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Beyond CCA: Moment Matching for Multi-View Models

Anastasia Podosinnikova Francis Bach Simon Lacoste-Julien
INRIA - École normale supérieure Paris

Abstract

We introduce three novel semi-parametric extensions of probabilistic canonical correlation analysis with
identifiability guarantees. We consider moment matching techniques for estimation in these models. For
that, by drawing explicit links between the new models and a discrete version of independent component
analysis (DICA), we first extend the DICA cumulant tensors to the new discrete version of CCA. By further
using a close connection with independent component analysis, we introduce generalized covariance ma-
trices, which can replace the cumulant tensors in the moment matching framework, and, therefore, improve
sample complexity and simplify derivations and algorithms significantly. As the tensor power method or
orthogonal joint diagonalization are not applicable in the new setting, we use non-orthogonal joint diago-
nalization techniques for matching the cumulants. We demonstrate performance of the proposed models
and estimation techniques on experiments with both synthetic and real datasets.

1 Introduction

Canonical correlation analysis (CCA), originally introduced by Hotelling (1936), is a common statistical tool
for the analysis of multi-view data. Examples of such data include, for instance, representation of some text
in two languages (e.g., Vinokourov et al., 2002) or images aligned with text data (e.g., Hardoon et al., 2004;
Gong et al., 2014). Given two multidimensional variables (or datasets), CCA finds two linear transforma-
tions (factor loading matrices) that mutually maximize the correlations between the transformed variables (or
datasets). Together with its kernelized version (see, e.g., Cristianini & Shawe-Taylor, 2000; Bach & Jordan,
2003), CCA has a wide range of applications (see, e.g., Hardoon et al. (2004) for an overview).

Bach & Jordan (2005) provide a probabilistic interpretation of CCA: they show that the maximum likelihood
estimators of a particular Gaussian graphical model, which we refer to as Gaussian CCA, is equivalent to
the classical CCA by Hotelling (1936). The key idea of Gaussian CCA is to allow some of the covariance
in the two observed variables to be explained by a linear transformation of common independent sources,
while the rest of the covariance of each view is explained by their own (unstructured) noises. Importantly, the
dimension of the common sources is often significantly smaller than the dimensions of the observations and,
potentially, than the dimensions of the noise. Examples of applications and extensions of Gaussian CCA are
the works by Socher & Fei-Fei (2010), for mapping visual and textual features to the same latent space, and
Haghighi et al. (2008), for machine translation applications.

Gaussian CCA is subject to some well-known unidentifiability issues, in the same way as the closely related
factor analysis model (FA; Bartholomew, 1987; Basilevsky, 1994) and its special case, the probabilistic prin-
cipal component analysis model (PPCA; Tipping & Bishop; Roweis, 1998). Indeed, as FA and PPCA are
identifiable only up to multiplication by any orthogonal rotation matrix, Gaussian CCA is only identifiable
up to multiplication by any invertible matrix. Although this unidentifiability does not affect the predictive
performance of the model, it does affect the factor loading matrices and hence the interpretability of the latent
factors. In FA and PPCA, one can enforce additional constraints to recover unique factor loading matrices
(see, e.g., Murphy, 2012). A notable identifiable version of FA is independent component analysis (ICA;
Jutten, 1987; Jutten & Hérault, 1991; Comon & Jutten, 2010). One of our goals is to introduce identifiable
versions of CCA.

The main contributions of this paper are as follows. We first introduce for the first time, to the best of our
knowledge, three new formulations of CCA: discrete, non-Gaussian, and mixed (see Section 2.1). We then
provide identifiability guarantees for the new models (see Section 2.2). Then, in order to use a moment
matching framework for estimation, we first derive a new set of cumulant tensors for the discrete version of
CCA (Section 3.1). We further replace these tensors with their approximations by generalized covariance
matrices for all three new models (Section 3.2). Finally, as opposed to standard approaches, we use a par-
ticular type of non-orthogonal joint diagonalization algorithms for extracting the model parameters from the
cumulant tensors or their approximations (Section 4).
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Models. The new CCA models are adapted to applications where one or both of the data-views are either
counts, like in the bag-of-words representation for text, or continuous data, for instance, any continuous
representation of images. A key feature of CCA compared to joint PCA is the focus on modeling the common
variations of the two views, as opposed to modeling all variations (including joint and marginal ones).

Moment matching. Regarding parameter estimation, we use the method of moments, also known as “spectral
methods”. It recently regained popularity as an alternative to other estimation methods for graphical mod-
els, such as approximate variational inference or MCMC sampling. Estimation of a wide range of models
is possible within the moment matching framework: ICA (e.g., Cardoso & Comon, 1996; Comon & Jutten,
2010), mixtures of Gaussians (e.g., Arora & Kannan, 2005; Hsu & Kakade, 2013), latent Dirichlet allocation
and topic models (Arora et al., 2012, 2013; Anandkumar et al., 2012; Podosinnikova et al., 2015), supervised
topic models (Wang & Zhu, 2014), Indian buffet process inference (Tung & Smola, 2014), stochastic lan-
guages (Balle et al., 2014), mixture of hidden Markov models (Sübakan et al., 2014), neural networks (see,
e.g., Anandkumar & Sedghi, 2015; Janzamin et al., 2016), and other models (see, e.g., Anandkumar et al.,
2014, and references therein).

Moment matching algorithms for estimation in graphical models mostly consist of two main steps: (a) con-
struction of moments or cumulants with a particular diagonal structure and (b) joint diagonalization of the
sample estimates of the moments or cumulants in order to estimate the parameters.

Cumulants and generalized covariance matrices. By using the close connection between ICA and CCA,
we first derive in Section 3.1 the cumulant tensors for the discrete version of CCA from the cumulant tensors
of a discrete version of ICA (DICA) proposed by Podosinnikova et al. (2015). Extending the ideas from the
ICA literature (Yeredor, 2000; Todros & Hero, 2013), we further generalize in Section 3.2 cumulants as the
derivatives of the cumulant generating function. This allows us to replace cumulant tensors with “generalized
covariance matrices”, while preserving the rest of the framework. As a consequence of working with the
second order information only, the derivations and algorithms get significantly simplified and the sample
complexity potentially improves.

Non-orthogonal joint diagonalization. When estimating model parameters, both CCA cumulant tensors
and generalized covariance matrices for CCA lead to non-symmetric approximate joint diagonalization prob-
lems. Therefore, the workhorses of the method of moments in similar context — orthogonal diagonalization
algorithms, such as the tensor power method Anandkumar et al. (2014), and orthogonal joint diagonalization
(Bunse-Gerstner et al., 1993; Cardoso & Souloumiac, 1996) — are not applicable. As an alternative, we use
a particular type of non-orthogonal Jacobi-like joint diagonalization algorithms (see Section 4). Importantly,
the joint diagonalization problem we deal with in this paper is conceptually different from the one consid-
ered, e.g., by Kuleshov et al. (2015) (and references therein) and, therefore, the respective algorithms are not
applicable here.

