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Abstract

The growing popularity of Location-Based Services, allowing for the
collection of huge amounts of information regarding users’ locations,
has started raising serious privacy concerns. In this survey we analyze
the various kinds of privacy breaches that may arise in connection with
the use of location-based services, and we consider and compare some
of the mechanisms and the metrics that have been proposed to protect
the user’s privacy, focusing in particular on the comparison between
probabilistic spatial obfuscation techniques.
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1
The problems of privacy in location-based

services

In recent years, the growing popularity of mobile devices equipped with
GPS chips, in combination with the increasing availability of wireless
data connections, has led to a growing use of Location-Based Services
(LBSs), namely applications in which a user obtains, typically in real-
time, a service related to his current location. Recent studies of the Pew
Research Center show that in 2017, 77% of the adult population of the
US owns a smartphone (in comparison with 35% in 2011) [63], and
according to the same institution’s last survey about LBSs, in 2013, a
high percentage (74%) of the smartphone owners used services based
on their location [99]. Examples of LBSs include mapping applications
(e.g. Google Maps), Points of Interest (POI) retrieval (e.g. AroundMe),
coupon/discount providers (e.g. GroupOn) and location-aware social
networks (e.g. Foursquare).

LBS providers often collect and store users’ locations and mobil-
ity traces (sequences of spatio-temporal points representing the users’
itineraries), for the purpose of further utilization, possibly by a third-
party. For instance, they can be used for statistical analyses, such as
finding typical mobility patterns and popular places [74, 97]), or they
can be made public to provide additional services to users, such as
traffic information [44].
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While LBSs have demonstrated to provide enormous benefits to
individuals and society, the growing exposure of users’ location infor-
mation raises important privacy issues. Not only the experts, but also
the population at large are becoming increasingly aware of the risks,
due to the repeated cases of violations and leaks that keep appearing
on the news. For instance, on April 20th, 2011 it was discovered that
the iPhone was storing and collecting location data about the user,
syncing them with iTunes and transmitting them to Apple, all without
the user’s knowledge. More recently, the Guardian has revealed, on the
basis of the documents provided by Edward Snowden, that the NSA
and the GCHQ have been using certain smartphone apps, such as the
wildly popular Angry Birds game, to collect users’ private information
such as age, gender and location [6], again without the users’ knowl-
edge. Another case regards the Tinder application, which was found
sharing the exact latitude and longitude co-ordinates of users as well
as their birth dates and Facebook IDs [73]; even after the initial prob-
lem was fixed, it was still sharing more accurate location data than
intended, as users could be located to within 100 feet of their present
location [26].

A major source of concern about location privacy lies in the real-
ization that with sufficiently accurate data, it is possible to precisely
locate a user and track his movements throughout the day [18], giving
rise to a variety of malicious activities such as robbing or stalking. For
instance, in Wisconsin there were episodes of men tracking women with
GPS or other location devices [60]. In California, records from auto-
matic toll booths on bridges were used in divorce proceedings to prove
claims about suspicious movements of spouses [82]. The application
“Girls Around Me”, combined social media and location information
to find nearby women who did not necessarily agree to be found, allow-
ing to access their Facebook profiles with a single click [11]. Particularly
worrisome is the perspective of potential combination with the users’
most sensitive information, such as sexual orientation.

To some extent, the research and the experimentation on privacy
contribute to raise the awareness about the practical risks. For instance,
the website “Please Rob Me” [65] aggregates location check-ins and
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presents them as “robbery opportunities”, pointing out the fact that
publicly announcing one’s location effectively reveals to the world that
they are not home.

1.1 Classification of threats

Following [35], we classify the concerns about the leakage of location
information into three major kinds of threats:

Tracking Threat: An adversary collecting continuously the location
updates of the user might be able to identify the user’s mobility
patterns (frequently traveled routes) and predict his present and
future location with high accuracy by leveraging typical mobility
habits [47, 94].

Identification Threat: The adversary can use the user’s traces as
quasi-identifiers to reveal his identity in an anonymized dataset.
This may happen even if the adversary accesses the user’s location
only sporadically, since he might be able to infer his frequently
visited locations, such as home and work. This is the most stud-
ied kind of threat in the literature, we expand on it in the next
section.

Profiling Threat: Mobility traces, and in particular the points of
interest that can be extracted from them, typically contain se-
mantic information that the adversary can use for profiling, that
is for infering a variety of (often sensitive) information about
the user. Examples include health clinics, religious places, areas
which may revel his sexual inclinations, etc. [5]. The practice of
location profiling is likely to increase in the future, as marketers
are becoming more and more aware of its potential to gain visibil-
ity of consumer behavior in the real world, and to help targeting
their marketing efforts. Indeed, location profiling seems to pro-
vide insights into offline activity at a level comparable to that of
web or mobile app analytics for online activity. There are already
various companies that provide this kind of services: for instance,
Urban Airship [89] offers tools that produce audience profiles by
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combining in-app behaviors, user preferences, and location. Mo-
bility data are particularly useful, since brands can segment users
based on their current or past location.

1.2 Identification of the user from his traces

In this section we focus on the threat constituted by using location
data for fingerprinting the user, namely for finding out the identity of
the person who has originated the data. In short, the problem raises
by the fact that mobility traces may be unique to an individual, and
they can therefore allow identifying that individual like the ridges on
his finger. Apart from uniqueness, temporal correlation is also crucial
for fingerprinting, allowing an anonymized trace to be identified based
on mobility data about the same individual that have been previously
recorded.

1.2.1 Uniqueness of human mobility traces.

There have been various statistical studies aimed at showing the
uniqueness of human mobility traces. One of the most remarkable ones
is that of de Montjoye et al. [23], measuring uniqueness in the following
way. Given a set of points P , and a set of traces T , we say that P iden-
tifies a unique trace in T if there is exactly one trace in T that contains
P . Then, the uniqueness of T is defined as the percentage of traces in T
that are uniquely identified by a set of n points drawn randomly from
a random trace in T (where n is a parameter). They examined fifteen
months of human mobility traces generated by 1.5 million of individ-
uals, who were users of a certain mobile phone operator. Each time a
user interacted with the network by initiating or receiving a call or a
text message, the location of the connecting antenna was recorded in
the dataset together with the time of the event, and linked to previous
location-time points of the same user already in the dataset, via the
user id, so to form a trace (one trace for each user). The experiments
showed that human mobility traces are highly unique: In fact, with the
temporal granularity fixed to an hour, and the spatial granularity equal
to that given by the carrier’s antennas, 4 spatio-temporal points, ran-
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domly drawn from a trace, were enough to uniquely identify the trace
in 95% of the cases. They also observed that the uniqueness of mobil-
ity traces decays approximately as the 1/10 power of the spatial and
temporal resolution. Hence, they concluded that even coarse datasets
provide little anonymity.

Song et al. [83] conducted similar experiments on a dataset of
location-time data generated by about a million users over a period
of a week. They considered the same notion of unique identification as
de Montjoye et al., except that they calculated the percentage of iden-
tification on all the traces instead than some randomly drawn subset.
The location of each individual was recorded every fifteen minutes. The
spatial resolution of the data (i.e., the minimum distance between two
locations) was about 0.11 km, while the diameter of the whole area
(i.e., the largest distance between two locations) was about 49 km.
Their results confirm that, even with a low resolution, location traces
can be identified with only a few spatio-temporal points. In particular,
they show that 2 points are enough to uniquely identify a trace in 60%
of the cases.

It is important to note that the implicit notion of attack considered
in the above works presupposes that the adversary is provided with
points that he had “previously seen” in a trace, and the only challenge
(for the adversary) is to be able to distinguish which trace. In contrast,
Rossi et al. [68] considered the threat posed by a “previously unseen”
set of points. Namely, they assume that the attacker has already col-
lected a set of traces T from some community of users, one trace per
user, and then, given a set of additional points P produced by one
of the users during his trajectory, they try to re-identify the user by
looking for the closest trace, namely the trace in T with the smallest
Hausdorff distance from P . They experimented with three real-world
datasets GPS mobility traces: CabSpotting [64]1, CenceMe [59] and
GeoLife [55]. The location data in these datasets have high spatial
resolution (GPS coordinates up to 5 or 6 digits precision). As for the
temporal resolution, in GeoLife and CabSpotting locations are recorded

1Althoug [68] refers to CabSpotting, the citation is relative to a mobility traces
dataset called CRAWDAD.
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at a time interval of 1−5 seconds, while for CenceMe it is 1 hour. Con-
cerning the experiments methodology, they randomly partitioned each
dataset into a training set and a test set, where each trace contained
50% of the original GPS points. Then, they used the training set as the
traces T to identify, using sets of points P extracted randomly from
traces in the test set. They showed that, thanks to the high precision of
the GPS coordinates, on GeoLife and CenceMe just 1 spatio-temporal
point is enough to identify 90% and 96% of the traces, respectively.
With 2 points, these percentages reach 94% and 99%. The results for
CabSpotting are significantly lower: 60% for 2 points. The difference
is probably due to the nature of the data: GeoLife and CenceMe con-
tain traces left by users during their daily routines, while CabSpotting
are traces of taxi drivers in the San Francisco Bay area. The first two
contain many personal and thus unique locations, such as home and
workplace locations, while the latter is characterized by the presence
of common taxi routes and locations associated to taxi ranks.

