
on Ω̄ can be written as {u+ v ; u ∈ Ω̄, v ∈ Sk} = Ω.

Let B denote an orthonormal basis of the Hilbert space Pk = L2(Sk,Hk−1), and define the linear
function fw = 〈w, ·〉 ∈ Hk for w ∈ Pk. We thus have

Pkxk–1(u) =
∑
w∈B
〈w,Pkxk–1(u)〉w

=
∑
w∈B

fw(Pkxk–1(u))w

=
∑
w∈B
〈fw,MkPkxk–1(u)〉w,

using the reproducing property in the RKHSHk. Applying the pooling operator Ak yields

AkPkxk–1(u) =
∑
w∈B
〈fw, AkMkPkxk–1(u)〉w,

=
∑
w∈B
〈fw, xk(u)〉w.

Noting thatAkPkx = Ak(Lvx)v∈Sk = (AkLvx)v∈Sk = (LvAkx)v∈Sk = PkAkx, with Lvx(u) :=
x(u+ v), we can evaluate at v ∈ Sk and obtain

Akxk–1(u+ v) =
∑
w∈B
〈fw, xk(u)〉w(v).

Thus, taking all sampling points u ∈ Ω̄ and all v ∈ Sk, we have a full view of the signal Akxk–1 on
all of Ω by our assumption on the set Ω̄.

For f ∈ Hk–1, the signal 〈f, xk–1(u)〉 can then be recovered by deconvolution as follows:

〈f, xk–1(u)〉 = F−1

(F(〈f,Akxk–1(·)〉)
F(hσk)

)
(u),

where F denotes the Fourier transform. Note that the inverse Fourier transform is well-defined here
because the signal 〈f,Akxk(·)〉 is itself a convolution with hσk , and F(hσk) is strictly positive as
the Fourier transform of a Gaussian which is also a Gaussian.

By considering all elements f in an orthonormal basis ofHk–1, we can recover xk–1. xk can then be
reconstructed trivially by applying operators Pk, Mk and Ak.

C.2 Proof of Lemma 2

Proof. In this proof, we drop the bar notation on all quantities for simplicity; there is indeed no
ambiguity since all signals are discrete here. First, we recall that Hk contains all linear functions
on Pk = Hekk–1; thus, we may consider in particular functions fj,w(z) := e

1/2
k 〈w, zj〉 for j ∈
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{1, . . . , ek}, w ∈ Hk–1, and z = (z1, z2, . . . , zek) in Pk. Then, we may evaluate

〈fj,w, s−1/2
k xk[n]〉 =

∑
m∈Z

hk[nsk −m]〈fj,w,MkPkxk–1[m]〉

=
∑
m∈Z

hk[nsk −m]〈fj,w, ϕk(Pkxk–1[m])〉

=
∑
m∈Z

hk[nsk −m]fj,w(Pkxk–1[m])

=
∑
m∈Z

hk[nsk −m]〈w, xk–1[m+ j]〉

=
∑
m∈Z

hk[nsk + j −m]〈w, xk–1[m]〉

= (hk ∗ 〈w, xk–1〉)[nsk + j],

where, with an abuse of notation, 〈w, xk–1〉 is the real-valued discrete signal such that 〈w, xk–1〉[n] =
〈w, xk–1[n]〉. Since integers of the form (nsk+j) cover all of Z according to the assumption ek ≥ sk,
we have a full view of the signal (hk ∗ 〈w, xk–1〉) on Z. We will now follow the same reasoning as in
the proof of Lemma 1 to recover 〈w, xk–1〉:

〈w, xk−1〉 = F−1

(F(hk ∗ 〈w, xk–1〉)
F(hk)

)
,

where F is the Fourier transform. Since the signals involved there are discrete, their Fourier transform
are periodic with period 2π, and we note that F(hk) is strictly positive and bounded away from
zero. The signal xk–1 is then recovered exactly as in the proof of Lemma 1 by considering for w the
elements of an orthonormal basis of the Hilbert spaceHk–1.