2 Multi-view models

2.1 Extensions of Gaussian CCA

Gaussian CCA. Classical CCA (Hotelling, 1936) aims to find projections D1 ∈ RM1×K and D2 ∈ RM2×K ,
of two observation vectors x1 ∈ RM1 and x2 ∈ RM2 , each representing a data-view, such that the projected
data,D>1 x1 andD>2 x2, are maximally correlated. Similarly to classical PCA, the solution boils down to solv-
ing a generalized SVD problem. The following probabilistic interpretation of CCA is well known (Browne,
1979; Bach & Jordan, 2005; Klami et al., 2013). Given that K sources are i.i.d. standard normal random
variables, α ∼ N (0, IK), the Gaussian CCA model is given by

x1 |α, µ1, Ψ1 ∼ N (D1α+ µ1, Ψ1),

x2 |α, µ2, Ψ2 ∼ N (D2α+ µ2, Ψ2),
(1)

where the matrices Ψ1 ∈ RM1×M1 and Ψ2 ∈ RM2×M2 are positive semi-definite. Then, the maximum
likelihood solution of (1) coincides (up to permutation, scaling, and multiplication by any invertible matrix)
with the classical CCA solution. The model (1) is equivalent to

x1 = D1α+ ε1,

x2 = D2α+ ε2,
(2)
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Figure 1: Graphical models for non-Gaussian (4), discrete (5), and mixed (6) CCA.

where the noise vectors are normal random variables, i.e. ε1 ∼ N (µ1,Ψ1) and ε2 ∼ N (µ2,Ψ2), and the
following independence assumptions are made:

α1, . . . , αK are mutually independent,
α ⊥⊥ ε1, ε2 and ε1 ⊥⊥ ε2.

(3)

The following three models are our novel semi-parametric extensions of Gaussian CCA (1)–(2).

Multi-view models. The first new model follows by dropping the Gaussianity assumption on α, ε1, and ε2.
In particular, the non-Gaussian CCA model is defined as

x1 = D1α+ ε1,

x2 = D2α+ ε2,
(4)

where, as opposed to (2), no assumptions are made on the sources α and the noise ε1 and ε2 except for the
independence assumption (3).

By analogy with Podosinnikova et al. (2015), we can further “discretize” non-Gaussian CCA (4) by applying
the Poisson distribution to each view (independently on each variable):

x1 |α, ε1 ∼ Poisson(D1α+ ε1),

x2 |α, ε2 ∼ Poisson(D2α+ ε2).
(5)

We obtain the (non-Gaussian) discrete CCA (DCCA) model, which is adapted to count data (e.g., such as
word counts in the bag-of-words model of text). In this case, the sources α, the noise ε1 and ε2, and the
matrices D1 and D2 have non-negative components.

Finally, by combining non-Gaussian and discrete CCA, we also introduce the mixed CCA (MCCA) model:

x1 = D1α+ ε1,

x2 |α, ε2 ∼ Poisson(D2α+ ε2),
(6)

which is adapted to a combination of discrete and continuous data (e.g., such as images represented as con-
tinuous vectors aligned with text represented as counts). Note that no assumptions are made on distributions
of the sources α except for independence (3).

The plate diagram for the models (4)–(6) is presented in Fig. 1. Depending on the context, the matrices
D1 and D2 are called differently: topic matrices1 in the topic learning context, factor loading or projection
matrices in the FA and/or PPCA context, mixing matrices in the ICA context, or dictionaries in the dictionary
learning context. In this paper, we will use the name factor loading matrices to refer to D1 and D2.

Relation between PCA and CCA. The important difference between Gaussian CCA and the closely related
FA/PPCA models is that the noise in each view of Gaussian CCA is not assumed to be isotropic unlike in
FA/PPCA. In other words, the components of the noise are not assumed to be independent or, equivalently,
the noise covariance matrix does not have to be diagonal and may exhibit a strong structure. In this paper, we
never assume any diagonal structure of the covariance matrices of the noises of the models (4)–(6).

The following example illustrates the mentioned relation. Assuming a linear structure for the noise, (non-)
Gaussian CCA (NCCA) takes the form

x1 = D1α+ F1β1,

x2 = D2α+ F2β2,
(7)

1 Note that Podosinnikova et al. (2015) show that DICA is closely connected (and under some conditions is equivalent) to latent
Dirichlet allocation (Blei et al., 2003). Due to the close relation of DCCA and DICA, the former is thus closely related to the multi-view
topic models (see, e.g., Blei & Jordan, 2003).
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where ε1 = F1β1 with β1 ∈ RK1 and ε2 = F2β2 with β2 ∈ RK2 . By stacking the vectors on the top of each
other

x =

(
x1

x2

)
, D =

(
D1 F1 0
D2 0 F2

)
, z =

α
β1

β2

 , (8)

one can rewrite the model as x = Dz. If the noise sources β1 and β2 are assumed to have mutually indepen-
dent components, ICA is recovered. If the sources z are further assumed to be Gaussian, x = Dz corresponds
to PPCA. However, we do not assume the noise in Gaussian CCA (as well as in the models (4)–(6)) to have
a very specific low dimensional structure.

Related work. Some extensions of Gaussian CCA were proposed in the literature: exponential family CCA
(Virtanen, 2010; Klami et al., 2010) and Bayesian CCA (see, e.g., Klami et al., 2013, and references therein).
Although exponential family CCA can also be discretized, it assumes in practice that the prior of the sources
is a specific combination of Gaussians. Bayesian CCA models the factor loading matrices and the covariance
matrix of Gaussian CCA. Sampling or approximate variational inference are used for estimation and inference
in both models. Both models, however, lack our identifiability guarantees and are quite different from the
models (4)–(6). Song et al. (2014) consider a multi-view framework to deal with non-parametric mixture
components, while our approach is semi-parametric with an explicit linear structure (our loading matrices)
and makes the explicit link with CCA.

2.2 Identifiability

In this section, the identifiability of the factor loading matrices D1 and D2 is discussed. In general, for the
type of models considered, the unidentifiability to permutation and scaling cannot be avoided. In practice,
this unidentifiability is however easy to handle and, in the following, we only consider identifiability up to
permutation and scaling.

ICA can be seen as an identifiable analog of FA/PPCA. Indeed, it is known that the mixing matrix D of ICA
is identifiable if at most one source is Gaussian (Comon, 1994). The factor loading matrix of FA/PPCA is
unidentifiable since it is defined only up to multiplication by any orthogonal rotation matrix.

Similarly, the factor loading matrices of Gaussian CCA (1), which can be seen as a multi-view extension of
PPCA, are identifiable only up to multiplication by any invertible matrix (Bach & Jordan, 2005). We show the
identifiability results for the new models (4)–(6): The factor loading matrices of these models are identifiable
if at most one source is Gaussian (see Appendix A for a proof).

Theorem 1. Assume that matrices D1 ∈ RM1×K and D2 ∈ RM2×K , where K ≤ min(M1, M2), have full
rank. If the covariance matrices cov(x1) and cov(x2) exist and if at most one source αk, for k = 1, . . . ,K,
is Gaussian and none of the sources are deterministic, then the models (4)–(6) are identifiable (up to scaling
and joint permutation).

Importantly, the permutation unidentifiability does not destroy the alignment in the factor loading matrices,
that is, for some permutation matrix P , if D1P is the factor loading matrix of the first view, than D2P must
be the factor loading matrix of the second view. This property is important for the interpretability of the factor
loading matrices and, in particular, is used in the experimental Section 5.

3 The cumulants and generalized covariances

In this section, we first derive the cumulant tensors for the discrete CCA model (Section 3.1) and then gener-
alized covariance matrices (Section 3.2) for the models (4)–(6). We show that both cumulants and generalized
covariances have a special diagonal form and, therefore, can be efficiently used within the moment matching
framework (Section 4).

