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Quantifying Registration Uncertainty
with Sparse Bayesian Modelling

Lo'c Le Folgoc, Heré Delingette, Antonio Criminisi, Nicholas Ayache

Abstract—We investigate uncertainty quanti cation under a
sparse Bayesian model of medical image registration. Bayesian
modelling has proven powerful to automate the tuning of reg-
istration hyperparameters, such as the trade-off between the
data and regularization functionals. Sparsity-inducing priors
have recently been used to render the parametrization itself
adaptive and data-driven. The sparse prior on transformation
parameters effectively favors the use of coarse basis functions to
capture the global trends in the visible motion while ner, highly
localized bases are introduced only in the presence of coherent
image information and motion. In earlier work, approximate
inference under the sparse Bayesian model was tackled in an
ef cient Variational Bayes (VB) framework. In this paper we are
interested in the theoretical and empirical quality of uncertainty
estimates derived under this approximate scheme vs. under the
exact model. We implement an (asymptotically) exact inference
scheme based on reversible jump Markov Chain Monte Carlo
(MCMC) sampling to characterize the posterior distribution of
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2

0 2,

Fig. 1. Graphical model of registration. The generative model of data
D involves a transformation of space, and noise governed by a set of
underlying parameter® . Hyperpriors (with hyperparametetdp) are in

the transformation and compare the predictions of the VB and
MCMC based methods. The true posterior distribution under
the sparse Bayesian model is found to be meaningful: orders
of magnitude for the estimated uncertainty are quantitatively
reasonable, the uncertainty is higher in textureless regions and

turn imposed over the noise parameters. The transformation is parametrized
as a linear combination of prede ned basis functidns; k = 1 Mg

with associated weights/y . Priors on the transformation smoothness and

on the relevance of individual bases introduce additional parameters (
and z,o respectively). Random variables are circled, hyperparameters are
squared. Arrows capture conditional dependencies. Shaded nodes are observed

lower in the direction of strong intensity gradients. variables or xed hyperparameters. The transformatiois fully determined

by its parent nodes (they andwy), hence the doubly circled node. The

Index Terms—Registration, Sparse Bayesian Learning, Un- content of plates is replicated (M times).

certainty Quanti cation, MCMC, Reversible Jump, Automatic
Relevance Determination.

eld structure inherited from a nite-element discretization
N i . . of the domain, they characterize the posterior distribution of
Non-rigid image registration is an ill-posed task that SURjisplacements by Gibbs sampling. Rishotmnal [4] extend
plements limited, noisy data with ‘“inexact but useful' priof,q approach to the case of unknown condence on the
knowledge to infer an optimal deformation between images gfserved data and on model priors respectively, aiming to
interest [1]. As a standard processing step in many pipeling§qress the critical issue of nding an objective trade-off
for medical imaging, for computational anatomy & phySipenyeen data t and regularity-inducing priors. The so-called
ology, registration would benet from the development ofemperature hyperparameters are treated as latent variables
principled strategies to analyze its output and subsequentlyy approximately marginalized over, while a Markov chain
re-evaluate model assumptions. Bayesian modelling providgg, fy|| dimensional Metropolis-Hastings transitions traverses
a framework to explicitly incorporate prior assumptions and rése space of transformation parameters. The aforementioned
assess their relevance in retrospect. We focus here on anothgfors proceed in the framework of Markov Chain Monte
expected bene t of Bayesian approaches that is, the possibilgy, 5 (McMC) sampling to explore the posterior distribution
to quantify uncertainty in the optimal solution. _of model parameters. MCMC sampling yields an arbitrarily
Probabilistic approaches to registration and uncertainl,oq characterization of the posterior provided that enough

quanti cation are not yet widespread in the literature. Ge&mpjes can be drawn within the available computational bud-

and Bajcsy [2] laid the groundwork for a Bayesian intefget _ inference becomes exact in non nite time. In practice,
pretation of registration, extending the mechanical formulgse computational burden and the technicality of the Markov
tion of Broit [3]. Exploiting the Gaussian Markov randomcpain implementation quickly become limiting factors. As an

L. Le Folgoc is with the Asclepios Research Project, Inria Sophia Antipol@ltem‘?t've' Var'at'or'al Bayes (VB) 'nference prOYIdQS tools
and with the Microsoft—Inria Joint Centre, France. H. Delingette and NO ef ciently approximate the (true) posterior distribution on
Ayache are with the Asclepios Research Project, Inria Sophia Antipolis, 2084 chosen family of variational (approximate) posteriors. The
route des Lucioles BP 93, 06902, Sophia Antipolis, France. . L . .

Microsofehoice of variational posterior realizes a trade-off between the

A. Criminisi is with the Machine Learning and Perception Group, ] ) ) -
Research Cambridge, United Kingdom. computational burden and the quality of the estimates. Using

I. INTRODUCTION
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a parametric (FFD) representation of the displacement eldparse Bayesian model of registration and devise a principled
Simpsonet al [5], [6] approximate the posterior distributionstrategy for exact inference. The proposed design of the
within a “convenient' family for which transformation param-Markov chain exploits insight gained about the model to
eters and model hyperparameters factorize. The variatiobgpass standard impediments of MCMC schemes. Hyperpa-
factorization renders the approach applicable to real scatemeter uncertainty is fully accounted for by marginalization
registration tasks. As a drawback estimates of uncertairdfthe nuisance variables. In part Il we review breakdown sce-
quantify variability in the displacement eldconditionally narii in which the approximate posterior signi cantly departs
to the inferred hyperparameters, but disregard uncertairitpm the true posterior, leading to poor approximate predictive
induced by hyperparameter variability. Although uncertaintyncertainty. In part IV we conduct preliminary experiments to
guanti cation is peripheral to their work, Richaret al [7] assess the validity of MCMC uncertainty estimates.

develop for the related task of atlas building a mixed SAEM

and MCMC approach where nodes of the nite-element mesh [1. STATISTICAL MODEL AND INFERENCE

are updated Vi‘,"‘ Metropolis-Hgstings-Within-Gibbs 'Fransitions; Registration infers, from prior knowledge and limited data
Zhanget al [8] implement a mixed SAEM and Hybrid Monte i, ' ransformation of space that pairs homologous features
Carlo approach for a Bayesian MAP estimation of the templaie oo s of interestse(g. organs or vessels, in a medical

and of t.emperature hyperparameters in ad!ffeomorphic ,Sett"%%tting). The section starts with a succinct description of the
In this paper, we compare the approximate posterior re;

A . gistration model, and offers insight into its mechanisms.
turned by a Variational Bayes method with an MCMC metho ig. 1 provides a graphical representation thereof. An MCMC
based on the same underlying model.