C.3 Proof of Propositioa 3

Proof. Define (MPA)k:j := MkPkAk−1Mk−1Pk−1Ak−2 · · ·MjPjAj−1. Using the fact that
‖Ak‖ ≤ 1, ‖Pk‖ = 1 and Mk is non-expansive, we obtain

‖Φ(Lτx)− Φ(x)‖ = ‖An(MPA)n:2M1P1A0Lτx−An(MPA)n:2M1P1A0x‖
≤ ‖An(MPA)n:2M1P1A0Lτx−An(MPA)n:2M1LτP1A0x‖

+ ‖An(MPA)n:2M1LτP1A0x−An(MPA)n:2M1P1A0x‖
≤ ‖[P1A0, Lτ ]‖‖x‖

+ ‖An(MPA)n:2M1LτP1A0x−An(MPA)n:2M1P1A0x‖.
Note that M1 is defined point-wise, and thus commutes with Lτ :

M1Lτx(u) = ϕ1(Lτx(u)) = ϕ1(x(u− τ(u)) = M1x(u− τ(u)) = LτM1x(u).

By noticing that ‖M1P1A0x‖ ≤ ‖x‖, we can expand the second term above in the same way.
Repeating this by induction yields

‖Φ(Lτx)− Φ(x)‖ ≤
n∑
k=1

‖[PkAk−1, Lτ ]‖‖x‖+ ‖AnLτ (MPA)n:1x−An(MPA)n:1x‖

≤
n∑
k=1

‖[PkAk−1, Lτ ]‖‖x‖+ ‖AnLτ −An‖‖x‖,

and the result follows by decomposingAnLτ = [An, Lτ ]+LτAn using the triangle’s inequality.

C.4 Proof of Lemma 4

Proof. The proof follows in large parts the methodology introduced by Mallat [17] in the analysis of
the stability of the scattering transform. More precisely, we will follow in part the proof of Lemma
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E.1 of [17]. The kernel (in the sense of Lemma A.1) of Aσ is hσ(z − u) = σ−dh( z−uσ ). Throughout
the proof, we will use the following bounds on the decay of h for simplicity, 3 as in [17]:

|h(u)| ≤ Ch
(1 + |u|)d+2

|∇h(u)| ≤ C ′h
(1 + |u|)d+2

,

which are satisfied for the Gaussian function h thanks to its exponential decay.

We now decompose the commutator

[LcAσ, Lτ ] = LcAσLτ − LτLcAσ = Lc(Aσ − L−1
c LτLcAσL

−1
τ )Lτ = LcTLτ ,

with T := Aσ − L−1
c LτLcAσL

−1
τ . Hence,

‖[LcAσ, Lτ ]‖ ≤ ‖Lc‖‖Lτ‖‖T‖.
We have ‖Lc‖ = 1 since the translation operator Lc preserves the norm. Note that we have

2−d ≤ (1− ‖∇τ‖∞)d ≤ det(I −∇τ(u)) ≤ (1 + ‖∇τ‖∞)d ≤ 2d, (11)

for all u ∈ Ω. Thus, for f ∈ L2(Ω),

‖Lτf‖2 =

∫
Ω

|f(z − τ(z))|2dz =

∫
Ω

|f(u)|2 det(I −∇τ(u))−1du

≤ (1− ‖∇τ‖∞)−d‖f‖2,

such that ‖Lτ‖ ≤ (1− ‖∇τ‖∞)−d/2 ≤ 2d/2. This yields

‖[LcAσ, Lτ ]‖ ≤ 2d/2‖T‖.