3.1 From discrete ICA to discrete CCA

In this section, we derive the DCCA cumulants as an extension of the cumulants of discrete independent
component analysis (DICA; Podosinnikova et al., 2015).
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Discrete ICA. Podosinnikova et al. (2015) consider the discrete ICA model (9), where x ∈ RM has condi-
tionally independent Poisson components with mean Dα and α ∈ RK has independent non-negative compo-
nents:

x |α ∼ Poisson(Dα). (9)

For estimating the factor loading matrix D, Podosinnikova et al. (2015) propose an algorithm based on the
moment matching method with the cumulants of the DICA model. In particular, they define the DICA S-
covariance matrix and T-cumulant tensor as

S := cov(x)− diag [Ex] ,

[T ]m1m2m3
:= cum(x)m1m2m3

+ [τ ]m1m2m3
,

(10)

where the indices m1, m2, and m3 take the values in 1, . . . ,M , and

[τ ]m1m2m3 = 2δm1m2m3Exm1 − δm2m3cov(x)m1m2 − δm1m3cov(x)m1m2 − δm1m2cov(x)m1m3

with δ being the Kronecker delta. For completeness, we outline the derivation by Podosinnikova et al. (2015)
below. Denoting y := Dα, one obtains by the law of total expectation that E(x) = E(x|y) = E(y) and by
the law of total covariance:

cov(x) = E[cov(x|y)] + cov[E(x|y), E(x|y)]

= diag[E(y)] + cov(y),

since all the cumulants of a Poisson random variable with parameter y are equal to y. Therefore, S = cov(y).
Similarly, from the law of total cumulance, T = cum(y). Then, by the multilinearity property for cumulants,
one obtains

S = D cov(α)D>,

T = cum(α)×1 D
> ×2 D

> ×3 D
>,

(11)

which is called the diagonal form since the covariance cov(α) and cumulant cum(α) of the independent
sources are diagonal. Note that ×i denotes the i-mode tensor-matrix product (see, e.g., Kolda & Bader,
2009). This diagonal form is further used for estimation of D (see Section 4).

Noisy discrete ICA. The following noisy version (12) of the DICA model reveals the connection between
DICA and DCCA. Noisy discrete ICA is obtained by adding non-negative noise ε, such that α ⊥⊥ ε, to
discrete ICA (9):

x |α, ε ∼ Poisson (Dα+ ε) . (12)

Let y := Dα + ε and S and T are defined as in (10). Then a simple extension of the derivations from
above gives S = cov(y) and T = cum(y). Since the covariance matrix (cumulant tensor) of the sum of
two independent multivariate random variables, Dα and ε, is equal to the sum of the covariance matrices
(cumulant tensors) of these variables, the “perturbed” version of the diagonal form (11) follows

S = Dcov(α)D> + cov(ε),

T = cum(α)×1 D
> ×2 D

> ×3 D
> + cum(ε).

(13)

DCCA cumulants. By analogy with (8), stacking the observations x = [x1; x2], the factor loading matrices
D = [D1; D2], and the noise vectors ε = [ε1; ε2] of discrete CCA (5) gives a noisy version of discrete ICA
with a particular form of the covariance matrix of the noise:

cov(ε) =

(
cov(ε1) 0

0 cov(ε2)

)
, (14)

which is due to the independence ε1 ⊥⊥ ε2. Similarly, the cumulant cum(ε) of the noise has only two
diagonal blocks which are non-zero. Therefore, considering only those parts of the S-covariance matrix and
T-cumulant tensor of noisy DICA that correspond to zero blocks of the covariance cov(ε) and cumulant
cum(ε) gives immediately a matrix and tensor with a diagonal structure similar to the one in (11). Those
blocks are the cross-covariance and cross-cumulants of x1 and x2.

We define the S-covariance matrix of discrete CCA2 as the cross-covariance matrix of x1 and x2:

S12 := cov(x1, x2). (15)

From (13) and (14), the matrix S12 has the following diagonal form

S12 = D1cov(α)D>2 . (16)
2 Note that S21 := cov(x2, x1) is just the transpose of S12.
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Similarly, we define the T-cumulant tensors of discrete CCA ( T121 ∈ RM1×M2×M1 and T122 ∈ RM1×M2×M2 )
through the cross-cumulants of x1 and x2, for j = 1, 2:

[T12j ]m1m2m̃j := [cum(x1, x2, xj)]m1m2m̃j − δmjm̃j [cov(x1, x2)]m1m2
, (17)

where the indices m1, m2, and m̃j take the values m1 ∈ 1, . . . ,M1, m2 ∈ 1, . . . ,M2, and m̃j ∈ 1, . . . ,Mj .
From (11) and the mentioned block structure (14) of cov(ε), the DCCA T-cumulants have the diagonal form:

T121 = cum(α)×1 D
>
1 ×2 D

>
2 ×3 D

>
1 ,

T122 = cum(α)×1 D
>
1 ×2 D

>
2 ×3 D

>
2 .

(18)

In Section 4, we show how to estimate the factor loading matrices D1 and D2 using the diagonal form (16)
and (18). Before that, in Section 3.2, we first derive the generalized covariance matrices of discrete ICA and
the CCA models (4)–(6) as an extension of the ideas by Yeredor (2000); Todros & Hero (2013).

3.2 Generalized covariance matrices

In this section, we introduce the generalization of the S-covariance matrix for both DICA and the CCA
models (4)–(6), which are obtained through the Hessian of the cumulant generating function. We show
that (a) the generalized covariance matrices can be used for approximation of the T-cumulant tensors using
generalized derivatives and (b) in the DICA case, these generalized covariance matrices have the diagonal
form analogous to (11), and, in the CCA case, they have the diagonal form analogous to (16). Therefore,
generalized covariance matrices can be seen as a substitute for the T-cumulant tensors in the moment matching
framework. This (a) significantly simplifies derivations and the final expressions used for implementation
of resulting algorithms and (b) potentially improves the sample complexity, since only the second order
information is used.

Generalized covariance matrices. The idea of generalized covariance matrices3 is inspired by the similar
extension of the ICA cumulants by Yeredor (2000).

The cumulant generating function (CGF) of a multivariate random variable x ∈ RM is defined as

Kx(t) = logE(et
>x), (19)

for t ∈ RM . The cumulants κs(x), for s = 1, 2, 3, . . . , are the coefficients of the Taylor series expansion
of the CGF evaluated at zero. Therefore, the cumulants are the derivatives of the CGF evaluated at zero:
κs(x) = ∇sKx(0), s = 1, 2, 3, . . . , where ∇sKx(t) is the s-th order derivative of Kx(t) with respect
to t. Thus, the expectation of x is the gradient E(x) = ∇Kx(0) and the covariance of x is the Hessian
cov(x) = ∇2Kx(0) of the CGF evaluated at zero.

The extension of cumulants then follows immediately: for t ∈ RM , we refer to the derivatives ∇sKx(t) of
the CGF as the generalized cumulants. The respective parameter t is called a processing point. In particular,
the gradient, ∇Kx(t), and Hessian, ∇2Kx(t), of the CGF are referred to as the generalized expectation and
generalized covariance matrix, respectively:

Ex(t) := ∇Kx(t) =
E(xet

>x)

E(et>x)
, (20)

Cx(t) := ∇2Kx(t) =
E(xx>et

>x)

E(et>x)
− Ex(t)Ex(t)>. (21)

Some properties of these statistics and their natural finite sample estimators are analyzed by Slapak & Yeredor
(2012b).