1.2.2 Reconstructing traces from location samples

Typically, there can be various users repeatedly updating and send-
ing their positions on the map to some LBS. Hence, collecting these
locations may result in a mix-up of traces left by different individu-
als. Un-mixing the locations, i.e., reconstructing the individual traces,
can be done easily when the data are associated to some invariant at-
tribute, like, for instance, a pseudonym. Even when the data are com-
pletely anonymous, however, the traces can often still be reconstructed
by linking the location samples. Clearly, the higher is the sample fre-
quency compared to the users’ density in the area, the easier it is to
recognize a trace (cfr. Figure 1.1). In fact, the next point in a trajectory
will be at a distance determined by the speed of the user and the time
in between the two updates. The reconstruction of a trace can also be
facilitated by correlating location samples with likely routes on a map.
Finally, the task can be enhanced by using a model of typical trajec-
tories constructed on the basis of prior observations on the population
movements.
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Figure 1.1: Traces in a low (a), medium (b), and high density area (c)

The first attempt to reconstruct the traces from completely
anonymized mobility data (i.e., without any pseudonyms) was by
Gruteser et al. [42]. They used a multi-tracking algorithm to iden-
tify individual mobility traces from a collection of anonymized location
samples generated by multiple users. They tested their algorithm on
a collection of GPS traces generated by the students of a university
campus, and their experiments showed that often individuals used to
travel along the same unique route and could therefore be re-identified.
Their system however was prone to misclassification of crossing paths,
as it was unable to determine whether the paths of different individuals
actually crossed or just touched.

More recently, Tsoukaneri et al. [87] developed a mechanism called
Comber which is able to disentangle the traces by using a generic,
empirically derived histogram of user speeds. The authors evaluated
Comber with two different datasets, MDC [45] and GeoLife [55], which
consist both of GPS-based mobility traces (collected in Lausanne and
Beijing, respectively). Each of these datasets span more than a year and
include location information of about 180 users. Their results show that
Comber is able to infer the original traces of the users with more than
90% accuracy.

1.2.3 Linking traces to users’ identity

There has been a lot of research showing that it is possible to in-
fer user identities from anonymous traces, especially when the traces
are pseudonymized (i.e. the real identity has been replaced by a
pseudonym) rather than completely anonymized. Beresford and Sta-
jano [8] already pointed out that the re-identification risks of LBS’ users
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employing pseudonyms: they showed that almost all location traces of
AT&T Labs Cambridge employees collected from the Active Bat sys-
tem could be correctly identified by knowing the office positions of
the workers and by keeping track of the frequency of visits of a given
pseudonym to each office.

Many of the attacks on pseudonymized traces are, like the above,
based on observing the frequent presence of the pseudonyms in specific
locations that can be easily linked to a certain individual, like home
or office. For instance, Krumm [48] proposed various algorithms to in-
fer the user’s home address, and used a web search engine in order to
reveal the real identities of the subjects. Notably, Golle and Partridge
[40], using US census data, showed that knowing both locations of an
individual’s home and workplace with the precision of a census block
allowed to uniquely identify most of the U.S. working population. Fur-
thermore, even with the lower granularity of a census track, although
the average size of the anonymity set (i.e., the number of people shar-
ing the same pair) went up to 21, the location data of people who lived
and worked in different regions could still be easily re-identified.

A further study [96] investigated call records rather than census
data, using a data set of more than 30 billion call records made by
25 million cell phone users in the US. They considered the “top N”
locations for each user, inferred from the call records, and different
levels of granularity, ranging from a cell sector to whole cell (where cell
and cell sector are location units used by the phone company) to the
zip code, city, county and state. They analysed a variety of different
factors potentially impacting the size of the anonymity set, such as
the distance between the top N locations, the geographic environment
(rural vs urban), and social information (whether the size of the user’s
social network is large or small). Their result showed that, while the
top 1 location does not typically yield small anonymity sets, the top 2
and top 3 locations do, at least at the sector or cell-level granularity.
For example, with top 3 locations, 85% of the users are identifiable at
the sector level, 50% at the cell level, and 35% at the zip code level.

Even when the location data are completely anonymized (i.e., no
pseudonym is used), though, it is still possible to retrieve the user’s
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identity by means of modern machine learning technologies if the at-
tacker disposes of side information about the user. Several works in the
literature have investigated this problem, particularly in the case in
which a database of users’ profiles in the form of previously collected
traces, called the training set, is available to the adversary. The work
by Rossi et al. [68] mentioned in § 1.2.1 went in this direction; however
it did not use the full power of machine learning techniques, and it was
more focused in the uniqueness of traces rather than re-identification
of the user. In general, the idea is that the adversary will use the
training set to build a representation of the users’ typical movements.
Thus each user will be associated to a mathematical model of his past
traces, playing the role of a signature. This model can be, for instance,
a Markov chain, but other models have been investigated as well. Then
the attacker will collect one or more of the victim’s (sanitized) traces,
the testing set, from which he will build a model as well. The latter
is then compared to the models of the training set, according to some
similarity criterion, and the user profile most likely to correspond to
the target user is finally selected.

De Mulder et al. [24] investigated this kind of attack on mobility
traces generated by a GSM cellular network. They developed two meth-
ods based on different models and on the cosine similarity measure, and
evaluated them on the Reality Mining dataset made available by the
MIT Media Lab, which consists of the location traces of one hundred
human subjects at MIT during the 2004−2005 academic year, collected
using one hundred instrumented Nokia 6600 smart phones. With the
best of those methods, they were able to re-identify about 80% of the
users. It is to be noted that a trace generated by a GSM network is
formed by the sequence of all cells that the user has visited along his
path, i.e., it is not possible to skip cells by “jumping” to a non-adjacent
cell. This may affect the success rate when compared with the case in
which the traces consist of locations generated dynamically with, say,
a GPS.

Ma et al. [52] considered also two kinds of adversaries: passive ones,
retrieving the testing set from a public source, and active ones that can
deliberately participate or perturb the data collection phase to gain ad-
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ditional knowledge. The authors used four different estimators to mea-
sure the similarity between mobility traces: the Maximum Likelihood
Estimator, relying on the Euclidean distance, the Minimum Square Ap-
proach, computing the sum of the square of the difference between the
traces, the Basic Approach, which assumes that the traces might been
perturbed by uniform noise, and the Weighted Exponential Approach,
which is similar to the previous one except that no assumption is made
on the type of noise generated. The authors tested their methods on
two datasets: the CRAWDAD repository [64], recording the movements
of San Francisco YellowCabs, and a collection of traces generated by
the public buses in Shanghai city. They obtained a success rate of de-
anonymization of 80% to 90%, even in the presence of noise.

Both [52] and [24], however, took the samples to generate the test-
ing set directly from the training set. Clearly such way of proceeding
introduced a bias that may have resulted in an overly strong success
rate in the re-identification results. In fact Gambs et al. [36] showed
that there is a substantial difference in the success rate when the train-
ing set and the testing set are separated. They used a model based on
Mobility Markov Chains, namely Markov chains where the states are
locations. They considered various similarity measures between such
chains, and tested their methods on several GPS datasets, including
MDC and Geolife. For each individual, they split his mobility traces,
chronologically ordered, into two disjoint parts of approximately the
same size: the first half formed the training set, and the second half
the testing set. Thus the training and the testing data were not only
disjoint, but also separated in time. With such split, they were able to
re-identify between 35% and 45% or the users. For comparison, they
repeated the experiments also without splitting, i.e., using the same set
of traces for training and for testing, and obtained, in this case, a suc-
cess rate of almost 100%! Of course, this comparison is not completely
fair because they used as testing set exactly the same as the training
set, instead than a subset as in previous works. Nevertheless, such high
success rate shows that (1) the training set and the testing set should
be independent to avoid any bias, and (2) the Mobility Markov Chain
obtained from the traces of a user is almost always unique to the user.
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1.3 The users’ point of view

The users’ concerns about location privacy, and privacy in general, vary
a lot from individual to individual, and depend on factors such as age,
education, cultural background, etc. They also tend to evolve in time,
and cases of privacy breaches that hit the news, like that of “Birds and
’leaky’ phone apps” [6], can have a huge impact on the attitude of the
population.

There have been several studies to assess people’s perceptions and
attitude towards privacy. We mention in particular the empirical re-
search conducted at CMU by Acquisti and his team, which provides a
systematic analysis of several aspects of human behavior in relation to
privacy. See [1] for a summary of their findings.