Kernel of T . We now show that T is an integral operator and describe its kernel. Let ξ = (I−τ)−1,
so that L−1

τ f(z) = f(ξ(z)) for any function f in L2(Ω). We have

AσL
−1
τ f(z) =

∫
hσ(z − v)f(ξ(v))dv

=

∫
hσ(z − u+ τ(u))f(u) det(I −∇τ(u)), du

using the change of variable v = u − τ(u), giving
∣∣ dv
du

∣∣ = det(I − ∇τ(u)). Then note that
L−1
c LτLcf(z) = LτLcf(z + c) = Lcf(z + c − τ(z + c)) = f(z − τ(z + c)). This yields the

following kernel for the operator T :

k(z, u) = hσ(z − u)− hσ(z − τ(z + c)− u+ τ(u)) det(I −∇τ(u)). (12)

A similar operator appears in Lemma E.1 of [17], whose kernel is identical to (12) when c = 0.

As in [17], we decompose T = T1 + T2, with kernels

k1(z, u) = hσ(z − u)− hσ((I −∇τ(u))(z − u)) det(I −∇τ(u))

k2(z, u) = det(I −∇τ(u)) (hσ((I −∇τ(u))(z − u))− hσ(z − τ(z + c)− u+ τ(u))) .

The kernel k1(z, u) appears in [17], whereas the kernel k2(z, u) involves a shift c which is not present
in [17]. For completeness, we include the proof of the bound for both operators, even though only
dealing with k2 requires slightly new developments.

Bound on ‖T1‖. We can write k1(z, u) = σ−dg(u, (z − u)/σ) with

g(u, v) = h(v)− h((I −∇τ(u))v) det(I −∇τ(u))

= (1− det(I −∇τ(u)))h((I −∇τ(u))v) + h(v)− h((I −∇τ(u))v).

3Note that a more precise analysis may be obtained by using finer decay bounds.
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Using the fundamental theorem of calculus on h, we have

h(v)− h((I −∇τ(u))v) =

∫ 1

0

〈∇h((I + (t− 1)∇τ(u))v),∇τ(u)v〉dt.

Noticing that
|(I + (t− 1)∇τ(u))v| ≥ (1− ‖∇τ‖∞)|v| ≥ (1/2)|v|,

and that det(I −∇τ(u))) ≥ (1− ‖∇τ‖∞)d ≥ 1− d‖∇τ‖∞, we bound each term as follows

|(1− det(I −∇τ(u)))h((I −∇τ(u))v)| ≤ d‖∇τ‖∞
Ch

(1 + 1
2 |v|)d+2∣∣∣∣∫ 1

0

〈∇h((I + (t− 1)∇τ(u))v),∇τ(u)v〉dt
∣∣∣∣ ≤ ‖∇τ‖∞ C ′h|v|

(1 + 1
2 |v|)d+2

.

We thus have

|g(u, v)| ≤ ‖∇τ‖∞
Chd+ C ′h|v|
(1 + 1

2 |v|)d+2
.

Using appropriate changes of variables in order to bound
∫
|k1(z, u)|du and

∫
|k1(z, u)dz|, Schur’s

test yields
‖T1‖ ≤ C1‖∇τ‖∞, (13)

with

C1 =

∫
Ω

Chd+ C ′h|v|
(1 + 1

2 |v|)d+2
dv

Bound on ‖T2‖. Let α(z, u) = τ(z + c)− τ(u)−∇τ(u)(z − u), and note that we have

|α(z, u)| ≤ |τ(z + c)− τ(u)|+ |∇τ(u)(z − u)|
≤ ‖∇τ‖∞|z + c− u|+ ‖∇τ‖∞|z − u|
≤ ‖∇τ‖∞(|c|+ 2|z − u|). (14)

The fundamental theorem of calculus yields

k2(z, u) = −det(I −∇τ(u))

∫ 1

0

〈∇hσ(z − τ(z + c)− u+ τ(u)− tα(z, u)), α(z, u)〉dt.