. naer We focus on W8, ,ach for systematic characterization of the posterior dis-
Bayesian model of registration developed in earlier workip ion is then devised

[9]. The main goal of this model is to allow not only for
the automatic determination of registration parameters (such i i )
as the trade-off between image similarity and regularizatidn Bayesian Model of Registration

functionals), but also for a data-driven, multiscale, spatially 1) Likelihood model:The generative model of data makes
adaptive parametrization of deformations via the recourse t@xplicit the relationship between the ddbaand the spatial
sparsity-inducing prior on transformation parameters. mapping . It is specied by a likelihood modep(Dj ; P)

Our contribution is twofold. Firstly, the complexity of the(often conditioned on a set of hyperparamet&$ that
model renders inference non trivial. While in our previoutypically assumes the form of a Boltzmann distribution
work approximate inference was conducted on the groundspgDj ; P) / exp E p(D; ; P). For landmark registration,
Variational Bayes, we adopt here an exact MCMC-based apiransformation that approximately maps corresponding key
proach. At a high level, the space of transformation paramet@aintsftig andfTig,i =1 N, between a template object
is explored by a reversible jump Markov chain [10]. It providegnd a target object is sought. A standard choice of energy
a principled mechanism to elegantly jump between competiigy the sum of squared distances between pairings, up to
parametrizations of the displacement eld, regardless of themultiplicative factor:
dimensionalities, without the prohibitely expensive compu- W
tation of so-called Bayes factors. This allows to seamlessly E(D;; )= = KT ( t)K?: 1)
re ne the parametrization of the transformation, adapting the 2 i=1
granularity of the parametrization to the granularity of the
underlying motion and the local informativeness of the image,
all the while exploring the most likely deformations. At & (N )
lower level, we capitalize on closed form marginalization ¢
most nuisance variables, and integrate second-order knowle
of the posterior distribution in proposal kernels. This yields &
algorithm that reliably and consistently traverses the parame (L
space towards the most likely deformations in spite of tt
model intricacies.

Secondly, we compare the expectation and uncertair Yo
predicted by both the fast (approximate) Variational Baye

Ko
T
N
P
inference and the (qsymptotically) e>§act MCMC inferenc 0 B T
scheme both on empirical and theoretical grounds. We fou u
J

that the expectation is typically well approximated by the VI \N )
inference, but that the uncertainty is underestimated. We c..

hibit two mechanisms f[ha,‘t explalrj this behaviour. FurthermoHeg. 2. Graphical representation of the generative data model (using the same
we show that uncertainties predicted by the exact model @@phical symbols as in Fig. 1). Residuals between the xed indaged the

consistent with intuition: the orders of magnitude are soundélrpéd image ! are aSSrl:med to be diS%i)bUE]edbfil_ccorfC?nI? toa r?]ixture
; i hi ; ; L Gaussian components whose parameter@robability of falling in the
the uncertainty Is hlgher in textureless regions and lower I?{ﬁ component) and | (inverse variance a.k.a. precision parameter for the

the direction of strong intensity gradients. Ith Gaussian component) are regarded as latent variabje2 f 1 Lg
The article unfolds as follows. In part Il we describe th@ssigns the corresponding voxel to one of thenixture components.
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associated weighty, 2 RY:

10.0}
—— GMM model

X
$5D model u(x) = Kwe = ()w: ®)
1k M

7.5¢-
x) = 1 w) | andw! = whowl, are
respectively the concatenation, faor = 1 M, of ((x)
5.0 andwy. Arbitrary choices of basis functions, are possible.
B-splines é.g.[11]) present desirable properties in terms of
smoothness and interpolation. Here thgs instead consist
of multiscale Gaussian radial basis functions (RBFs) whose
centers lie on a regular grid of points (typically, decimated
voxel centers). Multiscale Gaussian RBFs possess attractive
=50 =50 5 300 500 analytical and computational properties.
Intensity residue 3) Transformation priors:The weightsv are endowed with
a generalized Spike-&-Slab prior that favours both smooth-

Fig. 3. Energies coresponding 1o example GMM (black) and SSD (dottedbss of the resulting displacement eld and sparsity in its
models. The voxelwise penalty is shown as a function of the intensity residual.

The effective soft threshold on the penalty incurred for large intensity residuQ@rametrizatio\n- The proper_ties of thi$ prior are central to_
results in increased robustness of the GMM. the proposed “sparse Bayesian' modelling and to our analysis

thereof. Each basisy is assigned a distinct activation variable
z¢ that controls its inclusion in the active parametrization
For pairwise registration of a xed imag& and a moving (or exclusion therefrom). Iz = O the basis i is pruned

image |, a mixture-of-Gaussians model (GMM) of intensityout of the active parametrization. We do so by designing
residuals is adopted here as a exible and robust variant pfwkjzx = 0) as a Dirac distribution centered @tIf z, =1
the widespread sum of squared differences (SSD). Fig. 2 sullie basis ¢ is included in the parametrization. The prior
marizes this model of data in graphical form, making explicRn such bases is designed as a joint, structured Gaussian
the nodes?; Hp ; D of Fig. 1. The multiple components of thedistribution that penalizes lack of smoothness in the induced
GMM naturally cope with the fact that intensity residuals maglisplacement eld [12]. Let us denote b§ the set of such
rightfully take high outlier values for an undeterminate fractiotndicesk for whichz, = 1 and byws the concatenation of the
of voxels, because of acquisition artefacts, heteroscedaswgresponding subset of weighita; k 2 Sg. For an arbitrary
noise and model inaccuracies. At voxel cenigrthe intensity linear differential operatoD , we wish to penalize high values
residualr; = J(vi) I[ *(v)] is assigned to thdth of the quadratic energkDuk?® = wiRsws, whereRs is
component of the mixturd, | L, if the L-way categorical thejSj jSj matrix whosek;I-th coefcient ishD jD i.
variable 2 f1 Lg takes valuel. If so the residual The Gaussian distributioN (ws 0;f djSjg 'Rg') is a
r; follows a normal distributiorN (0; | ). The component natural choice of prior fop(wsjS), that we adopt hence-
assignment; follows a categorical distribugon and takes valuéorth. Note that the covariance normalization #§5], where
| with probability |, normalized such that |, | =1.For d is the image dimension, departs from that of [9]. Un-
distinct voxelsv; andv;, residualg; andr; (resp. component der this prior d jSj W'S,sts is  2(djSj) distributed so
assignments; and ¢ ) are assumed to be independent. Thdat immediately relates to the expectation of the energy:
correspondingyGMM energfp (D; ; ;) is given by Eq. Epwsjs)(kDuk?) = 1 and Eyq)(kDuk?) = 1. The
(2), with Z, = = 2= | a normalizing constant: prior over all weightsw conditioned on the state of the gate
variablesz = z;  zy "is best summarized in the form of
Eq. (4), whereS is the complement o§:

2.5¢-

Associated energy value

0.0+

logw —texp — Jm] I ‘)] @ . 1

9Lz 2 L@ )= Nws 0 ReD Nws 000 @)
) ) 4) Hyperpriors: Parameters introduced in the speci cation
Fig. 3 shows the typical prole of the GMM energy com-uf priors are in tumn treated as latent variabless endowed
paratlv_ely Wlth the S_SD. The assumption of independence Rfih 3 Gamma prior(  jao; bo) that is conjugate tp(wjz; ).
voxelwise residuals is known not to hold (see. [S], [9]) The parameters, (resp. ) involved in the likelihood model

and to affect the outcome of the probabilistic registratiogy,, image (resp. landmark) registration are endowed with
Since a proper probabilistic account of correlations in ime”SiFMdependent Gamma prior§ 1j o: o). The noise mixture

residuals is both beyond the scope of this work and i”ele"a;ﬂ’oportions =f, L g are assigned a Dirichlet prior
to the ensuing developments, thetual Decimationscheme Dir( j ), with =( 1 D).
of [5] is reproduced instead for simplicity. Independent Bernoulli prio8(z«j «) on each, constitute

2) Transformation parametrizationA small deformation a natural, conjugate hyperprior speci cation for the activation
standpoint is adopted for convenience. The displacement eldriablesz. The positive masd ¢ concentrated at, = 0
u:x?2 RY 7! u(x) = 1(x) x 2 RYis parametrized as a result explicitly encodes sparsity. Assuming al= ¢
by a linear combination oM basis functions (:) with to be equal, all parametrizations using the same number of



Accepted for publication in IEEE Transactions on Medical Imaging (Preprint) 4

active base$Sj are a priori equally probable. In addition the 2) Prior probability of basis inclusion:Interactions be-
cost of including a new basis in the active parametrization tseen overlapping bases can be better understood by looking
independent of the current number of active bases. Howevat,the probabilityp(zxjw «;z «;H) of inclusion of a new

we opt instead for a stronger priga(z) / ( d'%) 1. The basisz; given a known con gurationz , for the other
Gamma function( ) is a natural extension of the (integerpases and their associated weightsy. The statew , of
factorial to real values, yielding a prior that increasinglpther bases informs us about the expected regularity of the
penalizes each new inclusion. This prior was found to perforsignal uy, , introducing dependencies between and z
better w.r.t. sparsity, as can be theoretically argued from thenditionally tow . Denoting byz (resp.z) the state with

analysis of the marginal prigo(wjz). zx = 1 (resp.zx = 0), we see from Bayes' rule that:
P(zk =1jw ;2 ) _ P(W «jz) p(2)
: o - = : ©)
B. Model analysis P(zc =0jw «;z &)  p(wW «jz) p(z)

1) Marginal prior and marginal likelihood:Critical insight Where the dependence on hyperparameters is made implicit for

into the statistical model can be gained by considering t§@hvenience of notations. Leaving details of derivations aside,
prior p(wjz;H) and likelihoodp(Djw;c; H) with so called We note that in the limit of uninformative values, the ratio of

temperatureparameters and marginalized overe.g: Eq. (9) takes the form of
z | disi
p(wiziH) = pwjz;; H)p( jH)d:  (5) pE i #Rac i 7 g
R P(z)  iRuxl wh Rsw ¢
The multivariate Student distributian(j ; ) with location

i - - ko=
parameter , inverse scale matrix and degrees of freedom Wherf Sl is the set of active basels (elxcludlmg, pro=
Rk RkW and x = Rk R Rs Rk. The middle

naturally appears in analytic derivations, yielding the followin?actor penalizes the inclusion of badisif it overlaps with

expressions for the prior and likelihood: , , , >
bases in the active s&, in the sense of the metric induced

oy — ) .0 by R.  is a measure of overlap of badiswith all bases in
;H)= N 0;0 t 0; —djSjR 6 . ! X T :
p(wjz; H) Ws Ws (0}} ISiRs () the active se6 and is null if basik is perfectly collinear to
S. The rightmost factor favors the inclusion of baki#f it is
p(Djw: c: H) = ¥ £ L 0, % a priori expected to yield a signi cant increase in regularity.
_ 0
=t _ _ C. Posterior Exploration by MCMC Sampling
Yéheie - 2".’]0’ ! 3.2 |°:]S_'S the 3et_°f aCt'|Ve ba_seshand For any set of pointX = fx; xng in the admissi-
JS) =z lts cardinal.J, = [vi] ijc=1 'S "€ phle domain , consider the vector of displacement} =
vector of voxel values in |mlagé, for thosel voxels assigned u(xq)! u(xn)! . We wish to characterize the joint poste-
to component, andl;,  ,* = T W (vidl ijc=1 rior distribution p(ux jD;H) of any such vector of displace-

is similarly de ned for the warped imagé . For a ments for any discrete sé¢. To that aim we merely need
xed choice of active baseg, the posterior distribution of to characterize the posterior distributigfwjD;H) of the
the weightsp(wjz;c;D;H) is proportional to the product weightsw involved in the parametrization of the transforma-
of the prior Eq. (6) and likelihood Eq. (7). In the limittion 1 sufciently well.
of uninformative hyperpriorsp; o ! 0, o; 0! 0and 1) Related workzMCMC methods are tools of predilection
assuming. =1 for the sake of illustration, to explore arbitrarily complex distributions in a principled
1 1 manner. Gibbs sampling [13] cycles between latent variables,
i (WIN - prw ]S : (8) sampling from their conditional distributions in turn while
other model variables remain xed. It is attractive when
where ix[w]? is the data error and pr[W]2 = kDuyk? the conditional distributions are known in closed form whereas
regularizing energy. In particular the posterior distribution ighe joint distribution is untractable or computationally costly
invariant to rescaling of the data error, and hence to rescalittgsample. When the conditional cannot be sampled directly,
of the intensity pro le, after marginalizing over temperatur@ component-wise proposal may be used instead within a
parameters. Note also that, for a xed parametrizationthe Metropolis-Hastings (MH) step (Metropolis-Within-Gibbs).
ratio of posterior probabilities of two distinct parameter setdnfortunately, Gibbs sampling of temperature parameters is
w; andw, may become arbitrarily overwhelmed by the prioprone to failure, with the chain drifting away from regions
as the number of bases in the parametrization grg&gs (  of high probability for the duration of any nite MCMC
N). If not for sparsity, this might render MCMC characterizarun. Collapsing temperature parametets when sampling
tion of the posterior unreliable (usirgg.Metropolis Hastings regressor variablesv is highly opportune. In the context
transitions), potentially making its outcome dependent on tloé registration, Risholm et al. [4] propose a MH scheme
size of the parametrization. Fortunately the proposed spavgleere marginalizing over temperature parameters induces the
model has a clear mechanism to prevent overparametrizatexpensive computation of partition functions, for which an
and render overlapping bases largely mutually exclusive, iasricate procedure based on Laplace approximations is de-
discussed next. signed. In the proposed model, the computation of partition