Concerning the specific case of location privacy, the concerns seem
in general less strong than for other kinds of sensitive data (such as
medical records, financial data, bank information etc.), and the studies
give mixed results. For instance, in 2014 the authors of [35] interviewed
180 smartphone users, recruited through social network announcements
and through Amazon Mechanical Turk. They chose Mechanical Turk
workers who had achieved master qualification. They obtained the fol-
lowing statistics: 78% of the participants believed that apps accessing
their location can pose privacy threats. Also, 85% of them reported that
they care about who accesses their location information (in line with
the 87% reported by the 2011 Microsoft survey [56]). Furthermore, 77%
of the users were interested in installing a privacy protection mecha-
nism. Finally, on the specific method based on the addition of random
noise, 52% of the surveyed individuals stated no problem in supplying
apps with imprecise location information to protect their privacy. Only
18% of the surveyed people objected to supplying apps with imprecise
location information.

On the other hand, in contrast with the other kinds of sensitive data
mentioned above (medical record etc.) there seem to be more willing-
ness to renounce to location privacy in exchange of compensation. For
instance, Danezis et al. [22] conducted a study on 74 undergraduates to
find how much money they would require in order to share a month’s
worth of their location data. The median price was £10 if the data were
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to be used for research purposes, and £20 if the data were to be used
commercially. In [49] the author says that he could we easily convince
over 250 people from his institution to give him two weeks of GPS data
recorded in their car in return for a 1% chance of winning a US$ 200
MP3 player. He asked 97 of them if he could share their location data
outside our institution, and only 20% said ‘no’. In contrast, in an exper-
iment conducted by Acquisti et al. [2] on the privacy attitude towards
payments, where people were offered the choice between a traceable
gift card of 12 US$ or an anonymous gift card of 10 US$, about half
of the people chose the second option. Incidentally, [2] main point is
to show that people value their privacy differently, depending on how
the choice privacy vs non-privacy is presented to them. In particular,
people tend to assign a different value to their privacy depending on
whether they would receive a compensation in order to disclose other-
wise private information, or rather they would pay to protect otherwise
public information.

In conclusion, location data seems to be less critical in the mind
of many people than data like financial or medical ones, but this may
be due to the lack of knowledge about the negative consequences of a
location leak. In particular, about the fact that the location can help
profiling the user with respect to more sensitive data. Furthermore,
the attitude of people concerning the protection of location informa-
tion may change during time, along with the general increase of privacy
concerns. For example, a study in [1] showed that, in the last decade,
the percentage of members in the Carnegie Mellon University Face-
book network who chose to publicly reveal personal information had
decreased steadily. For instance, over 80% of profiles publicly revealed
their birthday in 2005, but less than 20% in 2011.



2
Deterministic methods

In general, all computational methods for privacy protection are based
on degrading the precision of information, in order to confuse the ad-
versary. Now, the main problem with privacy is that in general we can-
not distinguish between the adversary and a legitimate party (service
provider, other users, . . . ), because every legitimate party constitutes
in principle a potential threat for the sensitive information. Of course,
a less precise information is in general less useful also for the legitimate
partners, hence there is typically a trade-off between the privacy degree
that one wishes to obtain, and the utility of the information. Most of
the research on methods for privacy protection has to take utility into
account, and aim at achieving a good trade-off.

In the particular case of location data, the protection is obtained
essentially in two ways: spatial obfuscation and spatial cloaking. In both
cases, we can have deterministic or probabilistic approaches. In this
section we review the main deterministic ones that have been proposed
in the literature.

212
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2.1 Deterministic Spatial Obfuscation

Spatial obfuscation approaches preserve privacy by reducing the preci-
sion of the position sent from the user to the LBS, and this can be done
at the user’s site without the intervention of a trusted third party, which
is an important advantage of this class of approaches. A naive way of
doing it would be, of course, simply to reduce the granularity of the
location information: the user could report, instead of the exact coor-
dinates, the “zone” in which he is situated. Or, following a similar idea,
he could reduce the precision of the coordinates. This method however
is not very robust, because it is subject to triangulation attacks: A user
sending two consecutive signals from different zones would reveal that
he is close to the border between them, and three consecutive signals
from different zones would reveal his position quite accurately. People
have therefore investigated more effective solutions.

Duckham and Kulik [27] proposed a method based on the idea of
sending to the LBS a set of locations containing also the user’s true
location. Then, the LBS would provide the services relative to each
location, and the user would choose the right one. Much of the effort in
[27] was focused on how to generate such set, and how the LBS should
reply, in order to not degrade too much the quality of service.

Cheng et al. [17] and Ardagna et al. [4] proposed a method based on
the idea of sending an area, dynamically calculated around the user’s
position, instead of the precise position.

For the sake of accuracy we should mention that also these last
three methods contain a probabilistic aspect, in that they require that
the user real location has uniform distribution on the set of locations
(respectively, on the area) sent to the LBS.

Most of the deterministic methods, anyway, are based on spatial
cloaking, and the remaining of this section will be dedicate to them.

2.2 Deterministic Spatial Cloaking

Spatial cloaking, first proposed in [41], is based on one of the most pop-
ular methods in the anonymity literature: group-anonymity. The idea
is to make an individual indistinguishable from a group of other indi-
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viduals. This is achieved by reporting a cloaked area, large enough to
contain the group size necessary to meet the intended anonymity con-
straint. In order to limit the size of the cloaked area, some proposals
have considered to combine it with temporal cloaking as well. Further-
more, in order to reduce the linkability between requests belonging to
the same user’s trajectory, [8] proposed the so-called mix-zones, where
the users’ pseudonyms get renewed. The reason why they are called
mix-zones is that the temporal order in which the users enter and exit
these zone must be obfuscated (mixed), otherwise the adversary could
be able to link the new pseudonym to the old one.

All the above measures related to spatial cloaking need, of course,
the intervention of a trusted party that acts as an anonymity server.

In order to explain the technical aspects of spatial cloaking, we start
by reviewing two of the most successful approaches to group anonymity:
k-anonymity [71, 70, 84] and a refinement of it called l-diversity [54].
These have inspired most of the techniques for spatial cloaking pro-
posed in the literature of location privacy.

2.2.1 k-anonymity

Following the seminal paper [41], the k-anonymity approach to location
privacy has attracted a lot of interest, mainly due to its simplicity.
There has been a lot of research dedicated to increase the efficiency
and reducing the cost of k-anonymity schemes [37, 58, 38, 86, 93],
adapting the original architecture to different scenarios [72], moving
from a centralized server to distributed ones [98], considering mobile
P2P environments [21], and extending the method to trajectories [9].
However, all these proposals share the same key principles (of the k-
anonymity approach), which will be illustrated in this section using the
basic k-anonymity model of [41].

The k-anonymity method was originally proposed by Samarati and
Sweeney in the contest of database sanitization [71, 70, 85]. They
started from the observation that, in order to anonymize a database,
it is not sufficient to remove the individuals’ names, because other at-
tributes present in the database (such as address, birth dates, gender,
etc.) may be linked with publicly available information (for instance, a
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voters’ registers), and make it possible to re-identify the individuals in
a large number of cases. These attributes are called quasi-identifiers.

As a remedy to the problem of re-identification by linking, Samarati
and Sweeney proposed to obfuscate the quasi-identifiers (in addition to
removing the names), so that each particular combination would be
shared by a group of at least k people. More precisely, k-anonymity
means that each individual in the database is indistinguishable, with
respect to the quasi-identifiers, from k − 1 other individuals. Clearly,
privacy protection increases with the privacy parameter k. There are
various methods to achieve k-anonymity: generalization of an attribute
(for example postal addresses can be generalized to the street or to the
city, depending on how much we need to generalize), suppression of an
attribute, or addition of dummy records. Typically, the k-anonymity-
sanitization involves a combination of them.

We illustrate the k-anonymity method with an example suitable for
location privacy. Here, the goal of the adversary is to find out about
the request (query) that a specific user has issued to a LBS. More
precisely, we assume that the adversary aims at identifying the user
who has issued the query, and to learn information (as accurate as
possible) about it: location, time, type of query, etc. The purpose of
k-anonymity is to make these tasks impossible or at least difficult.

As mentioned above, the approach of k-anonymity originated from
the field of database privacy. In the case of location privacy, we can
consider that the entries in the database are the requests send from the
users to the LBS. Table 2.1 illustrates an example of such a database
for a set of requests: each row contains the user’s identity, the exact
position, the query time and the type of query.