We note that |det(I −∇τ(u))| ≤ 2d, and∇hσ(v) = σ−d−1∇h(v/σ). Using the change of variable
z′ = (z − u)/σ, we obtain∫

|k2(z, u)|dz ≤

2d
∫ ∫ 1

0

∣∣∣∣∇h(z′ + τ(u+ σz′ + c)− τ(u)− tα(u+ σz′, u)

σ

)∣∣∣∣ ∣∣∣∣α(u+ σz′, u)

σ

∣∣∣∣ dtdz′.
We can use the upper bound (14):∣∣∣∣α(u+ σz′, u)

σ

∣∣∣∣ ≤ ‖∇τ‖∞(κ+ 2|z′|). (15)

Separately, we have |∇h(v(z′))| ≤ C ′h/(1 + |v(z′)|)d+2, with

v(z′) := z′ +
τ(u+ σz′ + c)− τ(u)− tα(u+ σz′, u)

σ
.

For |z′| > 2κ, we have∣∣∣∣τ(u+ σz′ + c)− τ(u)− tα(u+ σz′, u)

σ

∣∣∣∣ =

∣∣∣∣t∇τ(u)z′ + (1− t)τ(u+ σz′ + c)− τ(u)

σ

∣∣∣∣
≤ t‖∇τ‖∞|z′|+ (1− t)‖∇τ‖∞(|z′|+ κ)

≤ 3

2
‖∇τ‖∞|z′| ≤

3

4
|z′|,
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and hence, using the reverse triangle inequality, |v(z′)| ≥ |z′| − 3
4 |z′| = 1

4 |z′|. This yields the upper
bound

|∇h(v(z′))| ≤
{
C ′h, if |z′| ≤ 2κ

C′
h

(1+ 1
4 |z′|)d+2 , if |z′| > 2κ.

(16)

Combining these two bounds, we obtain∫
|k2(z, u)|dz ≤ C2‖∇τ‖∞,

with

C2 := 2dC ′h

(∫
|z′|<2κ

(κ+ 2|z′|)dz′ +
∫
|z′|>2κ

κ+ 2|z′|
(1 + 1

4 |z′|)d+2
dz′

)
.

Note that the dependence of the first integral on κ is of order kd+1. Following the same steps with
the change of variable u′ = (z − u)/σ, we obtain the bound

∫
|k2(z, u)|du ≤ C2‖∇τ‖∞. Schur’s

test then yields

‖T2‖ ≤ C2‖∇τ‖∞. (17)

We have thus proven

‖[LcAσ, Lτ ]‖ ≤ 2d/2‖T‖ ≤ 2d/2(C1 + C2)‖∇τ‖∞.

D Proof of Proposition 7 and Construction of CNNs in the RKHS

In this section, we describe the space of functions (RKHS)HKn associated to the kernel Kn(x, x′) =
〈Φn(x),Φn(x′)〉 where Φn is the final representation of Eq. (3), in particular showing it contains the
set of CNNs with activations described in Section B.1.

Construction of a CNN in the RKHS. Let us consider the definition of the CNN presented in
Section 5. We will show that it can be seen as a point in the RKHS of Kn. According to Lemma B.2,
we considerHk that contains all functions of the form z ∈ Pk 7→ ‖z‖σ(〈w, z〉/‖z‖), with w ∈ Pk.

Then, we define the initial quantities f i1 ∈ H1, g
i
1 ∈ P1 for i = 1, . . . , p1 such that

gi1 = wi1 ∈ L2(S1,Rp0) = L2(S1,H0) = P1

f i1(z) = ‖z‖σ(〈g0
i , z〉/‖z‖) for z ∈ P1,

and we recursively define, from layer k–1, the quantities f ik ∈ Hk, gik ∈ Pk for i = 1, . . . , pk:

gik(v) =

pk–1∑
j=1

wijk (v)f jk–1 where wik(v) = (wijk (v))j=1,...,pk–1

f ik(z) = ‖z‖σ(〈gik, z〉/‖z‖) for z ∈ Pk.