p(wjz;c;D;H)/N wg 0;0
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functions (speci cally, marginal likelihoods, a.k.avidenceps L( H ) |, these "Gibbs-like' proposals are computationally
may arise as well when sampling gate varialzdiesSelecting a appealing. As a nal tweak to alleviate modal assumptions, we
speci ¢ con gurationz can be interpreted as a choice betweerintroduce dependency on the current valuevpf yielding
competing models of varying complexity and dimensionalityhe following component-wise proposal instead, wih
The problem of estimating the evidence for a model is walljyaia 1 ands 1.
studied in the statistical literature. A variety of methods exist, | _ . _
ranging from the straightforward Laplace approximation to Ge(Wic ! wi) = N (wic mic(Wi); s &) (13)
more principled approaches typically exploiting samples from Mc(Wi) = (1 ThmaLa) Wi + Thvala pos (14)
the (p_os&bly augmente_d) posterior, mcluc_:llng Chib's methqg not set to1, the factors accounts for potentially fatter
[14], importance sampling, bridge sampling, path samphr}g. . o
. . ils of the true conditional posterior in the proposégOS and
(seee.g.[15]) and reversible jump MCMC [10]. The latter o )
T . . . ) k depend onH and T , which in the formal reasoning
approach is in fact primarily concerned with sampling frorp) S
. AT . . ased on the Laplace approximation are computed around
a posterior distribution involving competing models (freely

) ) : > ()= 1d+ ()'w .InfactT andH can be replaced by
jumping between models in the process) and merely obtains . A
evidence ratios as a byproduct. Reversible jump MCME andH,, computed from a (local) quadratic approximation

H o Wi, . 1 —
is appealing in our setting where competing modelsre of p(wjb;z;c; ;) around the current “() = ld +

X . . . . . ()'w. In that case Eq. (13), (14) exactly coincide with a
organized in series of nested models of increasing complexit : : 4 . .

. . . o . . mponent-wise Hessian preconditioned Metropolis Adjusted
rendering its machinery mostly invisible. Reversible jump

MCMC proceeds in the general framework of Metropolis- ngevin Algorithm (HMALA,) [16]-[18], which exploits rst

. and second order local information about the target distribution
Hastings, hence a sound proposal must be crafted. We defive . : L
; . . for increased ef ciency. However the local approximation
a sensible family of proposals from a modal analysis of the o ) .
. o generates additional computations at each step and offers little
posterior distribution.

2) Modal analysis of the posterior & proposaEor the gain if we expect the posterior to be unimodal. Given our

model described in IIl-A, the Laplace approximation of th8xper|mental settings, we use the global approximation with

(conditional) posteriop(wjD: z: ¢; H) around its modev = adaptation during the burn-in phase (at that stage , T

o . . andH are recomputed every few iterations from statisji®js
arg max, p(wjb; z; ¢;H) takes the following form: Sn 2 averaged with decaying weights over past samples).

log p(wjD;z;c;H) 3) Reversible jump MCMC schemé&he groundwork for
1 .+ N=2 this scheme was laid in sections 1I-B1, [I-B2, 1I-C2. The
5172_2 (T w)l H (T w)+ reversible jump procedure itself lets us generate samples of
0 lik ™

the joint posteriop(w;z;cjD;H) with temperature parame-

1 ap+jSj=2 ... | ters marginalized over. Dropping irrelevant variables in the
T — + . .
2p + 3jSj=2 diSjwiRsw + const (11) generated samples, we obtain samples of the marginals of
where for the sake of illustration we take a single compone'HttereSt’e'g' p(WJD; H). The reversible ]ump scheme simply
) _ _ ) _ 5 _ o proposes to move from a current statez;c to a new state
mixture L =1,¢ =1 foralli, = ). 5=w Rsw o . . .
. . : 5. w; z; & and computes a Metropolis-Hastings acceptance ratio
is the gnergy in the displacement eldj is the data error for th | leadi o fh
> = PN 3w 1] (vi)])? and we discard higher order or the proposal, leading to acceptance or rejection of the new
lik = i=1 : P T . - state. For the sake of simplicity, proposals for a new state
termsinky, . T' = T; Ty is aset olvirtual pairings

of w;z may be made separately from those wfFor the
latter, the most natural proposal exactly results in collapsed
Gibbs sampling of each, seee.g.[19]'. Forw;z we design
basic moves that — when combined — allow to add, remove
or switch active bases as well as update several components
o+ N=2 _ A+ ]jSj=2 of w. These basic moves are combined to craft proposal
distributionsQ(w;z ! w;2z) for which the probability of

T oo+ R=2 S+ 3jSj=2
a movew;z ! w;z has direct symmetries with that of the
are commensurable to temperature parameters. The approx-

imation of the conditional posterior is Gaussian (Eq. (1f verse movaw; 21 w;z, so that the acceptance ratio
is quadratic) and admits the more obvious canonical form . _p(w; z;cjD;H) Q(w; zc! w;z;c)
N(; )with = I H)T ad =( ! H + "p(w;z;cjD;H) Q(w;z;c! w;zc)

jSjRs) !. The Laplace approximation provides a reason-

L . S . becomes particularly straightforward to compute. The basic
able approximation of the posterior and a judicious startin ves arer') y g P

point to design propos_als. Cpmponent-wse proposal_s thaa) Basis removalFor a basik such thatzy = 1, setz =0
leave most of the activation variablgsand the corresponding _ . : : o
andwy = 0. The symmetric move is the basis addition.

weights w; unchanged will be of particular interest to us b) Component-wise updatBor a basik such thatz, = 1,

(cf. section 1I-C3). A natural idea is to use the conditionals | di
we N ( Iygos; .) of the Laplace approximatiohl ( : ) propose a neww,  k(wyx ! wy) according to Eq. (13),

as proposal dlsf[rlbutlons. Because_ they n_e'ther require the, complete and concise summary of the relevant derivations and schemes
actual computation of and nor involve inner products is given in http://www.kamperh.com/notes/kamgeayesgmm13.pdf

whose value does not depend on . H is a block diagonal
matrix whoseith diagonal blockH; is thed d precision
matrix associated to thigh virtual pairingT; . The factors
stemming from the marginalization:

12)

(15)
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Algorithm 1: ProposalQg(w; z; reversetraversall w; z; reversetraversal).