Let us assume that the quasi-identifiers are the location and the
time of the query. In order to ensure the k-anonymity property, we
need to ensure that the user’s query be indistinguishable from those
of at least k − 1 other users. To achieve this goal, the identities of
these k users are removed from the queries, and their location-time
pair is obfuscated to be the same location-area and time-windows, large
enough to contain the users’ actual locations. Table 2.2 shows the result
of k-anonymizing Table 2.1, for k = 2.
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Table 2.1: Queries

User’s id Location Query Time
person 1 49.413521, 21.316322 Grocery store 2016-09-21 15:05:37
person 2 49.417653, 21.316890 Hotel 2016-09-21 15:07:00
person 3 49.413123, 21.316876 Night club 2016-09-21 15:08:11
person 4 49.413098, 21.316485 Gas station 2016-09-21 15:14:52

Table 2.2: The table resulting from 2-anonymizing Table 2.1

Cloaked Location Query Cloaked Time
49.413-49.418, 21.316-21.317 Grocery store 2016-09-21 15:05-15:10
49.413-49.418, 21.316-21.317 Hotel 2016-09-21 15:05-15:10
49.413-49.414, 21.316-21.317 Night club 2016-09-21 15:08-15:15
49.413-49.414, 21.316-21.317 Gas station 2016-09-21 15:08-15:15

The k-anonymity model of [41] consists of the mobile users, an LBS,
and an anonymity server, as depicted in Figure 2.1. The anonymity
server is an entity trusted by the users that mediates the queries be-
tween the users and the untrusted LBS. The users send their queries
〈i, q, l, t〉 to the anonymity server, where i is the id of the user, q is the
query, l is the location, and t is the time at which the query is gen-
erated. To cloak a query’s location the anonymity server removes the
identity of the user. Furthermore, it obfuscates the location l and the
time t at which the queries were generated. To achieve this aim, the
server constructs a cloaking region R = ([x1, x2], [y1, y2], [t1, t2]) such
that there are at least k users in R whose location l = (x, y) at time
t satisfies x1 ≤ x ≤ x2, y1 ≤ y ≤ y2, and t1 ≤ t ≤ t2. [x1, x2] and
[y1, y2] represent a two dimensional area where the subject is located,
while [t1, t2] represents the time period during which the subject was
at this area. The server then sends the anonymized queries to the LBS,
and the latter sends back the query responses to the server, which will
forward them to the corresponding users.
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Figure 2.1: k-anonymity model

Sometimes it may happen that in the area of the user to be pro-
tected there are no enough users to form a set of k. In this case, we can
use fake users and dummy queries. This technique involves generating
the necessary number of suitably selected dummy queries, and sending
these queries to the service provider. “Suitably selected” means that
the dummy requests must look likely to be real queries from the point
of view of the attacker. Any side information that allows to rule out
any of those queries as having low probability of being real, would fail
the purpose [3]. An alternative approach to this problem, illustrated
in the next section, is to adapt the size of the cloak so to satisfy the
anonymity constraint.

2.2.2 Adaptive-Interval Cloaking

Adaptive-interval cloaking was proposed by Gruteser [41]. The purpose
of this method is to achieve anonymity independently from the popula-
tion density. The idea is to decrease the accuracy of the spatial and/or
temporal data so that the resulting cloak contains enough individual
requests to satisfy the anonymity constraint.

The algorithm for adaptive spatial cloaking proposed in [41] is illus-
trated in Table 2.3. The algorithm takes in input the current position
of the requester, the coordinates of the area covered by the anonymity
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Table 2.3: Adaptive-interval cloaking algorithm. The algorithm computes an area
(quadrant) that includes the actual requester and enough potential requesters to
satisfy the anonymity constraint kmin[41].

1. Initialize the quadrants q and qprev as the total area covered by
the anonymizer

2. Initialize a traffic vector with the current positions of all known
vehicles

3. Initialize p as the position of the requester vehicle
4. If the number of vehicles in traffic vector < kmin,

then return the previous quadrant qprev
5. Divide q into quadrants of equal size
6. Set qprev to q
7. Set q to the quadrant that includes p
8. Remove all vehicles outside q from the traffic vector
9. Repeat from Step 2

server, and the current positions of all other subjects in the area. The
desired degree of anonymity is expressed by a parameter kmin. In sum-
mary, the algorithm subdivides the area (quadrant) around the sub-
ject’s position according to some fixed equal-size partition strategy until
the number of subjects in the area falls below the constraint kmin. The
previous quadrant, which still meets the constraint, is then returned.

As a refinement of adaptive spatial cloaking, [41] proposed the com-
bination with temporal cloaking. The purpose was to reveal spatial
coordinates with more accuracy, while reducing the accuracy in time.
The spatio-temporal cloaking algorithm is provided with an additional
parameter: the desired spatial resolution. It determines the monitoring
area by dividing the space until the specified resolution is reached. The
algorithm then monitors vehicle movements across this area, and de-
lays the request until kmin vehicles have visited the area chosen for the
requester. Time interval [t1,t2] is then computed by setting t2 to the
current time, and t1 to the time of request minus a random cloaking
factor. The area and the time interval are then returned.
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2.2.3 l-diversity

Sometimes it may happen the k users of a k-anonymity group all have
the same value for a sensitive attribute. In this case, being indistin-
guishable from the other members of the group is of no use, because the
entire group leaks the sensitive information. To cope with this problem,
[54] proposed the principle of l-diversity. It is a rather subtle concept,
and, in order to explain it properly, we need to introduce some technical
notions.

Usually all the knowledge at the disposal of the adversary can be
helpful to discover sensitive information about the user. In general, we
can distinguish the knowledge of the adversary into prior and posterior.
The prior knowledge, also called background knowledge, or side knowl-
edge, is what the adversary knows before exploiting any observation on
the system or on the database.

In general we cannot prevent the adversary from having prior in-
formation, but we should be able to control the additional information
he gets by observing the published table. The ideal situation is when
the knowledge of the adversary does not increase, i.e. when prior and
posterior coincide. In general this is impossible to achieve, so the goal
is to make the increase as small as possible. [54] showed that the in-
crease of the adversary’s knowledge, and more precisely, the increase
of the probability to correctly identify the individual’s sensitive value,
is directly linked to the lack of diversity in the observed values of the
sensitive attribute in the group to which the individual belong. More
precisely, let q be the value (after sanitization) of the quasi-identifier
of the tuple representing the individual under consideration. We call
q-block the set of tuples of all the individuals that share the same q
value. The l-diversity principle states that the q-block should contain
at least l “well-represented” values (i.e., occurring with high frequency)
for the sensitive attribute.

2.2.4 Location diversity

In this section we consider l-diversity in the context of location privacy.
The goal is to hide sensitive information about the request, which may
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not be limited to the coordinates. Indeed, location often contains direct
semantic information in terms of location objects such as shops, schools,
hospitals, restaurants, churches, etc. These location objects may be
sensitive because they may allow to infer indirect information about
the individual, such as his job, hobby, religion, etc. In order to protect
this sensitive information, It means, in addition to k-anonymity, the
server needs to ensure that there are at least l location objects that
can be associated to his query [7, 95].

To better illustrate the idea, consider the following example: A
courier u working at a post office uses a LBS to find out the best route
for some delivery. To avoid identification queries are issued through
an anonymity server, which keeps a map of the current users (Fig-
ure 2.2a). The server ensures k-anonymity by sending to the LBS a
cloaking region contain 4 users (the grey area in Figure 2.2a). How-
ever, the cloaking region contains only the post office (where alls these
users work), so the adversary may deduce that with high probability u
works at the post office.

To address the above problem, [7, 95] considered the principle of
location l-diversity, which guarantees that the query can be associated
with at least l semantically different location objects, so that each of
these has probability 1/l to be real one. In the example, if we want to
achieve l-diversity with l = 4, the server needs to consider three other
regions containing different semantic objects, and send to the LBS the
a group of queries contain the one from u, plus three from fake users
ua, ub, uc located in the other regions. Figure 2.2b illustrates the idea.

When the LBS returns all results to the anonymity server, the latter
filters out the results for the fake users and returns to u the relevant
result.

2.2.5 Mix zones

When a moving user sends consecutive requests to an LBS, the corre-
sponding sequence of locations (trajectory) may leak more information
than each individual location, and cause a quick degradation of the level
of protection, even if each individual location is sanitized. For example,
the approximate home location may not identify a single user, but the
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(a) k-anonymity

(b) Location diversity

Figure 2.2: Location diversity versus k-anonymity
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pair home-work locations, even if approximate, could be unique. Loca-
tions belonging to the same trajectories may be linked even if requests
are anonymized, because they still must contain a pseudonym in order
for the LBS to indicate to the server the request it is answering to. In
principle, then, two requests issues along some user’s trajectory could
be linked via their pseudonym.