We now outline the key ideas of this section. When a multivariate random variable α ∈ RK has inde-
pendent components, its CGF Kα(h) = logE(eh

>α), for some h ∈ RK , is equal to a sum of decoupled
terms: Kα(h) =

∑
k logE(ehkαk). Therefore, the Hessian ∇2Kα(h) of the CGF Kα(h) is diagonal (see

Appendix B.1). Like covariance matrices, these Hessians (a.k.a. generalized covariance matrices) are subject
to the multilinearity property for linear transformations of a vector, hence the resulting diagonal structure of
the form (11). This is essentially the previous ICA work (Yeredor, 2000; Todros & Hero, 2013). Below we
generalize these ideas first to the discrete ICA case and then to the CCA models (4)–(6).

3We find the name “generalized covariance matrix” to be more meaningful than “charrelation” matrix as was proposed by previous
authors (see, e.g. Slapak & Yeredor, 2012a,b).
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Discrete ICA generalized covariance matrices. Like covariance matrices, generalized covariance matrices
of a vector with independent components are diagonal: they satisfy the multilinearity property CDα(h) =
D Cα(h)D>, and are equal to covariance matrices when h = 0. Therefore, we can expect that the derivations
of the diagonal form (11) of the S-covariance matrices extends to the generalized covariance matrices case.
By analogy with (10), we define the generalized S-covariance matrix of DICA:

S(t) := Cx(t)− diag[Ex(t)]. (22)

To derive the analog of the diagonal form (11) for S(t), we have to compute all the expectations in (20)
and (21) for a Poisson random variable x with the parameter y = Dα. Just to provide some intuition, we
compute here one of these expectations (see Appendix B.2 for further derivations):

E(xx>et
>x) = E[E(xx>et

>x | y)]

= diag[et]E(yy>ey
>(et−1))diag[et]

=
(
diag[et]D

)
E(αα>eα

>h(t))
(
diag[et]D

)>
,

where h(t) = D>(et − 1) and et denotes an M -vector with the m-th component equal to etm . This gives

S(t) =
(
diag[et]D

)
Cα (h(t))

(
diag[et]D

)>
, (23)

which is a diagonal form similar (and equivalent for t = 0) to (11) since the generalized covariance matrix
Cα(h) of independent sources is diagonal (see (42) in Appendix B.1). Therefore, the generalized S-covariance
matrices, estimated at different processing points t, can be used as a substitute of the T-cumulant tensors in
the moment matching framework. Interestingly enough, the T-cumulant tensor (10) can be approximated by
the generalized covariance matrix via its directional derivative (see Appendix B.5).

CCA generalized covariance matrices. For the CCA models (4)–(6), straightforward generalizations of the
ideas from Section 3.1 leads to the following definition of the generalized CCA S-covariance matrix:

S12(t) :=
E(x1x

>
2 e

t>x)

E(et>x)
− E(x1e

t>x)

E(et>x)

E(x>2 e
t>x)

E(et>x)
, (24)

where the vectors x and t are obtained by vertically stacking x1 & x2 and t1 & t2 as in (8). In the discrete
CCA case, S12(t) is essentially the upper right block of the generalized S-covariance matrix S(t) of DICA
and has the form

S12(t) =
(
diag[et1 ]D1

)
Cα(h(t))

(
diag[et2 ]D2

)>
, (25)

where h(t) = D>(et− 1) and the matrix D is obtained by vertically stacking D1 & D2 by analogy with (8).
For non-Gaussian CCA, the diagonal form is

S12(t) = D1 Cα (h(t)) D>2 , (26)

where h(t) = D>1 t1 +D>2 t2. Finally, for mixed CCA,

S12(t) = D1 Cα (h(t))
(
diag[et2 ]D2

)>
, (27)

where h(t) = D>1 t1 +D>2 (et2−1). Since the generalized covariance matrix of the sources Cα(·) is diagonal,
expressions (25)–(27) have the desired diagonal form (see Appendix B.4 for detailed derivations).

4 Joint diagonalization algorithms

The standard algorithms such as TPM or orthogonal joint diagonalization cannot be used for the estimation of
D1 andD2. Indeed, even after whitening, the matrices appearing in the diagonal form (16)&(18) or (25)–(27)
are not orthogonal. As an alternative, we use Jacobi-like non-orthogonal diagonalization algorithms (Fu &
Gao, 2006; Iferroudjene et al., 2009; Luciani & Albera, 2010). These algorithms are discussed in this section
and in Appendix E.

The estimation of the factor loading matricesD1 andD2 of the CCA models (4)–(6) via non-orthogonal joint
diagonalization algorithms consists of the following steps: (a) construction of a set of matrices to be jointly
diagonalized (using finite sample estimators), (b) a whitening step, (c) a non-orthogonal joint diagonalization
step, and (d) the final estimation of the factor loading matrices (Appendix D.4).
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Matrices for diagonalization. There are two ways to construct matrices for subsequent joint diagonalization:
either with the CCA S-matrices (15) and T-cumulants (17) (only DCCA) or the generalized covariance ma-
trices (24) (D/N/MCCA). Given a dataset, these matrices are estimated using natural finite sample estimators
(see Appendices C.1 and C.2).

When dealing with S- and T-cumulants, the matrices are obtained via tensor projections. We define a projec-
tion T (v) ∈ RM1×M2 of a third-order tensor T ∈ RM1×M2×M3 onto a vector v ∈ RM3 as

[T (v)]m1m2 :=

M3∑
m3=1

[T ]m1m2m3vm3 . (28)

Note that the projection T (v) is a matrix. Therefore, given 2P vectors {v11, v21, v12, v22, . . . , v1P , v2P }, one
can construct 2P + 1 matrices

{S12, T121(v1p), T122(v2p), for p = 1, . . . , P}, (29)

which have the diagonal form (16) and (18). Importantly, the tensors are never constructed (see Anandkumar
et al. (2012, 2014); Podosinnikova et al. (2015) and Appendix C.2).

Alternatively to (29), the set of matrices can be constructed by estimating the generalized S-covariance ma-
trices at P + 1 processing points 0, t1, . . . , tP ∈ RM1+M2 :

{S12 = S12(0), S12(t1), . . . , S12(tP )}, (30)

which also have the diagonal form (25)–(27). It is interesting to mention the connection between the T-
cumulants and the generalized S-covariance matrices. The T-cumulant can be approximated via the direc-
tional derivative of the generalized covariance matrix (see Appendix B.5). However, in general, e.g., S12(t)
with t = [t1; 0] is not exactly the same as T121(t1) and the former can be non-zero even when the latter is
zero. This is important since order-4 and higher statistics are used with the method of moments when there is
a risk that an order-3 statistic is zero. In general, the use of higher-order statistics increases the sample com-
plexity and makes the resulting expressions quite complicated. Therefore, replacing the T-cumulants with the
generalized S-covariance matrices is potentially beneficial.

Whitening. The matrices W1 ∈ RK×M1 and W2 ∈ RK×M2 are called whitening matrices of S12 if

W1S12W
>
2 = IK , (31)

where IK is the K-dimensional identity matrix. Such matrices W1 and W2 are only defined up to multipli-
cation by any invertible matrix Q ∈ RK×K , since any pair of matrices W̃1 = QW1 and W̃2 = Q−>W2 also
satisfy (31). In fact, using higher order information (i.e. the T-cumulants or the generalized covariances for
t 6= 0) allows to solve this ambiguity.