Nneighb IS @n integer xed in advance. if on-off or update then
Setw = w, 2= Z. For update setl = fkg.
For on-off: Setl Snf kg to a list of npeigho active bases,

Draw one of3 competing eventson-off, exchange update . ; h
peting geup favouring bases well-aligned withy .

if « inactive and update then If reverse traversak= 1, reverse the ordering df.
| Exit. No action to implement (agx = 0). for 1 21 do
if exchangeand  active then L W™ g(w! w'"™) andw = w™"
Draw an inactive basisk to replace x. A proposal that ] S
‘ favours well-aligned bases is designed. if « inactive and on-off then _
else if exchangeand  inactive then | Setz =1 andwi  gc(wk ! ), usingrumaca = 1.
Draw an active basisk to replace . A proposal that else if ¢ inactive and exchange then
favours well-aligned bases is designed. | Setz =1 andw &k (W ! Wg ) (Famaa = 1).
if ¢ active and on-off or exchange then if on-off or exchange then
| Setz =0 andwy =0. | Switch the state of the binary variable reversaversal.

(14) with a xed 0 rymaLa 1. This move is its own statistic x can be recomputed from scratch only for the bases

symmetric (using the reverse update). under consideration. This is usually much more ef cient (cf.
c) Basis addition For a basik such thatzy = 0, setz = algorithmic complexity in 1I-C5).

1 and propose a neww according to Eq. (13), (14) with Each transition kernelP; satis es a detailed balance con-

r'umaia = 1. The symmetric move is the basis removal. dition. In terms of these transition kernels, the MCMC chain

The family of proposalQx() that we design combinesproceeds as follows. Random variablgsk,;::: taking val-

sequence of moves induced by the propo@a(w;z;c ! and the corresponding transition kerrigl, is used at time
w; Z; ) coincides exactly with the sequence of moves induceéd Conventional schemes include the random-scan, where the
by Qk(w;z;c! w;z;c). The proposal and reverse proposdlk;g are i.i.d uniform, and the deterministic scan that cycles

ducing the computational load when evaluating Eg. (15). Eacdindom scan, the global transition kernel also satis es detailed
proposalQy revolves primarily around the corresponding basisalance conditions. For both schemes, the MCMC chain has
k and is de ned as per Algorithm 1 (where we introducedtationary distributiop(w; z; cjD; H) after incorporating col-
a binary variable revers&raversal to address technicalities)lapsed Gibbs updates of Highlights of the MCMC scheme
Using Qk, we de ne a transition kernePy conventionally: main constituents are summarized in Fig. 10.
given the current statev;z;c;, we propose a new state 4) Markov chain mixing improvemenSimilarly to Gibbs
e = ¢, w,z2  Qu(wi;ze ! ). The state is acceptedsampling of temperature parameters, Gibbs sampling of voxel
with probability given by Eg. (15), in which case we seGMM assignments within updates separated from those of
(Wis1;Zt+13Cte1) = (W 2Z5€); otherwise we stay at thew;z potentially hampers the mixing of the Markov chain for
current state an@wi+1 ; Zt+1 5 Crv1) = (We;Zt;C). Compu- any nite, practical duration of the MCMC run. If at any point
tation of the acceptance ratio is relatively straightforward by time, a data point that should be regarded as an outlier
construction, since the ratio of posterior probabilities involveg.g.an image artifact), or a group of such points, is assigned
in Eq. (15) can be rewritten as: to a “non-outlier' mixture component, the disjoint sampling
generally causes the chain to remain stuck in the vicinity of
(16) the corresponding local mode of the posteffw; z;cjD; H):
the desired reverse assignment move virtually occurs with
The leftmost factor is a ratio of likelihoods and need only bgrobability zero after readjustment a¥;z. This defect is
evaluated once for a proposed transition. As the denominatocigical as such failure scenarii happen with overwhelming
known from the previous iteration, only the numerator need Ipeobability. Fortunately, joint proposals fow;z;c can be
evaluated. In the context of registration, this part correspondesigned at little cost, even more so after noting that the
to the image term and would involve costly computationsomponent-wise proposals far (Eq. (13), (14)) andy only
if evaluated repeatedly. Note also that for basis functiomsdirectly depend orc. The transitionQx(w;z;c! w;z;€)
with compact support (or approximately so), only part gfroceeds in two steps. First; z is proposed as per Algorithm
the image term need be updated to evaluate the ratio. TheThen, e is sampled by component-wise collapsed Gibbs
ratio on the right-hand side and the ratio of proposals asampling of eachg p(& j &< ;Gsi ;Ww;D;H) in turn.
simply decomposed over the sequence of previously de n€dr ef ciency, only the subset of voxels in the support of
basic moves, then efciently evaluated using Eqg. (6), (134pdated basis functions is sampled, and voxel assignments are
(14) and expressions similar to Eqg. (9), (10). For the lattarpdated only once in case of overlapping supports. The two-
statistics  are kept up to date (for all bases) using ef cienstep move is accepted or rejected based on the acceptance ratio
rank one updates derived in [9]. Alternatively, the necessafi5s), replacingc by e where necessary. The order of voxel

p(Djw; z¢c;H)  p(wjz; c,H)p(zH)
p(Djw;z;c;H)  p(wjz;c;H)p(zjH)
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traversal is reversed according to the state of revéreersal. Fast approximate inference Exact inference
Samplinge and computing its contribution to the acceptanc Jow uncertointy: over-constrained
ratio exclusively involves the residuats and r; of updated poseweighsandne Thosis weglng”
voxels prior and after the update;z ! w;z, which were / Gis
already required to compute the likelihood change in Eq. (1¢ ,
low uncertainty
Estimated signal (mean) True signal Confidence interval (+2s.t.d.)