Then, we will show that z̃ik(u) = f ik(Pkxk–1(u)) = 〈f ik,MkPkxk–1(u)〉, which correspond to feature
maps at layer k and index i in a CNN. Indeed, this is easy to see for k = 1 by construction with
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filters wi1(v), and for k ≥ 2, we have

z̃ik(u) = nk(u)σ
(
〈wik, Pkzk–1(u)〉/nk(u)

)
= nk(u)σ

(
〈wik, PkAk–1z̃k–1(u)〉/nk(u)

)
= nk(u)σ

 1

nk(u)

pk–1∑
j=1

∫
Sk

wijk (v)Ak–1z̃
j
k–1(u+ v)dνk(v)


= nk(u)σ

 1

nk(u)

pk–1∑
j=1

∫
Sk

wijk (v)〈f jk–1, Ak–1Mk–1Pk–1xk–2(u+ v)〉dνk(v)


= nk(u)σ

(
1

nk(u)

∫
Sk

〈gik(v), Ak–1Mk–1Pk–1xk–2(u+ v)〉dνk(v)

)
= nk(u)σ

(
1

nk(u)

∫
Sk

〈gik(v), xk–1(u+ v)〉dνk(v)

)
= nk(u)σ

(
1

nk(u)
〈gik(v), Pkxk–1(u)〉

)
= f ik(Pkxk–1(u)),

where nk(u) := ‖Pkxk–1(u)‖. Note that we have used many times the fact that Ak operates on each
channel independently when applied to a finite-dimensional map.

The final prediction function is of the form fσ(x0) = 〈wn+1, zn〉 with wn+1 in L2(Ω,Rpn). Then,
we can define the following function gσ in L2(Ω,Hn) such that

gσ(u) =

pn∑
j=1

wjn+1(u)f jn,

which yields

〈gσ, xn〉 =

pn∑
j=1

∫
Ω

wjn+1(u)〈f jn, xn(u)〉du

=

pn∑
j=1

∫
Ω

wjn+1(u)〈f jn, AnMnPnxn−1(u)〉du

=

pn∑
j=1

∫
Ω

wjn+1(u)Anz̃
j
n(u)du

=

pn∑
j=1

∫
Ω

wjn+1(u)zjn(u)du

=

pn∑
j=1

〈wjn+1, z
j
n〉 = fσ(x0),

which corresponds to a linear layer after pooling. Since the RKHS of Kn contains all functions of the
form f(x0) = 〈g,Φn(x0)〉 = 〈g, xn〉, for g in L2(Ω,Hn), we have that fσ is in the RKHS.

Norm of the CNN. As shown in Section B.1, the RKHS norm of a function f : z ∈ Pk 7→
‖z‖σ(〈w, z〉/‖z‖) inHk is bounded by Cσ(‖w‖2), where Cσ depends on the activation σ. We then
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have

‖f i1‖2 ≤ C2
σ(‖wi1‖22) where ‖wi1‖22 =

∫
S1

‖wi1(v)‖dν1(v)

‖f ik‖2 ≤ C2
σ(‖gik‖2)

‖gik‖2 =

∫
Sk

‖
pk–1∑
j=1

wijk (v)f jk–1‖2dνk(v)

≤ pk–1

pk–1∑
j=1

(∫
Sk

|wijk (v)|2dνk(v)

)
‖f jk–1‖2

= pk–1

pk–1∑
j=1

‖wijk ‖22‖f
j
k–1‖2,

where in the last inequality we use ‖a1 + . . . + an‖2 ≤ n(‖a1‖2 + . . . + ‖an‖2). Since C2
σ is

monotonically increasing (typically exponentially in its argument), we have for k = 1, . . . , n− 1 the
recursive relation

‖f ik‖2 ≤ C2
σ

pk–1

pk–1∑
j=1

‖wijk ‖22‖f
j
k–1‖2

 .

The norm of the final prediction function f ∈ L2(Ω,Hn) is bounded as follows, using similar
arguments as well as Theorem A.1:

‖fσ‖2 ≤ ‖wn+1‖2 ≤ pn
pn∑
j=1

(∫
Ω

|wjn+1(u)|2du
)
‖f jn‖2.
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