The whitening matrices can be computed via SVD of S12 (see Appendix D.1). When M1 and M2 are too
large, one can use a randomized SVD algorithm (see, e.g., Halko et al., 2011) to avoid the construction of the
large matrix S12 and to decrease the computational time.

Non-orthogonal joint diagonalization (NOJD). For simplicity, let us consider joint diagonalization of the
generalized covariance matrices (30) (the same procedure holds for the S- and T-cumulants (29); see Ap-
pendix D.2). Given the whitening matrices W1 and W2, the transformation of the generalized covariance
matrices (30) gives P + 1 matrices

{W1S12W
>
2 , W1S12(tp)W

>
2 , p = 1, . . . , P}, (32)

where each matrix is in RK×K and has reduced dimension since K < M1,M2. In practice, finite sample
estimators are used to construct (30) (see Appendices C.1 and C.2).

Due to the diagonal form (16) and (25)–(27), each matrix in (30) has the form4 (W1D1) diag(·) (W2D2)>.
Both D1 and D2 are (full) K-rank matrices and W1 and W2 are K-rank by construction. Therefore, the
square matrices V1 = W1D1 and V2 = W2D2 are invertible. From (16) and (31), we get V1cov(α)V >2 = I
and hence V2 = diag[var(α)−1]V −1

1 (the covariance matrix of the sources is diagonal and we assume they
are non-deterministic, i.e. var(α) 6= 0). Substituting this into W1S12(t)W>2 and using the diagonal form
(25)–(27), we obtain that the matrices in (30) have the form V1diag(·)V −1

1 . Hence, we deal with the problem
of the following type: Given P non-defective (a.k.a. diagonalizable) matrices B = {B1, . . . , BP }, where
each matrix Bp ∈ RK×K , find and invertible matrix Q ∈ RK×K such that

QBQ−1 = {QB1Q
−1, . . . , QBPQ

−1} (33)
4 Note that when the diagonal form has terms diag[et], we simply multiply the expression by diag[e−t].
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are (jointly) as diagonal as possible. This can be seen as a joint non-symmetric eigenvalue problem. This
problem should not be confused with classical joint diagonalization problem by congruence (JDC), where
Q−1 is replaced by Q>, except when Q is an orthogonal matrix (Luciani & Albera, 2010). JDC is often
used for ICA algorithms or moment matching based algorithms for graphical models when a whitening step
is not desirable (see, e.g., Kuleshov et al. (2015) and references therein). However, neither JDC nor the
orthogonal diagonalization-type algorithms (such as, e.g., the tensor power method Anandkumar et al., 2014)
are applicable for the problem (33).

To solve the problem (33), we use the Jacobi-like non-orthogonal joint diagonalization (NOJD) algorithms
(e.g., Fu & Gao, 2006; Iferroudjene et al., 2009; Luciani & Albera, 2010). These algorithms are an extension
of the orthogonal joint diagonalization algorithms based on Jacobi (=Givens) rotations (Golub & Van Loan,
1996; Bunse-Gerstner et al., 1993; Cardoso & Souloumiac, 1996). Due to the space constraint, the description
of the NOJD algorithms is moved to Appendix E. Although these algorithms are quite stable in practice, we
are not aware of any theoretical guarantees about their convergence or stability to perturbation.

Spectral algorithm. By analogy with the orthogonal case (Cardoso, 1989; Anandkumar et al., 2012), we can
easily extend the idea of the spectral algorithm to the non-orthogonal one. Indeed, it amounts to performing
whitening as before and constructing only one matrix with the diagonal structure, e.g., B = W1S12(t)W>2
for some t. Then, the matrix Q is obtained as the matrix of the eigenvectors of B. The vector t can be, e.g.,
chosen as t = Wu, where W = [W1; W2] and u ∈ RK is a vector sampled uniformly at random.

This spectral algorithm and the NOJD algorithms are closely connected. In particular, when B has real
eigenvectors, the spectral algorithm is equivalent to NOJD of B. Indeed, in such case, NOJD boils down to
an algorithm for a non-symmetric eigenproblem (Eberlein, 1962; Ruhe, 1968). In practice, however, due to
the presence of noise and finite sample errors, B may have complex eigenvectors. In such case, the spectral
algorithm is different from NOJD. Importantly, the joint diagonalization type algorithms are known to be
more stable in practice (see, e.g., Bach & Jordan, 2003; Podosinnikova et al., 2015).

While deriving precise theoretical guarantees is beyond the scope of this paper, the techniques outlined by
Anandkumar et al. (2012) for the spectral algorithm for latent Dirichlet Allocation can potentially be ex-
tended. The main difference is obtaining the analogue of the SVD accuracy (Lemma C.3, Anandkumar et al.,
2013) for the eigen decomposition. This kind of analysis can potentially be extended with the techniques
outlined in (Chapter 4, Stewart & Sun, 1990). Nevertheless, with appropriate parametric assumptions on
the sources, we expect that the above described extension of the spectral algorithm should lead to similar
guarantee as the spectral algorithm of Anandkumar et al. (2012).

Some important implementation details, including the choice of the processing points, are discussed in Ap-
pendix D.

5 Experiments

Synthetic data. We sample synthetic data to have ground truth information for comparison. We sample
from linear DCCA which extends linear CCA (7) such that each view is xj ∼ Poisson(Djα + Fjβj). The
sources α ∼ Gamma(c, b) and the noise sources βj ∼ Gamma(cj , bj), for j = 1, 2, are sampled from the
gamma distribution (where b is the rate parameter). Let sj ∼ Poisson(Djα) be the part of the sample due to
the sources and nj ∼ Poisson(Fjβj) be the part of the sample due to the noise (i.e., xj = sj + nj). Then
we define the expected sample length due to the sources and noise, respectively, as Ljs := E[

∑
m sjm] and

Ljn := E[
∑

m njm]. For sampling, the target values Ls = L1s = L2s and Ln = L1n = L2n are fixed
and the parameters b and bj are accordingly set to ensure these values: b = Kc/Ls and bj = Kjcj/Ln
(see Appendix B.2 of Podosinnikova et al. (2015)). For the larger dimensional example (Fig. 2, right), each
column of the matrices Dj and Fj , for j = 1, 2, is sampled from the symmetric Dirichlet distribution with
the concentration parameter equal to 0.5. For the smaller 2D example (Fig. 2, left), they are fixed: D1 = D2

with [D1]1 = [D1]2 = 0.5 and F1 = F2 with [F1]11 = [F1]22 = 0.9 and [F1]12 = [F1]21 = 0.1. For each
experiment, Dj and Fj , for j = 1, 2, are sampled once and, then, the x-observations are sampled for different
sample sizes N = {500, 1, 000, 2, 000, 5, 000, 10, 000}, 5 times for each N .