5) Algorithmic complexity:The algorithmic complexity as- away from data
sociated to a transitiorpkerné (proposal and acceptance- orlectvebases
reject) isO(jSj jl +j+ |5, i+ LC), notingl . the set
of updated basedy, the number of voxels in the support of
basis | and C the number of voxels whose assignmegts Fig. 4. Comparison of approximate evidence-based inference and faithful
are resampled. The rst term includes part of the cost of tHéCMC inference for the sparse Bayesian model, ohla regression task.

Wz | ] d its i t th ti f ori Data points (black dots) are sampled with additivied: Gaussian noise
proposalw;z - Wz and Its impact on the ralio of prior g the true signal (dashed green line). The consistence of the fast and
probabilities. The second term is replicated three times afadnful estimates of the regressor function (black lines) is satisfactory (w.r.t.
can be heavily parallelized in each case: once to Complyﬁgertainty levels), even more so in the presence of data. Esimates of

L. . . uncertainty (grey ribbon), however, can be inconsistent.
pos 1IN EQ. (13), (14) fol 21 ., twice to evaluate and store
differences in the displacement elds (resp. residual images)
over the support of basis functions in, following their m(ftivated by its computational ef ciency. Dedicated schemes

update. The last term accounts for all computations relatg . . . .
. elying on linear algebra and rank one updates make it possible
to resampled voxel GMM assignmergs When a move that ying g b P

involves the inclusion or removal of a basis function fro i ef.ciently, fteratively build the.sethj of relevant basis
the active set is accepted, an additioGxS2 + M |Sj) rTﬁunctlo.ns k from s'cratch. $ee for.mstance'[23], and [9] for'an
cost is involved to maintain statistics, over all bases in extension to the wider family of priors required for registration
. . ) . : tasks. The approximation of Eq. (18) is justi ed by observing
the dictionary, with the right-hand term being parallehzabI{anat the full posteriop(wjD; H) is obtained by summing over
into M disjoint O(jSj) operations. Th®(M ]Sj) cost upon all conditional posteriorsp(’wj ;D;H), conditioned on the
inclusion or deletion of a basis can be replaced B (S5j?) value , weighted by the poste’rio’r pré)babilit;( iD:H) for
cost per proposed move, which is usually more ef cient. this vaI,ue' '
6) Initialization: The chain is initialized from the output of '
the deterministic algorithm presented in [9] which progresses
greedily in the space of parametdrs; ;P g towards a local
maximum of their joint posterior. We comment, however,
that any registration algorithm could reasonably be used Mow if the available dat® is informative enoughp( jD;H)

z
p(wiD;H)=  p(wj ;D;H)p( jD;H)d : (19)

initialize the chain. will be sharply peaked around its mode(s). In the limit case
wherep( jD;H) is a Dirac centered at its single mode,
I1l. PREDICTIVE UNCERTAINTIES: MARGINAL Eq. 18 is retrieved exactly, and the two-step scheme outlined
LIKELIHOOD MAXIMIZATION VS . EXACT INFERENCE in Eq. (17), (18) is justi ed. Moreover in the case of sparsity

The “sparse Bayesian' model presented in Fig. 1 is inspiré@verning parameters = z;  zy ', Tipping [22] argues
by the Spike-&-Slab model of Mitchell and Beauchamp [21that, even if several combinations of parameters are highly
and the Relevance Vector Machine (RVM) proposed by Tigrobable due to the presence of redundant functionsn
ping [22] for tasks of regression and classi cation. In théhe dictionary of bases, they should roughly lead to the
latter work, the author approaches the problem of inferrirgtme optimal solution and an approximate mode (or the
an optimal sparse regression function from the standpoint @fpectation) ofp(ujD;H) should still be correctly evaluated.
Automatic Relevance Determination (ARD). Point estimates &fegardless, we now demonstrate why this evidence-based ap-
the hyperparameters that govern basis selection (and in facPg#ximation will typically fail to properly approximate higher
all hyperparameters) are sought in a rst Step by maximizir@'der moments of the full posterior, resulting for instance in

the marginal likelihood oevidenceas per Eq. (17): poor approximation of the real predictive uncertainty. There
are two main breakdown situations for the evidence-based

approximation of the full posterior assumed in Eq. 18.

Firstly in absence of data, the assumption that the posterior
distribution p( jD;H) of hyperparameters is well approxi-
where = fz;P; g using our notations. If non-uniform, mated by a Dirac collapses. Indeed the posterior then resem-
proper hyperpriors on are assumed, maximizes the poste- bles the prior distributiop( jH), which is typically at. This
rior p( jD;H)/ p(Dj ;H)p( jH) instead. In a second step,scenario is relevant in the case of basis selection parameters
the distribution of weightsvy is characterized conditionally zx, since associated basis functiong have a local support
to the selected model, over which reliable data may be missing. Away from data and

. U without strong incentive to include the basis to increase the
P(WID;H)  p(wj D:H): (18) deformation regularity, the probability of basis inclusion (resp.
This strategy is typically successful in reaching strongly sparegclusion) is ¢ (resp.1 ), and for neutral values ofy,
solutions with good predictive power but, above all else, the choice of excluding the basis is arbitrary.

= arg max E(Dj 7 H)

17
= argmax p(Djw; ;H)p(wj ;H)dw (17
w
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learning rate is initially applied before reverting to a classical
(inverse linear) weighting, drawing inspiration from the SAEM
scheme ok.g.[7]. The free parametes controlling the spread

of proposals compared to the second-order approximation of
the posterior (section II-C2) was set 1q(spread unchanged).
The observed acceptance rate varied betwa@#5% under
sensible variations of the experimental setting, and between
27-34% during the run of interest with the settings described
above. Examples of samples are reported in Fig. 6. As an order
of magnitude, the run takel) minutes on a standard laptop
Fig. 5. Registration setting: (left) xed image, and (right) moving image, awith a naive implementation.

resolution1:25mm . 1:25mm. Finally to gain more insight into the behaviour of VB and
MCMC approaches, we also experiment with an MCMC chain

Secondly and even in the presence of data, many Commat_procee_ds as de_zscri_bed abexeeptfor t_he cho_ice of active
nations of active bases could have quasi-identical probabili§Sis functions which, instead of exploring various con gura-
When using radial basis functions for instance, the locatid®"S: 1S xed to that of the Variational Bayes approach. We
of basis centers can be slightly perturbed without signi cantl{e" © this experiment as Fixed Basis MCMC (FBMCMC).
affecting the posterior probability of the new con guration, he setting is 'e'ntlrely identical to that of the fuII.MCMC, but
The optimal value of basis weights under two such pertur- the Only transitions proposed are component-wise updates as
bations will slightly differ however, as well as the resulting®PP0S€d to exchange, addition or removal of basis functions.
transformation . The evidence-based approximation of Eq.