To prevent the above problem, [8] proposed the so-called mix-zones.
The idea is to change frequently each users’ pseudonym to a new, un-
used one, and to do it in such way that the new pseudonym cannot be
linked to the old one. To achieve this goal, the server distinguish be-
tween application zones and mix zones. The former are areas in which
users typically issue requests to the LBS. For instance, airports, banks,
coffee shops, etc. The latter are used to assign new, unused pseudonyms
to the users inside them. While they are inside a mix zone, the users
cannot send requests to the LBS. In this way, the users going into a
mix-zone cannot be linked to those who will come out. Figure 2.3 illus-
trates the idea: users u1, u2 and u3 enter the mix-zone with pseudonyms
x, y and z, and will exit with new pseudonyms s, q and h, respectively.

Obviously, we need to obfuscate also the temporal order in which
the user enter and exit the mix zone, otherwise the adversary could try
to infer the link. For instance, if they all travel at similar speeds, then
it would be reasonable to assume that the first user in will be the first
out.

The anonymity provided by a mix zone is measured in terms of the
unlinkability between the old and new pseudonyms. For instance, [62]
proposed the following definition: A set of users U in a mix-zone Z is
k-anonymized iff:

1. U contains at least k users.

2. All users in U are in Z at a point in time, i.e., all users in U must
enter Z before any user in U exits.

3. Each user in U spends a random duration of time inside Z.1

1The random duration here should guarantee that all members of the anonymity
set U are equally likely to exit from any of the exit points at a given time. This
also corresponds to the maximum entropy (uncertainty) of guessing the original
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Figure 2.3: A mix-zone with three users

4. The probability of every user in U entering through an entry
point of Z is equally likely to exit in any of the exit points of Z.

Point 4 above is the most difficult to ensure. In particular, vehi-
cle movements depend on many factors, such as travel speed, traffic
density, road conditions, traffic lights, etc. Thus a vehicle usually is
not inside a mix-zone for a random amount of time. For example, Fig-
ure 2.4a represents a mix zone that is placed at the intersection of four
roads segments Seg1, Seg2, Seg3 and Seg4 (in street networks, mix
zones are typically placed at crossroads). An adversary knows that a
vehicle exiting the mix zone at Seg3out will probably have entered from
either Seg1in or Seg2in or Seg4in. Now, Seg3out is closer to Seg2in than
Seg1in or Seg4in, so the adversary could use this information to link
events at road segment Seg3out with either Seg1in or Seg2in/Seg4in.

pseudonym of the exiting user.
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(a) (b)

Figure 2.4: A vehicular mix-zone(a) and non-rectangular, adaptive vehicular mix-
zones (b)

Amore effective way to construct mix-zones is shown in Figure 2.4b.
The idea is to construct non-rectangular, adaptive mix-zones that start
from the centre of the crossroad on the outgoing road segments [62].
The length of the mix-zone along each outgoing segment depends on
the average speed of the road segment, the minimum pairwise entropy
threshold and the size of the chosen time window. The pair-wise entropy
is computed for every pair of users a and b in an anonymity set U by
considering a and b to be the only members in U and determining the
linkability between their old and new pseudonyms [20].

2.3 Criticism of the spatial cloaking approach

The spatial cloaking method based on k-anonymity has been criticized
in various papers, and most thoroughly in [76, 81]. In [76], the authors
argue that the k-anonymity is not a suitable metric for capturing most
kinds of privacy that are relevant for location-based applications. In
[81] the authors focus on two privacy properties: query anonymity and
location privacy. Achieving query anonymity means concealing the link
between the user and his query, while location privacy refers to the
link between the user and his spatio-temporal coordinates. In princi-
ple, these are the two main goals of the spatial cloaking approaches.
However, [76] shows that, while k-anonymity-based cloaking can help
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with query anonymity, it may be ineffective, or even counterproductive,
with location privacy.

First, the authors of [81] argue that the parameter k in the k-
anonymity property is not in itself relevant for location privacy. In
fact, we could have a small cloaking region with a large k (for instance,
when all the k users are inside the same building), or, vice versa, a large
cloaking region with a small k. Clearly the degree of location privacy
is low in the first case, and high in the second one. Thus it does not
increase with k alone.

Second, the authors of [81] show that, in presence of certain adver-
sarial background information, the cloaking method does not help to
increase location privacy, and may even decrease it. We describe in the
following their example.

Assume the adversary has statistical information about the users’
home location and that he knows that with a high probability all users
are at home at a certain time (for instance, late in the evening). Let us
consider the neighborhood shown in Figure 2.5a, and assume that we
want to achieve 4-anonymity. Suppose that B sends a request 〈q,R〉 to
the LBS, where q is the query and R the cloaking region that covers
the user’s position. If the adversary intercepts the request, since he is
uncertain of the current location of users, he can only use the available
background information to infer who/where is the sender of q. Thus,
user B is (or is not) 4-anonymous independently of whether or not A,
C, and D are currently using the system, or even present at their home
locations. In conclusion, it is not necessary for the anonymity server
to compute the region R on-the-fly on the basis of the presence of A,
C, and D in R. Using the available background information region R
could be pre-computed and used uniquely based on the user’s location,
regardless of whether or not k − 1 other users are currently in the
vicinity.

On the other hand, consider now the situation illustrated in Fig-
ure 2.5b, where only users B, C, F and G are active (i.e., using the
system), and assume that the adversary has the same information as
in the previous case. When user B sends a request, the anonymity
server, following the algorithm for spatial cloaking with k = 4, will
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(a) (b)

Figure 2.5: Examples where the use of cloaking is pointless (a) and harmful (b)

forward 〈q,R′〉 to the LBS. Assuming that R′ is larger than R, since
the server tries to minimize the cloaking area, the adversary will learn
that B, C, F and G are currently in their home locations, and that A
and D are either inactive or absent. In this case, although the query q
is still 4-anonymous, the information revealed to the adversary by the
cloaking method itself causes a decrease of the location privacy of A,
B, C, D, F and G.



3
Randomized methods

In this section we give a comparative overview of the randomized meth-
ods for location privacy. Like in the case of the deterministic methods,
they can be classified into two groups: those that protect the identity of
the users, and those which aim at obfuscating the position of the user.
Among the most investigated random mechanisms are those based on
the popular notion of differential privacy [30]. The reasons for the suc-
cess of this notion are essentially the fact that it is much more robust
to composition attacks than other notions (especially the deterministic
ones), and that it does not depend on the side knowledge of the adver-
sary. These advantages are preserved also in the case of its application
in the field of location privacy.

3.1 Differential Privacy

Differential privacy was originally proposed in the area of statistical
databases [30, 28, 29, 31]. The goal is to protect an individual’s data
while publishing aggregate information about the database. This is
obtained by adding controlled noise to the query outcome, in such a
way that modifying a single user’s data will have a negligible effect on
the (noisy) reported answer.

227
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More precisely, let K be a (noisy) mechanism for answering a cer-
tain query on a generic database D, and let P [K(D) ∈ S] denote the
probability that the answer given by K to the query, on D, is in a set
of values S. Then we say that K satisfies ε-differential privacy (where ε
is a parameter quantifying the level of privacy) if for every pairs of ad-
jacent databases D and D′ (i.e., differing only for the value of a single
individual), we have:

P [K(D) ∈ S]
P [K(D′) ∈ S] ≤ e

ε. (3.1)

Note that the smaller is ε, the more indistinguishable D and D′ are,
with respect to the query.

Differential privacy has a Bayesian interpretation. Formally, let R
be a record in the database D, and D− the rest of the database when
we remove R, i.e., D− = D \ R. Let P [R = r | D− = d] be the
probability that the value of R is r given that the value of D− is d
(prior probability), and P [R = r | D− = d,K(D) ∈ S] be the same
probability conditioned additionally on the value of the reported answer
K(D) (posterior probability). Then, a mechanism K is ε-differentially
private if and only if, for any D, d,R, r, and S:

e−ε ≤ P [R = r | D− = d,K(D) ∈ S]
P [R = r | D− = d] ≤ eε (3.2)

Note that Inequalities (3.2) essentially mean that knowledge of the
adversary about an individual record R, when he knows the values of
all other individuals, does not increase significantly by knowing K(D).
In other words, differential privacy establishes a bound on what the
adversary can lean about the value of an individual by knowing K(D).

As already mentioned, one of the advantages of differential privacy
is that it does not depend on the prior (attacker’s side information),
hence a differentially private mechanism can be designed without mak-
ing any assumption about the knowledge of the adversary.