Metric. The evaluation is performed on a matrix D obtained by stacking D1 and D2 vertically (see also
the comment after Thm. 1). As in Podosinnikova et al. (2015), we use as evaluation metric the normal-
ized `1-error between a recovered matrix D̂ and the true matrix D with the best permutation of columns
err1(D̂,D) := minπ∈PERM

1
2K

∑
k ‖d̂πk − dk‖1 ∈ [0, 1]. The minimization is over the possible permu-

tations π ∈ PERM of the columns of D̂ and can be efficiently obtained with the Hungarian algorithm for
bipartite matching. The (normalized) `1-error takes the values in [0, 1] and smaller values of this error indi-
cate better performance of an algorithm.
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Figure 2: Synthetic experiment with discrete data. Left (2D example): M1 = M2 = K1 = K2 = 2,
K = 1, c = c1 = c2 = 0.1, and Ls = Ln = 100; middle (2D data): the x1-observations and factor
loading matrices for the 2D example (F1j denotes the j-th column of the noise factor matrix F1); right (20D
example): M1 = M2 = K1 = K2 = 20, K = 10, Ls = Ln = 1, 000, c = 0.3, and c1 = c2 = 0.1.

nato otan work travail board commission nisga nisga
kosovo kosovo workers négociations wheat blé treaty autochtones
forces militaires strike travailleurs farmers agriculteurs aboriginal traité

military guerre legislation grève grain administration agreement accord
war international union emploi producers producteurs right droit

troops pays agreement droit amendment grain land nations
country réfugiés labour syndicat market conseil reserve britannique
world situation right services directors ouest national indiennes

national paix services accord western amendement british terre
peace yougoslavie negotiations voix election comité columbia colombie

Table 1: Factor loadings (a.k.a. topics) extracted from the Hansard collection for K = 20 with DCCA.

Algorithms. We compare DCCA (implementation with the S- and T-cumulants) and DCCAg (implemen-
tation with the generalized S-covariance matrices and the processing points initialized as described in Ap-
pendix D.3) to DICA and the non-negative matrix factorization (NMF) algorithm with multiplicative updates
for divergence (Lee & Seung, 2000). To run DICA or NMF, we use the stacking trick (8). DCCA is set to
estimate K components. DICA is set to estimate either K0 = K + K1 + K2 or M = M1 + M2 compo-
nents (whichever is the smallest, since DICA cannot work in the over-complete case). NMF is always set to
estimate K0 components. For the evaluation of DICA/NMF, the K columns with the smallest `1-error are
chosen. NMF◦ stands for NMF initialized with a matrix D of the form (8) with induced zeros; otherwise
NMF is initialized with (uniformly) random non-negative matrices.

Synthetic experiment. We first perform an experiment with discrete synthetic data in 2D (Fig. 2) and then
repeat the same experiment when the size of the problem is 10 times larger. In practice, we observed that
for K0 < M all models work approximately equally well, except for NMF which breaks down in high
dimensions. In the over-complete case as in Fig. 2, DCCA works better. A continuous analogue of this
experiment is presented in Appendix F.1.

Real data (translation). Following Vinokourov et al. (2002), we illustrate the performance of DCCA by
extracting bilingual topics from the Hansard collection (Vinokourov & Girolami, 2002) with aligned English
and French proceedings of the 36-th Canadian Parliament. We first pre-process the dataset with the NLTK
toolbox by Bird et al. (2009) (see details in Appendix F.3) to obtain N = 12, 932 aligned documents with
M1 = M2 = 5, 000 English and French words. We then run DCCA withK = 20 to extract the aligned topics.
Some of the extracted topics are presented in Table 1 and all the topics as well as the detailed description of
this experiment are presented in Appendix F.3.

Running time. For the real experiment above, the runtime of DCCA algorithm is 24 seconds including
22 seconds for SVD at the whitening step. In general, the computational complexity of the D/N/MCCA
algorithms is bounded by the time of SVD plus O(RNK) + O(NK2), where R is the largest number of
non-zero components in the stacked vector x = [x1; x2], plus the time of NOJD for the matrices of size K.
In practice, DCCAg is faster than DCCA.

Conclusion

We have proposed the first identifiable versions of CCA, together with moment matching algorithms which
allow the identification of the loading matrices in a semi-parametric framework, where no assumptions are
made regarding the distribution of the source or the noise. We also introduce a new sets of moments (our
generalized covariance matrices), which could prove useful in other settings.

Acknowledgments. This work was partially supported by the MSR-Inria Joint Center.
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6 Appendix

The appendix is organized as follows.

- In Appendix A, we present the proof of Theorem 1 stating the identifiability of the CCA models (4)–(6).

- In Appendix B, we provide some details for the generalized covariance matrices: the form of the gen-
eralized covariance matrices of independent variables (Appendix B.1), the derivations of the diagonal
form of the generalized covariance matrices of discrete ICA (Appendix B.3), the derivations of the
diagonal form of the generalized covariance matrices of the CCA models (4)–(6) (Appendix B.4), and
approximation of the T-cumulants with the generalized covariance matrix (Appendix B.5).

- In Appendix C, we provide expressions for natural finite sample estimators of the generalized covari-
ance matrices and the T-cumulant tensors for the considered CCA models.

- In Appendix D, we discuss some rather technical implementation details: computation of whitening
matrices (Appendix D.1), selection of the projection vectors for the T-cumulants and the processing
points for the generalized covariance matrices (Appendix D.3), and the final estimation of the factor
loading matrices (Appendix D.4).

- In Appendix E, we describe the non-orthogonal joint diagonalization algorithms used in this paper.

- In Appendix F, we present some supplementary experiments: a continuous analog of the synthetic
experiment from Section 5 (Appendix F.1), an experiment to analyze the sensitivity of the DCCA algo-
rithm with the generalized S-covariance matrices to the choice of the processing points (Appendix F.2),
and a detailed description of the experiment with the real data from Section 5 (Appendices F.3 and F.4).

A Identifiability

In this section, we prove that the factor loading matrices D1 and D2 of the non-Gaussian CCA (4), discrete
CCA (5), and mixed CCA (6) models are identifiable up to permutation and scaling if at most one source αk
is Gaussian. We provide a complete proof for the non-Gaussian CCA case and show that the other two cases
can be proved by analogy.

A.1 Identifiability of non-Gaussian CCA (4)

The proof uses the notion of the second characteristic function (SCF) of a random variable x ∈ RM :

φx(t) = logE(eit
>x),

for all t ∈ RM . The SCF completely defines the probability distribution of x (see, e.g., Jacod & Protter,
2004). Important difference between the SCF and the cumulant generating function (19) is that the former
always exists.

The following property of the SCF is of central importance for the proof: if two random variables, z1 and
z2, are independent, then φA1z1+A2z2(t) = φz1(A>1 t) + φz2(A>2 t), where A1 and A2 are any matrices of
compatible sizes.

We can now use our CCA model to derive an expression of φx(t). Indeed, defining a vector x by stacking the
vectors x1 and x2, the SCF of x for any t = [t1; t2], takes the form

φx(t) = logE(eit
>
1 x1+it>2 x2)

(a)
= logE(eiα

>(D>1 t1+D>2 t2)+iε>1 t1+iε>2 t2)

(b)
= logE(eiα

>(D>1 t1+D>2 t2))

+ logE(eiε
>
1 t1) + logE(eiε

>
2 t2)

= φα(D>1 t1 +D>2 t2) + φε1(t1) + φε2(t2),

where in (a) we substituted the definition (4) of x1 and x2 and in (b) we used the independence α ⊥⊥ ε1 ⊥⊥ ε2.
Therefore, the blockwise mixed derivatives of φx are equal to

∂1∂2φx(t) = D1φ
′′
α(D>1 t1 +D>2 t2)D>2 , (34)
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where ∂1∂2φx(t) := ∇t1∇t2φx(h(t1, t2)) ∈ RM1×M2 and φ′′α(u) := ∇2
uφα(u), does not depend on the

noise vectors ε1 and ε2.