(18) relies on a single — perhaps only marginally superior B. Results
con guration, whereas the true posterior sums over all suchl) Naive alternated sampling vs. joint samplingig. 7
con gurations, as seen from Eq. (19). As it turns out, "basifemonstrates the benet of a careful design of the Markov
wiggling’ accounts for a signi cant part of the uncertainty. chain. The left-most gure displays the estimated mean
displacement, under the aforementioned experimental setting,
IV. EXPERIMENTS AND RESULTS if moves in the space of transformation parameters are done

The following experiments aim to qualitatively evaluate theeparately from the resampling of voxelwise assignments to
consistency of posterior distributions inferred by the Variasomponents of the noise mixture instead of jointly (right-most
tional Bayes approximate inference scheme and the MCMg@ure). In this example, a local discrepancy in the intensity

asymptotically exact inference scheme. pro les of the xed and moving images induces a spurious
maximum in the joint posterior distribution of transformation
A. Material & Experimental Setting parameters and voxel labels (cf. section 11-C4). A systematic

drift towards this mode was observed in all runs where the
$ mpling was performed in an alternated manner, for the
ole duration of the run, whereas systematic recovery was
served under the improved scheme. Similar observations

; . i i ts where temperature parameters
12mm and24mm), for a total of approximately 10* basis V¢'© made in expernmen . : .
) bp y were treated by Gibbs sampling instead of analytically

functions, of which no more thas0 100 are typically L

active at a time (both with VB and MCMC approachesf.narg'nahzed over.
We set the differential operatdd to the Laplacian of the
displacement eld. The Gaussian Mixture model of intensit{/h
residuals hag. = 5 components: hyperparameter values
for the proposal distribution learned during the burn-in pha
(sec. 11-C2) indicate tha? or 3 components would suf ce. No
strong dependence of the results on the number of compon
was observed. All hyperpriors use small uninformative valu
ag == o= =10 19 and o, = 0:5 for a non-
informative (Jeffreys) Dirichlet prior. The MCMC chain was

run for roughly 7 10° transitions and500 samples were

regularly extracted. Approximately 10* additional samples

were discarded as part of the burn-in phase, during which the

parameters of the proposal distribution were ne-tuned (cf.

section II-C2). The tuning relies on a set of suf cient statistics,

such as the average energy and the average voxelwise square

intensity residuals per sample. The averages are computed

using a scheme that downweights the early samples: a x&d. 6. Three example samples returned by the MCMC run.

We focus on the2D registration example of Fig. 5. For
the approximate-based inference, the methodology of [9]
used without change. The multiscale dictionary hence us\é(b
Gaussian RBFs at three different scales (isotropis,6 mm, 0

2) VB vs. MCMC - estimated displacemeRtg. 8 reports

e mean displacement reported respectively by the evidence-

ggsed inference scheme and by the MCMC inference scheme.
s anticipated from the discussion of section Ill, very good

ea}%eement between the evidence-based and MCMC-based esti-

ggates of the displacement is observed. Upon close inspection,
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Fig. 7. Comparison of estimates of the posterior mean returned by MCMC
characterization. (Left) Sampling activation variablesand corresponding
weights w, alternatively with voxel mixture assignments (Right) Joint
sampling, as per the approach proposed in section 1I-C4.

. . . . . _Fig. 9. Estimates of uncertainty obtained by characterizing the posterior
minor differences are noted in some areas with at intensi®stribution of the sparse Bayesian model by (Left column) Variational Bayes

pro les or otherwise low con dence (such as that resultingRight column) MCMC sampling (Middle column) Fixed Basis MCMC

from artefacts. or disagreeing intensities in the xed anaampling. (Second row) Tensor visualization of the displacement uncertainty:
! each tensor encodes the square root of 2he 2 covariance displacement

moving image). Their magnitude is lower than the level Qhatrix at this location. Tensor elongation along a direction indicates higher

uncertainty in the output of registration, as estimated from tliacertainty along that direction. The color scheme encodes the direction of
MCMC scheme the rst eigenvector. (First row) Trace of the square root covariance.

3) VB vs. MCMC - uncertainty estimateBig. 9 compares
the estimates of uncertainty obtained from the MCMC Chaﬂ_’nder the true posterior (typically 1mm for a 95% con -

aqterization of t.he posterior and those Obt"’,‘imd from the Vafance interval), as estimated by MCMC sampling, is consistent
atlo_na_l Bayes mference. For the MCMC inference, relevawith both the magnitude of the underlying motion (no more
statistics are estimated from the set of samples returned ¥ 51y see g. 8) and the resolution (voxel dimensions:
the run. To study the spatial localization of uncertainty, wg. g, ’1'25mr;1) As expected, uncertainty is higher in
visualize at each voxel centey the2 2 covariance matrix of oqinng with little structured content (no intensity gradients)
the posterior distributiop(u(xi)jl; J; H) of the corresponding and in the direction of contours. On the other hand, the VB

displacement vectou(x;). This is reasonable under the aSz.heme does not appear to reliably approximate the true un-

sumption that the posterior on displacements is approximatelyainwy Its order of magnitude is generally underestimated.

mono-modal and Gaussian. The voxelwise covariance matrMoreover, VB-based uncertainty may lack spatial coherence

or its square root (homogeneous to a standard deviation), ¢aiegions that are textureless, with a_ at intensity pro ke.d.

be visualized as @D tensor that encodes uncertainty at thig, o right ventricle on Fig. 5). This hints at the fact that,

point along any direction. Fig. 9 displays the resulting tensg ., relying on the evidence-based (VB) scheme, regions of

map (bottom row) and a scalar summary (Upper row). pigh yncertainty are localized nearby the inferred (unique) set

On the one hand, the order of magnitude of uncertainti§s - tive basis functions.
4) Fixed Basis MCMC: Fig. 8 (second row) and Fig.

9 (middle column) report the estimates of the mean and
uncertainty for the Fixed Basis MCMC scheme. The estimated
mean displacement is in good agreement with both approaches.
Moreover the magnitude of the difference between FBMCMC
and VB (resp. FBMCMC and MCMC) is generally below that
of the residual displacement between VB and MCMC. The
FBMCMC approach, similarly to the VB approach, underes-
timates uncertainty in regions of at intensitye.g. bottom
right of the image) and displays small localized uncertainty
peaks. The magnitude of the predicted uncertainty is globally
consistent with that of the VB scheme (Fig. 9, similar tensor
sizes in the rst and second rows), albeit sometimes slightly
superior, typically nearby active basis functioresg( in the
anterior part of the right ventricle).