Even more important, differential privacy is robust with respect to
composition attacks: if we query n ε-differentially private mechanisms
on two adjacent databases D and D′, the bound on the ratio of the
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probabilities becomes enε. Namely, the composition of n ε-differentially
private mechanisms gives a (n ε)-differentially private mechanism. This
means that the level of privacy (as expressed by the parameter ε) de-
creases linearly with n. In reality, one could argue that the privacy level
is represented by the bound on the probability ratio, and that therefore
it decreases exponentially with n. Still, it will never be the case that D
and D′ could be completely distinguished by composing more queries
(to distinguish them completely the probabilities for D and D′ should
become 1 and 0 respectively, i.e., the the probability ratio should be-
come infinite). This is a crucial advantage with respect to all other
known methods. Another advantage is that having the exact formula
for the privacy degradation allows to plan in advance the amount of
noise to add at each query: if our goal is to achieve ε-differential pri-
vacy, and we want to ask n queries, then we have to apply to the single
queries a noise with parameter ε′ = ε/n. In case we do not know n, then
we can think of ε as a privacy budget which gets gradually consumed by
each query: when the budget is depleted, no more queries are allowed.

Finally, differential privacy is very easy to implement: A typical way
to achieve it is to add controlled random noise to the query output, for
example noise drawn from a Laplace distribution. Furthermore, it does
not need a trusted third party between the database’s curator and the
person querying the database: the noise can be computed and added
by the curator.

3.2 Protection of identity

Most of the works that have used differential privacy to protect the
user’s identity in the context of location-based applications have con-
sidered a scenario where aggregate information about several users is
published. In such situation, differential privacy can be applied just like
in the case of databases. For instance, Machanavajjhala et al. [53] used
a synthetic data generation technique to publish statistical information
about commuting patterns in a differentially private way. Ho et al. [43]
used a spatial decomposition technique to ensure differential privacy
in a database with location pattern mining capabilities. Chen et al.
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[16] used variable-length n-grams to disclose sequential data, such as
mobility traces, in a differentially private way.

One of the most impressive work along these lines is represented by
DP-WHERE [57], which builds on a previous proposal called WHERE
(Work and Home Extracted REgions) [46]. WHERE is an approach
to model mobility traces and predict human densities over time at
the geographic scale of metropolitan areas. Some potential uses are,
for instance, to explore what-if scenarios regarding changes in resi-
dential density, telecommuting facilities, etc. WHERE uses real CDRs
(Call Detail Records) to infer probability distributions on location at-
tributes, and then, on the basis of these distributions, it produces syn-
thetic CDRs for a synthetic population. The data sets generated in
this way present a better privacy properties than the original (simply
anonymized) real data, and still retain a good utility, as demonstrated
by experiments conducted on billions of location samples for hundreds
of thousands of cell phones in the New York and Los Angeles metropoli-
tan areas.

DP-WHERE adds a further level of protection to WHERE by
adding controlled noise to the probability distributions generated in
the first phase. This is done by counting the instances for each pos-
sible attribute and value (for instance, the number of phone owners
living in a certain district, as deduced by the billing address) and then
adding Laplacian noise to the result. Afterwards, these noisy distribu-
tions are used like in WHERE to generate synthetic CDRs. The utility-
preservation of DP-WHERE has been validated against WHERE and
against the real CDRs, using about 1 billion CDRs involving over
250,000 phones, and generating traces within 30 consecutive days in an
area of about 14, 000 squared miles around New York City. As measure
of utility, they used the Earth Mover Distance (EMD) [69] which can
be described intuitively as the minimum amount of “energy” required
to transform one probability distribution into another, and normalized
so to be measured in miles. For instance, concerning the distribution on
home-work commuting distances, with cell size of 0.01◦ latitude ×0.01◦
longitude (about 0.6× 0.6 squared miles) and ε = 0.33, the EMDs be-
tween the real distribution and those of DP-WHERE and WHERE
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turned out to be about 3.5 and 3.2 miles, respectively. Considering the
large covered area and the relatively coarse granularity of the cells,
these results seem quite encouraging.

3.3 Protection of location

We consider now the case in which we want to protect the location pri-
vacy of a single user by using probabilistic noise. We are not concerned
here with protecting the user’s identity, we want just to obfuscate his
location.

Some researchers have tried to apply differential privacy to this
problem, but differential privacy as such require data from a set of in-
dividuals. Considering a set consisting of one single user only does not
give good results, because the definition would require that any change
in the user’s location should have negligible effect on the published
output, making it impossible to communicate any useful information
to the service provider. In other words, privacy would have a price too
high in terms of utility loss. To overcome this issue, Dewri [25] proposed
a mix of differential privacy and k-anonymity, by fixing an anonymity
set of k locations and requiring that the probability to report the same
obfuscated location z from any of these k locations should be similar
(up to eε). To achieve this property, [25] showed that it is sufficient to
add Laplace noise to each Cartesian coordinate independently. There
are however two problems with the proposed property: first, the choice
of the anonymity set crucially affects the resulting privacy; outside this
set no privacy is guaranteed at all. Second, the property itself is rather
weak; reporting the geometric median (or any deterministic function) of
the k locations would satisfy the same definition, although the privacy
guarantee would be substantially lower than with Laplace noise. Nev-
ertheless, Dewri’s intuition of using Laplace noise for location privacy
is valid, and [25] provides extensive experimental analysis supporting
this claim.

Most of the methods for location privacy aiming at obfuscating a
single-user location, however, use the simple and general framework
illustrated in the next section.
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3.3.1 The general framework

The seminal work of Reza et al. [77] provided a fundamental contribu-
tion to the theory of location privacy: it established a rigorous frame-
work for defining obfuscation mechanisms, and proposed various nat-
ural and general notions of privacy and utility metrics. These metrics
have been widely used as a common denominator for evaluating mech-
anisms for privacy protection in many of the works in this area. We
illustrate here some of the main elements of this framework, focussing
mainly on the notions that will be useful in the rest of this survey.
We also simplify the definitions by considering only single locations,
along the lines of the companion work [78], while the original paper
[77] considered traces.

A common way of achieving location privacy is to apply a location
obfuscation mechanism, that is a probabilistic function K : X → P(X )
where X is the set of possible locations, and P(X ) denotes the set of
probability distributions over X . K takes a location x as input, and
produces a reported location z which is communicated to the service
provider. In general X is considered to be finite, in which case K can
be represented by a stochastic matrix, where kxy is the probability to
report y from location x.

A prior distribution π ∈ P(X ) on the set of locations can be viewed
either as modelling the behaviour of the user (the user profile), or as
capturing the adversary’s side information about the user. Given a
prior π and a metric d on X , the expected distance between the real
and the reported location is:

ExpDist(K,π, d) =
∑
x,y πxkxyd(x, y) (3.3)

From the user’s point of view, we want to quantify the service’s
quality loss (QL) induced by the mechanism K. Given a quality metric
dQ on locations, such that dQ(x, z) measures how much the quality de-
creases by reporting z when the real location is x (the Euclidean metric
d2 being a typical choice), the quality loss can be naturally defined as
the expected distance between the real and reported locations, that is

QL(K,π, dQ) = ExpDist(K,π, dQ) (3.4)
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The QL can also be viewed as the (inverse of the) utility of the mech-
anism, hence we will also call it utility loss.

Similarly, we want to quantify the privacy provided byK. A natural
approach is to consider a Bayesian adversary with some prior informa-
tion π, trying to remap y back to a guessed location x̂. A remapping
strategy can be modeled by a stochastic matrix H, where hyx̂ is the
probability to map y to x̂. Then the privacy of the mechanism can be
defined as the expected error of an adversary under the best possible
remapping:

AdvError(K,π, dA) = min
H

ExpDist(KH,π, dA) (3.5)

Note that the composition KH of K and H is itself a mechanism.
Similarly to dQ, the metric dA(x, x̂) captures the adversary’s loss when
he guesses x̂ while the real location is x. Note that dQ and dA can
be different, but not necessarily. The canonical choice is to use the
Euclidean distance for both.

Apart from the use of dQ vs dA, the main difference between
QL(K,π, dQ) and AdvError(K,π, dA) is that the first is defined sim-
ply as the expected loss, without remapping. It seems natural, indeed,
not to expect the service provider to have knowledge about the user’s
prior.

In the rest of this survey we present the two main lines of research
in the area of the definition of mechanisms for location obfuscation:
the game-theoretic approach, leading to optimal mechanisms, and the
so-called geo-indistinguishability framework. Although historically the
game-theoretic approach started to be explored first, in the next sec-
tion we start with geo-indistinguishability, because we need this notion
to explain some of the game-theoretic approaches which have been de-
veloped more recently.

3.3.2 Geo-indistinguishability

The notion of geo-indistinguishability, proposed in [3], is based on an
extension of differential privacy to arbitrary metrics [12]. Using the
notation introduced in § 3.3.1, let kxy represent the conditional proba-
bility that the sanitization mechanism sends to the LSB the location y
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Figure 3.1: Geo-indistinguishability: the level ` of privacy varies with r.

when the real location is x. Also, for any pair of locations x, z, let d(x, z)
represent the distance between them. We say that the mechanism satis-
fies ε-geo-indistinguishability (where ε is a parameter representing the
level of privacy) if for any locations x, y, z we have:

kxy
kzy
≤ eε d(x,z) (3.6)

Intuitively, this means that the user’s location x is not “distinguishable"
(up to a certain level) from any other location z within a radius r from
x, where the level of distinguishability ` = ε r grows with the distance
r. In other words, an attacker can determine that the user is in – say
– Paris rather than London, and be reasonably confident that he is
in the Quartier Latin, but cannot tell where exactly in the Quartier
Latin he is: the protection increases exponentially as the distance from
the real location decreases. Figure 3.1 illustrates the situation for a user
located in “Café Les Deux Magots” (at the center of the map), which is
a popular destination in the Quartier Latin: darker areas means higher
level of indistinguishability.