For simplicity, we first prove the identifiability result when all components of the common sources are non-
Gaussian. The high level idea of the proof is as follows. We assume two different representations of x1 and
x2 and using (34) and the independence of the components of α and the noises, we first show that the two
potential dictionaries are related by an orthogonal matrix (and not any invertible matrix), and then show that
this implies that the two potential sets of independent components are (orthogonal) linear combinations of
each other, which, for non-Gaussian components which are not reduced to point masses, imposes that this
orthogonal transformation is the combination of a permutation matrix and marginal scaling—a standard result
from the ICA literature (Comon, 1994, Theorem 11).

Let us then assume that two equivalent representations of non-Gaussian CCA exist:

x1 = D1α+ ε1 = E1β + η1,

x2 = D2α+ ε2 = E2β + η2,
(35)

where the other sources β = (β1, . . . , βK) are also assumed mutually independent and non-degenerate. As
a standard practice in the ICA literature and without loss of generality as the sources have non-degenerate
components, one can assume that the sources have unit variances, i.e. cov(α, α) = I and cov(β, β) = I , by
respectively rescaling the columns of the factor loading matrices. Under this assumption, the two expressions
of the cross-covariance matrix are

cov(x1, x2) = D1D
>
2 = E1E

>
2 , (36)

which, given that D1, D2 have full rank, implies that5

E1 = D1Q, E2 = D2Q
−>, (37)

where Q ∈ RK×K is some invertible matrix. Substituting the representations (35) into the blockwise mixed
derivatives of the SCF (34) and using the expressions (37) give

D1φ
′′
α(D>1 t1 +D>2 t2)D>2

= D1Qφ
′′
β(Q>D>1 t1 +Q−1D>2 t2)Q−1D>2 ,

for all t1 ∈ RM1 and t2 ∈ RM2 . Since the matrices D1 and D2 have full rank, this can be rewritten as

φ′′α(D>1 t1 +D>2 t2)

= Qφ′′β(Q>D>1 t1 +Q−1D>2 t2)Q−1,

which holds for all t1 ∈ RM1 and t2 ∈ RM2 . Moreover, still since D1 and D2 have full rank, we have, for
any u1, u2 ∈ RK the existence of t1 ∈ RM1 and t2 ∈ RM2 , such that u1 = D>1 t1 and u2 = D>2 t2, that is,

φ′′α(u1 + u2) = Qφ′′β(Q>u1 +Q−1u2)Q−1, (38)

for all u1, u2 ∈ RK .

We will now prove two facts:

(F1) For any vector v ∈ RK , then φ′′β((Q>Q− I)v) = −I , which will imply that QQ> = I because of the
non-Gaussian assumptions.

(F2) If QQ> = I , then φ′′α(u) = φ′′Qβ(u) for any u ∈ RK , which will imply that Q is the composition of a
permutation and a scaling. This will end the proof.

Proof of fact (F1). By letting u1 = Qv and u2 = −Qv, we get:

φ′′α(0) = Qφ′′β((Q>Q− I)v)Q−1, (39)

Since6 φ′′α(0) = −cov(α) = −I , one gets

φ′′β((Q>Q− I)v) = −I,

for any v ∈ RK .
5The fact thatD1,D2 have full rank and thatE1,E2 haveK columns, combined with (36), implies thatE1,E2 have also full rank.

6 Note that∇2
uφα(u) = −E(αα>eiu

>α)

E(eiu>α)
+ Eα(u)Eα(u)>, where Eα(u) =

E(αeiu
>α)

E(eiu>α)
.
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Using the property that φ′′A>β(v) = A>φ′′β(Av)A for any matrix A, and in particular with A = Q>Q − I ,
we have that φ′′A>β(v) = −A>A, i.e. is constant.

If the second derivative of a function is constant, the function is quadratic. Therefore, φA>β(·) is a quadratic
function. Since the SCF completely defines the distribution of its variable (see,e.g., Jacod & Protter (2004)),
A>β must be Gaussian (the SCF of a Gaussian random variable is a quadratic function). Given Lemma 9
from Comon (1994) (i.e., Cramer’s lemma: a linear combination of non-Gaussian random variables cannot
be Gaussian unless the coefficients are all zero), this implies that A = 0, and hence Q>Q = I , i.e., Q is an
orthogonal matrix.

Proof of fact (F2). Plugging Q> = Q−1 into (38), with u1 = 0 and u2 = u, gives

φ′′α(u) = Qφ′′β(Q>u)Q> = φ′′Qβ(u), (40)

for any u ∈ RK . By integrating both sides of (40) and using φα(0) = φQβ(0) = 0, we get that φα(u) =
φQβ(u) + iγ>u for all u ∈ RK for some constant vector γ. Using again that the SCF completely defines the
distribution, it follows that α − γ and Qβ have the same distribution. Since both α and β have independent
components, this is only possible when Q = ΛP , where P is a permutation matrix and Λ is some diagonal
matrix (Comon, 1994, Theorem 11).

A.2 Case of a single Gaussian source

Without loss of generality, we assume that the potential Gaussian source is the first one for α and β. The first
change is in the proof of fact (F1). We use the same argument up to the point where we conclude that A>β
is a Gaussian vector. As only β1 can be Gaussian, Cramer’s lemma implies that only the first row of A can
have non-zero components, that isA = Q>Q−I = e1f

>, where e1 is the first basis vector and f any vector.
Since Q>Q is symmetric, we must have

Q>Q = I + ae1e
>
1 ,

where a is a constant scalar different than −1 as Q>Q is invertible. This implies that Q>Q is an invert-
ible diagonal matrix Λ, and hence QΛ−1/2 is an orthogonal matrix, which in turn implies that Q−1 =
Λ−1Q>.

Plugging this into (38) gives, for any u1 and u2:

φ′′α(u1 + u2) = Qφ′′β(Q>u1 + Λ−1Q>u2)Λ−1Q>.

Given that diagonal matrices commute and that φ′′β is diagonal for independent sources (see Appendix B.1),
this leads to

φ′′α(u1 + u2) = QΛ−1/2φ′′β(Q>u1 + Λ−1Q>u2)Λ−1/2Q>.

For any given v ∈ RK , we are looking for u1 and u2 such that Q>u1 + Λ−1Q>u2 = Λ−1/2Q>v and
u1 + u2 = v, which is always possible by setting Q>u2 = (Λ−1/2 + I)−1Q>v and Q>u1 = Q>v −Q>u2

by using the special structure of Λ. Thus, for any v,

φ′′α(v) = QΛ−1/2φ′′β(Λ−1/2Q>v)Λ−1/2Q> = φ′′QΛ−1/2β(v).

Integrating as previously, this implies that the characteristic function of α and QΛ−1/2β differ only by a
linear function iγ>v, and thus, that α − γ and QΛ−1/2β have the same distribution. This in turn, from
Comon (1994, Theorem 11), implies that QΛ−1/2 is a product of a scaling and a permutation, which ends the
proof.

A.3 Identifiability of discrete CCA (5) and mixed CCA (6)

Given the discrete CCA model, the SCF φx(t) takes the form

φx(t) = φα(D>1 (eit1 − 1) +D>2 (eit2 − 1))

+ φε1(eit1 − 1) + φε2(eit2 − 1),

where eitj , for j = 1, 2, denotes a vector with the m-th element equal to ei[tj ]m , and we used the arguments
analogous with the non-Gaussian case. The rest of the proof extends with a correction that sometimes one
has to replace Dj with diag[eitj ]Dj and that uj = D>j (eitj − 1) for j = 1, 2. For the mixed CCA case, only
the part related to x2 and D2 changes in the same way as for the discrete CCA case.
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B The generalized expectation and covariance matrix

B.1 The generalized expectation and covariance matrix of the sources

The sources α = (α1, . . . , αK) are mutually independent. Therefore, for some h ∈ RK , their CGF (19)
Kα(h) = logE(eα

>h) takes the form

Kα(h) =
∑

k
log
[
E(eαkhk)

]
.