V. DISCUSSION

Fig. 8. (Top Row) Comparison of the posterior mean displacement returndd Markov Chain design for ef cient and reliable inference
by VB (left) vs. MCMC (right), and difference between the two (middle). . . . .
(Bottom Row) Mean displacement returned by Fixed Basis MCMC (middle) The proposed model of registration copes with various

and the difference with the VB (resp. MCMC) estimate (left, resp. right). unknowns in the image and transformation model: the noise
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parametrizations results in generally unreliable estimates of
uncertainty. This is also evidenced by the lower magnitude
of uncertainty predicted by the xed basis MCMC scheme.
Approximate schemes that circumvent this issue can likely
be devised, for instance by keeping track of several sets of
relevant explanatory variables [25]. The uncertainty on optimal
basis locations could be accounted for in the VB scheme,
either in an ad-hoc manner by local perturbations of the basis
Fig. 10. Main constituents of the MCMC scheme. centers when sampling a transformation from the variational
posterior, or in a more formal way by regarding basis centers
. . . ) _ as random variables whose associated variational posteriors
level and its spatial variability, the regularity of the h|dderére to be estimated.

motion, and the optimal parametrization of the d|splacement.|.he RVM basis augmentation strategy of Rasmussen and

eld itself. This renders inference challenging and special care, \dela [26] partially addresses the second issue of uncer-

has to be taken in the design of the Markov chain. Typical%inty underestimation in absence of data. It is applicable

several joint con gurations of the regulariz_ation hype_rparanb- ly when voxelwise estimates of uncertainty are expected,
eters, the_ noise levels (and vo_erW|se mixture a$s'9”m_e_”£§ opposed to full transformation samples. Another strategy
and the displacement eld constitute Io_cal maxima in t.he 1o 0uld be to relax the form of the variational posterior family
parameter space. To prevent the chain from remaining StUCKhat it can better approximate the true posterior away from
around boor local maxima, 't. proved u;eful to analyt'.ca”}ﬁata, with the constraint that the computational burden remain
marginalize over nuisance variables (noise and regular'z""t'gﬁtably low under such a factorization. Alternatively we note

levels, mlx'gure proportions) as well as _to jointly Samplﬁ\stead the high potential for parallelization of the proposed
transformation parameters and voxel assignments to mixtyr, MC approach, which could make it more amenable to
components (as opposed to alternate between sampling ong Ofine use on reéll data

the other). Finally VB makes parametric assumptions about the form

The reversible Jump MC.MC framework _that_we |mplemen6 the posterior distribution, and infers hyperparameter dis-
has strong connec_tlon with the Jump_dn‘fusmn Process Ghputions whereas the proposed MCMC scheme generally
Grenander and Miller [24] and the _blrth—and—death kemf:rkarginalizes over such hyperparameters. This is likely to
framework. It allows to move freely in the space of trans; count for some of the minor differences observed between

formation parameters but also and conccurently, in the spafﬁg VB and Fixed Basis MCMC approaches (sec. IV-B4)
of admissible parametrizations. By circumventing the costly ’ '

computation of Bayes factors (ratios of evidence for compet- ) ) ) )
ing parametrizations), it effectively renders MCMC inferencE- Underlying assumptions of the Sparse Bayesian registra-
tractable for the sparse Bayesian model of registration, evépn model
with large dictionaries of basis functions (10° in our The validity of model assumptions may affect the quality
experiments). of uncertainty estimates. Possible biases stem on the one
Full-dimensional moves over the space of transformatidrand from the inexactness of the generative model of images
parameters were not implemented, as calibrating such trar{siodelling the intensity residual as a mixture of Gaussians,
tions calls for the particularly expensive computation of larggiscarding spatial correlations between residuals), on the
(non-diagonal) Hessian matrices. This renders them inef cieather hand from inexactness of the transformation model (the
unless e.g., exploiting dedicated procedures inspired frggarametrization of the transformation as well as the choice of
limited memory quasi-Newton methods [18]. Component-wiggior). Their impact was not thoroughly explored so far, but
transitions are also particularly suitable provided that the shis work provides the methodological framework to do so.

of active bases must be jointly explored. The assumption that source and target image intensities co-
incide up to spatially varying noise mostly holds in the context
B. Variational Bayes and MCMC inference of mono-modal registration. For multi-modal registration, a

pjapping function between source and target image intensities
gﬂuld be used (as in.g. [27], [28]) and can be regressed
in a probabilistic framework [29].

Experimental results point towards a good empirical co
respondence between the mean estimates of displacente
. . It
returned by the approximate VB inference and (asymptoW
cally) exact MCMC inference, particularly in the presence of
informative data. Unfortunately they also evidence limitations
of the approximate VB scheme for purposes of uncertaintyIn this article we explored the properties of the proposed
guanti cation. This defect is offset by a signi cantly fastersparse Bayesian model of registration for the purpose of uncer-
running time for the VB scheme (one order of magnitude). tainty quanti cation. We emphasize the distinction between the
As shown in section lll, VB inferences selects a singlBayesian model itself and inference schemes used to estimate
parametrization by means of marginal likelihood maximizgosterior distributions under this model. In previous work [9]
tion, although this optimal parametrization will often bean ef cient but approximate inference scheme was developed,
only marginally so. Discarding all marginally sub-optimabased on Variational Bayesian arguments and the principle

VI. CONCLUSION
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of marginal likelihood maximization. In the present work we16] G. O. Roberts and R. L. Tweedie, “Exponential convergence of langevin
design a reversible jump Markov chain that characterizes the distributions and their discrete approximatiorBgrnoulli, pp. 341-363,
exact posterior arbitrarily well (provided that enough sampl 1
can be drawn) and answer the two following questions. Firstly,
does the fast approximate scheme provide faithful estimates of Society: Series B (Statistical Methodologyyl. 73, no. 2, pp. 123-214,
expectation and uncertainty? Secondly, is the sparse Baye%i%]‘ Y. Zh.ang and C. A. Sutton, “Quasi-newton methods for markov chain
model of registration useful for the purpose of uncertainty
guanti cation? We evidence limitations of the approximat
inference scheme for uncertainty quanti cation, but show thﬁltg]
the true posterior distribution itself is meaningful: orders gbo]
magnitude for the true uncertainty (as characterized by MCMC
sampling) are quantitatively reasonable, the uncertainty [ﬁ]
higher in textureless regions and lower in the direction of

strong intensity gradients.
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