Geo-indistinguishability is closely related to differential privacy. In
fact, the inequalities (3.1) and (3.6) can be derived from each other,
if we interpret x, z as databases, and d(x, z) as the Hamming distance
between x and z (i.e., the number of entries in which they differ),
and we assume that the set of possible values is discreet. As such,
geo-indistinguishability inherits the appealing properties of differential
privacy: it is independent from the prior of the adversary, and robust
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Figure 3.2: The probability density function of two planar Laplace distributions,
centered at (−2,−4) and at (5, 3) respectively, with ε = 1/5.

with respect to composition. It also has a natural Bayesian interpre-
tation, in that it establishes a bound on the amount of information
(relative to the prior information) on the real location that the adver-
sary can acquire by learning the reported location. Finally, and most
important, it does not need a third trusted party to be achieved: it
can be implemented at the user’s end simply by adding noise to the
real location, using for instance a planar Laplace as the noise function.
Such function, illustrated in Figure 3.2, is centered in the real location
of the user, and decreases exponentially with the distance from it. This
means that a user located in x report a location y with a probability
that decreases exponentially with the distance between x and y. Us-
ing the triangular property of metric spaces, it’s easy to see that this
implies the geo-indistinguishability property.

The generation of Laplace noise can be done efficiently and at
low-cost using an analytic expression, so the mechanism can be im-
plemented easily even in a computationally limited device such as a
smart phone.

Thanks to the above properties, geo-indistinguishability via the
Laplace mechanism has been adopted as the basis or as a component of
several tools and frameworks for location privacy, including: Location
Guard [50], LP-Guardian [35], LP-Doctor [34], the system for secure
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nearby-friends discovery in [51], SpatialVision QGIS plugin [67], and
it is one of the possible input methods in STAC [66]. Furthermore,
the PIM mechanism [92] can be considered an extension of the planar
Laplace to the case of traces (aka trajectories).

When the possible locations of the users are modeled by a contin-
uous region, the Laplacian was formally proved in [33] to provide the
minimal noise required to satisfy geo-indistinguishability on this region.
However, it is not the only way to implement geo-indistinguishability
efficiently. On a discrete map one can also use a planar variant of the
geometric mechanism [39], and, if the map is bounded, the exponen-
tial mechanism (cfr. [14] for its use in location privacy) and the tight-
constraints mechanism [32] are applicable as well. In § 3.3.5 we will see
that these mechanisms actually outperform the Laplacian when they
are applied on a discrete grid.

Although geo-indistinguishability presents various appealing as-
pects, it has the problem of treating space in a uniform way, imposing
the addition of the same amount of noise everywhere on the map. This
is sometimes undesirable: for instance, a user located in a small island
in the middle of a lake should generate much more noise to conceal his
location, so to include (as reported points) also other locations on the
ground, because the adversary knows that it is unlikely that the user is
in the water. In order to cope with this problem, [14] proposed to use
“elastic distinguishability metric” that warps the geometrical distance,
capturing the different degrees of density (of likely locations) of each
area. As a consequence, the obtained mechanism adapts the level of
noise so to achieve the same degree of privacy everywhere.

3.3.3 The problem of traces

The method of geo-indistinguishability was designed for protecting the
user’s location when making a request to a LBS. In practice, however,
a user rarely performs a single request. Typically, he performs different
activities throughout the day: for instance he might have lunch, do some
shopping, visit friends, etc. During these activities, the user may pro-
duce several requests: searching for restaurants, getting driving direc-
tions, finding friends nearby, and so on. For each request, a new location
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needs to be reported to the service provider. If we sanitize the requests
one by one by independently adding noise at the moment when each of
them is executed, then the privacy degrades as the number of requests
increases, due to the correlation between the locations. Technically,
the mechanism independently applying ε-geo-indistinguishable noise to
a sequence of n location (trace) satisfies (n ε)-geo-indistinguishability.
This is exactly the same phenomenon that happens with differential
privacy when we have repeated queries (cfr. § 3.1). Note anyway that
any obfuscation mechanism is bound to cause privacy loss when used
repeatedly; geo-indistinguishability, like differential privacy, has the ad-
vantage of allowing to directly quantify this loss terms of the number
of repetitions.

In order to mitigate this degradation and protect the privacy of
traces, [13] had the intuition that the correlations between successive
locations in a trace could actually be exploited, so to avoid reporting
all the time a new sanitized location. The idea is to use a prediction
function that tries to guess the new location based on the previously
reported locations. The proposed mechanism then tests the quality
of the predicted location: in case of success it reports the prediction,
otherwise it reports the new location sanitized with new noise. Note
that reporting the predicted location does not increase the knowledge
of the adversary, since he knows the previous locations, so he could
calculate the predicted location as well.

The above method helps to mitigate the degradation of privacy
when the requests have to be sanitized “on the fly”, like in the example
illustrated above, where the used has to issue a new request whenever
he needs a new service. One problem in this scenario is that, in general,
the user does do not know in advance how many requests he is going to
issue, so he cannot plan what should be the level ε′ of privacy to be used
in each application of the mechanism so to ensure a certain level ε of
privacy at the end. One solution (not too satisfactory) could be to use a
privacy budget, like in differential privacy, and disallow further requests
when all the budget is consumed. Another, less dramatic, solution could
consist in increasing the noise progressively at each application of the
mechanism. For example, if we aim at achieving the privacy level ε, we
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could use as parameters the geometric series {ε/2n}n since
∑∞

1 ε/2n = ε.
On the other hand, if all the locations of the trace to be sanitized

are known in advance, then there may be better methods to sanitize
it, possibly providing a better trade-off between privacy and utility.
This scenario is considered for instance in [92], which proposes to add
Laplace noise directly to the convex hull of the trace.

3.3.4 The game-theoretic approach and optimal mechanisms

As argued in § 2, it is important to achieve a good trade off between
privacy and utility. A major line of research in the area of random-
ized mechanisms for privacy has been devoted to designing the optimal
mechanism, i.e., computing the noise function that gives the optimal
trade-off between privacy and utility.

The first paper to undertake the challenge of producing an optimal
mechanism was [80]. The authors of this seminal paper proposed an
intriguing interpretation of the problem in terms of 0-sum Stackelberg
games. In such games, a leader (the user) and a follower (the attacker)
interact strategically, trying to maximize their own payoff. The leader
decides on his strategy, i.e., the distributions kx· (cfr. § 3.3.1), knowing
that it will be observed by the follower, who will optimize his choice
based on this observation. We assume that that the adversary knows the
choice of the distributions kx· and will use this knowledge to improve
his attack effectiveness, by a judicious choice of the remappings hx·
(cfr. § 3.3.1). On the other hand, the user has to take into account the
adversary’s choice of the hx·’s when choosing the distributions kx·’s for
his mechanism. The fact that these are 0-sum games means that the
user’s gain coincides with the adversary’s loss. The payoff function, i.e.,
the adversary loss considered in [80], is the privacy measure defined in
(3.5) as the expected error of a Bayesian adversary. In addition, [80]
extended the classic formulation of a Stackelberg game with an extra
constraint to ensure that the quality loss QL, as defined in (3.4), is
not greater than a threshold established by the user. The Stackelberg
equilibrium (aka the saddle point strategy) of the game, under the QL
constraint, defines exactly the optimal mechanism in the tradeoff curve
between the privacy and the quality of service requirements.
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Note that the optimal mechanism defined in this way depends by
definition on the prior knowledge of the adversary, because the expected
error of a Bayesian adversary (which is the payoff function) depends on
the prior, and consequently the saddle point depends on it as well. This
contrasts with the geo-indistinguishable mechanisms that, as explained
in § 3.3.2, are independent from the adversary.

In order to compute the optimal mechanism, [80] shows that the
game can be reduced to a linear optimization program, where the vari-
ables are the strategies of the user and the adversary, kxy and hyz
respectively. The solution of the program gives the equilibrium strat-
egy, and the values of kx· in this strategy are the distributions defining
the mechanism.

In [79], the full version of [80], the authors extended the above model
to cover inference attacks that are applied to individual locations in
the user’s trace at various times, e.g. past, current, or future positions,
instead of focusing only on his current location. The adversary exploits
his knowledge about the correlation between the positions of the user
along her trace to construct a prior upon which he makes his strategy
of localization attack.

We note that in [80, 79] the authors fix the utility and and opti-
mize the privacy. Two subsequent works, [10] and [75], have considered
instead the opposite approach of fixing the privacy and optimizing the
utility. Furthermore, [10] considered as privacy constraints the inequal-
ities expressing geo-indistinguishability, while [75] considered three dif-
ferent types of constraints: geo-indistinguishability, AdvError, and
the combination of the two. Interestingly, the resulting optimal mech-
anisms showed similar utilities in all these three cases. This is prob-
ably due to the fact that geo-indistinguishability is strictly related to
Bayesian inference.

As an example of how the corresponding linear programs look like,
we illustrate in Table 3.1 the linear program of [10]. The notation is
the same as in § 3.3.1, and kxy represent the variables of the program.
It is interesting to note that, when the constraints are those for geo-
indistinguishability, it is indifferent to include a remapping function
in the target QL. In fact [10] showed that in their setting there al-
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Table 3.1: The linear program of [10].

Minimize: QL(K,π, dQ)

Subject to: kxy ≤ eεdX (x,z)kzy x, y, z ∈ X∑
y∈X kxy = 1 x ∈ X

kxy ≥ 0 x, y ∈ X

ways exists a so-called direct optimal mechanism, i.e., a mechanism for
which QL coincides with the expected quality loss of an LBS allowed
to apply an optimal remapping. The main disadvantage of the optimal
approach is that it is based on linear programming, and therefore it
is computationally very expensive, and not feasible when the number
of locations is high. To address this problem, Bordenabe et al. pro-
posed a method to reduce the complexity at the price of renouncing to
perfect optimality [10]. The idea is to reduce the number of the con-
straints expressing geo-indistinguishability by considering only a subset
of them, corresponding to a spanning tree in the underlying graph. The
missing constraints are implied by the triangular inequality, in combi-
nation with a dilation factor. In this way, the number of constraints
becomes O|X |2, i.e., quadratic on the number of locations, in contrast
with the O|X |3 of the original program. In the same work, Bordenabe
et al. showed with various examples that the decrease of utility with
respect to the original program is not too significant, while the gain
in computation time is considerable. Still, even with the reduction to
O|X |2 constraints, solving the linear program is unfeasible when the
cardinality of X is of the order of hundreds.

3.3.5 Discussion

We now discuss and compare the various randomized approaches. First,
we contrast the optimal mechanism with the others to see how signifi-
cant is the difference in terms of the privacy/utility trade-off. Second,
we reflect on the meaning of the measures defined in § 3.3.1 and discuss
to what extent they provide a useful notion of privacy protection and
utility.
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Comparison We compare the optimal and the geo-indistinguishability
-based approaches with respect to the trade-off between privacy and
utility loss as defined in § 3.3.1.

The advantages and disadvantages of the above approaches could
be, at a first thought, resumed as follows: Generating the noise
via an “immediate” method (Laplace, geometric, exponential, tight-
constraints)1 is efficient, but there is no guarantee of optimality. Gen-
erating the noise via linear programming techniques, on the other hand,
is computationally expensive, and not feasible for more than about hun-
dred locations, but it gives the optimal trade-off between privacy and
utility.

A recent paper [15], however, has revisited this judgement and ar-
gued that the greater utility of the optimal method depends mainly
on the use of the background knowledge and consequent remapping.
The immediate methods in themselves are independent from the back-
ground knowledge, but, if the background knowledge is known (as it is
assumed in the optimal method), then it can be used to enhance the
immediate methods via an optimal remapping, thus increasing their
utility. A key observation is that remapping (as any post-processing)
does not affect the property of geo-indistinguishability, hence the pri-
vacy constraints are preserved by this transformation. Note also that
the remapping can be applied at the user’s end, without any modifica-
tion of the service provider.

Some of the resulting methods (the remapping-enhanced Laplace,
geometric, and tight-constraints) were evaluated by [15] on real-world
datasets from the Gowalla and Brightkite social networks. In particu-
lar, Figure 3.3b illustrates the boxplot of the utility loss of the various
methods applied to the Gowalla dataset on a rectangular region of
size 12 km × 28 km covering most of the San Francisco peninsula (Fig-
ure 3.3a, region delimited by the red line). Here, l represents the degree
of privacy. More precisely, l = ε d where d = 0.1 km is the size of a loca-
tion. As we can see from the figure, the experiments show consistently

1These methods are called “direct” in [15]. In this survey we use the term “im-
mediate” instead, to avoid confusion, since the adjective “direct” was already used
earlier to denote a mechanism that incorporates the optimal remapping.
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Figure 3.3: Evaluation of the immediate methods with and without remapping

a significant increase of utility when the remapping is applied.2 Also,
as anticipated in § 3.3.2, we can see that both the geometric and the
tight-constraints mechanisms perform better than the Laplace on a dis-
crete grid, and that the tight-constraints one performs slightly better
than the geometric one.

The next set of experiments in [15] focused on the comparison be-
tween the remapping-enhanced immediate methods and the optimal
mechanism. Since the latter can be computed only for a small number
of locations, they had to consider a relatively small area. Figure 3.4
displays the boxplot for the utilities on a region in San Francisco of
2 km × 2 km. The area is divided in a grid of 10 × 10 square cells
(locations), each of size 0.2 km × 0.2 km. As we can see, the remapped
methods achieve an utility close to the optimal one.

Concerning the (un-)feasibility of the optimal mechanism: some re-
searchers claim that it be scaled to large areas by making the grid
coarser. We argue, however, that the optimality provided by this ap-
proach is questionable: in a grid the real locations are approximated

2Interestingly, [61] has shown that the application of an optimal remapping can
turn any obfuscation mechanism into an optimal one in terms of average adversarial
error. Namely, the resulting mechanism has maximal AdvError among all the
mechanisms that have the same quality loss QL.
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Figure 3.4: A Comparison between the optimal mechanism and the immediate
ones constructed on a grid of 100 cells covering a region in San Francisco

by the center of the cell in which they are situated, hence, the coarser
is the grid, the looser is this approximation. The optimal mechanism
constructed on a coarse grid is optimal for that grid, but it is no longer
optimal when considering the quality of service on the “real” continu-
ous surface. In fact, [15] shows that on a grid of square cells of size 2
km × 2 km the “optimal” method has a much worse utility than the
immediate methods. This is due to the fact that in such a grid a real
location can be up to

√
2 km away from its best approximation. An-

other important observation made in [15] is that, as the grid becomes
coarser, the optimal mechanism tends to approximate the deterministic
‘cloaking’ mechanism.

On the meaning of the privacy and utility measures The authors
of [61] have critically revisited the optimal method and the privacy
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measure AdvError defined in § 3.3.1. They have observed that, for
every level of utility, there is an optimal mechanism which does not
provide adequate privacy protection, despite it (obviously) maximizes
AdvError. They construct the mechanism as follows. Let z∗ be a fixed
location, and let Q∗ be the utility of the mechanism that always reports
z∗, independently from the real location. Then, choose the desired level
of QL (quality loss) Q (with Q ≤ Q∗) and set α = 1−Q/Q∗. Now, define
the so-called coin mechanism fcoin as the mechanism that, when applied
to a real location x, reports the same location x with probability α,
and reports z∗ with probability 1 − α. Surprisingly, it turns out that
fcoin is an optimal mechanism in the sense of [80], namely it provides
the maximal AdvError among all mechanisms with the same QL.
Clearly, however, such a mechanism does not provide a good privacy
protection according to common sense, since it completely reveals the
location of the user with probability α.

The authors of [61] come to the conclusion that the unique criterion
of maximizing AdvError is not sufficient to obtain a good mechanism
for privacy protection, and propose to apply also other criteria, based
on the amount of entropy, or on the worst-case utility loss. They also
show that the geo-indistinguishability measures perform well with re-
spect to these criteria.

Incidentally, the authors of [61] argue that also QL might be un-
satisfactory as the only measure of utility, since it does not provide
guarantees for the worst case: the distance between a real location and
the reported one might be large even if the level of QL is considered
sufficient. And clearly, a mechanism that performs well in average, but
may fail to indicate the closest hospital when the user desperately needs
it, would not be considered very reliable.



4
Conclusion

This monograph has revised some of the techniques for privacy pro-
tection, focusing in particular on the anonymity technologies (k-
anonymity, l-diversity, spatio-temporal cloaking, mix zones) and ran-
domized methods for location obfuscation (geo-indistinguishability and
optimal methods). We have tried to present a comparative, critical
view of the main approaches in the above areas, without pretending
to be comprehensive and cover all aspects of location privacy: The
problem is multi-faceted, and literature in this field is huge. For the
interested reader, we recommend as further reading other surveys such
as [49, 90, 91, 36, 88]. We also recommend [19] for a neat overview of
the spatial cloaking approaches.
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