Therefore, the k-th element of the generalized expectation (20) of α is (separable in αk)

[Eα(h)]k =
E(αke

αkhk)

E(eαkhk)
(41)

and the generalized covariance (21) of α is diagonal due to the separability and its k-th diagonal element is

[Cα(h)]kk =
E(α2

ke
αkhk)

E(eαkhk)
− [Eα(h)]

2
k . (42)

B.2 Some expectations of a Poisson random variable

Let x ∈ RM be a multivariate Poisson random variable with mean y ∈ RM+ . Then, for some t ∈ RM ,

E(et
>x) = ey

>(et−1),

E(xme
t>x) = yme

tmey
>(et−1),

E(x2
me

t>x) =
[
yme

tm + 1
]
yme

tmey
>(et−1),

E(xmxm′e
t>x) = yme

tmym′e
tm′ ey

>(et−1), m 6= m′,

where et denotes an M -vector with the m-th element equal to etm .

B.3 The generalized expectation and covariance matrix of discrete ICA

In this section, we use the expectations of a Poisson random variable presented in Appendix B.2.

Given the discrete ICA model (9), the generalized expectation (20) of x ∈ RM takes the form

Ex(t) =
E(xet

>x)

E(et>x)
=

E
[
E(xet

>x|α)
]

E
[
E(et>x|α)

]
= diag[et]D

E(αeα
>h(t))

E(eα>h(t))

= diag[et]DEα(h(t)),

where t ∈ RM is a parameter, h(t) = D>(et − 1), and et denotes an M -vector with the m-th element equal
to etm . Note that in the last equation we used the definition (20) of the generalized expectation Eα(·).

Further, the generalized covariance (21) of x takes the form

Cx(t) =
E(xx>et

>x)

E(et>x)
− Ex(t)Ex(t)>

=
E
[
E(xx>et

>x|α)
]

E
[
E(et>x|α)

] − Ex(t)Ex(t)>.

Plugging into this expression the expression for Ex(t) and

E(xx>et
>x|α) = diag[et]DE(αα>eα

>h(t))D>diag[et]

+ diag[et]diag
[
DE(αeα

>h(t))
]

we get
Cx(t) = diag[Ex(t)] + diag[et]DCα(h(t))D>diag[et],

where we used the definition (21) of the generalized covariance of α.
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B.4 The generalized CCA S-covariance matrix

In this section we sketch the derivation of the diagonal form (27) of the generalized S-covariance matrix of
mixed CCA (6). Expressions (25) and (26) can be obtained in a similar way.

Denoting x = [x1; x2] and t = [t1; t2] (i.e. stacking the vectors as in (8)), the CGF (19) of mixed CCA (6)
can be written as

Kx(t) = logE(et
>
1 x1+t>2 x2)

= logE
[
E(et

>
1 x1+t>2 x2 |α, ε1, ε2)

]
(a)
= logE

[
E(et

>
1 x1 |α, ε1)E(et

>
2 x2 |α, ε2)

]
(b)
= logE

(
et
>
1 (D1α+ε1)e(D2α+ε2)>(et2−1)

)
(c)
= logE

(
eα
>h(t)

)
+ logE

(
eε
>
2 (et2−1)

)
+ logE(et

>
1 ε1),

where h(t) = (D>1 t1 +D>2 (et2 − 1), in (a) we used the conditional independence of x1 and x2, in (b) we
used the first expression from Appendix B.2, and in (c) we used the independence assumption (3).

The generalized CCA S-covariance matrix is defined as

S12(t) := ∇t2∇t1Kx(t).

Its gradient with respect to t1 is

∇t1Kx(t) =
D1E(αeα

>h(t))

E(eα>h(t))
+

E(ε1e
t>1 ε1)

E(et
>
1 ε1)

,

where the last term does not depend on t2. Computing the gradient of this expression with respect to t2
gives

S12(t) = D1Cα(h(t))
(
diag[et2 ]D2

)>
,

where we substituted expression (42) for the generalized covariance of the independent sources.

B.5 Approximation of the T-cumulants with the generalized covariance matrix

Let fmm′(t) = [Cx(t)]mm′ be a function R → RM corresponding to the (m,m′)-th element of the gen-
eralized covariance matrix. Then the following holds for its directional derivative at t0 along the direction
t:

〈∇fmm′(t0), t〉 = lim
δ→0

fmm′(t0 + δt)− fmm′(t0)

δ
,

where 〈·, ·〉 stands for the inner product. Therefore, when using the fact that ∇f(t0) = ∇Cx(t) is the
generalized cumulant of x at t0 and the definition of a projection of a tensor onto a vector (28), one obtains
for t0 = 0 the approximation of the cumulant cum(x) with the generalized covariance matrix Cx(t).

Let us define v1 = W>1 u1 and v1 = W>2 u2 for some u1, u2 ∈ RK . Then, approximations for the T-
cumulants (17) of discrete CCA take the following form: W1T121(v1)W2 is approximated by the generalized
S-covariances (24) S12(t) via the following expression

W1T121(v1)W2 ≈
W1S12(δt1)W>2 −W1S12(0)W>2

δ
−W1diag(v1)S12W

>
2 ,

where t1 =

(
v1

0

)
and W1T122(v2)W2 is approximated by the generalized S-covariances S12(t) via

W1T122(v2)W2 ≈
W1S12(δt2)W>2 −W1S12(0)W>2

δ
−W1S12diag(v2)W>2 ,

where t2 =

(
0
v2

)
and δ are chosen to be small.
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C Finite sample estimators

C.1 Finite sample estimators of the generalized expectation and covariance matrix

Following Yeredor (2000); Slapak & Yeredor (2012b), we use the most direct way of defining the finite
sample estimators of the generalized expectation (20) and covariance matrix (21).

Given a finite sample X = {x1, x2, . . . , xN}, an estimator of the generalized expectation is

Êx(t) =

∑
n xnwn∑
n wn

where weights wn = et
>xn and an estimator of the generalized covariance is

Ĉx(t) =

∑
n xnx

>
nwn∑

n wn
− Êx(t)Êx(t)>.

Similarly, an estimator of the generalized S-covariance matrix is then

Ĉx1,x2
(t) =

∑
n x1nx

>
2nwn∑

n wn
−
∑

n x1nwn∑
n wn

∑
n x
>
2nwn∑
n wn

,

where x = [x1; x2] and t = [t1; t2] for some t1 ∈ RM1 and t2 ∈ RM2 .

Some properties of these estimators are analyzed by Slapak & Yeredor (2012b).

C.2 Finite sample estimators of the DCCA cumulants

In this section, we sketch the derivation of unbiased finite sample estimators for the CCA cumulants S12,
T121, and T122. Since the derivation is nearly identical to the derivation of the estimators for the DICA
cumulants (see Appendix F.2 of Podosinnikova et al. (2015)), all details are omitted.

Given a finite sample X1 = {x11, x12, . . . , x1N} and X2 = {x21, x22, . . . , x2N}, the finite sample estimator
of the discrete CCA S-covariance (15), i.e., S12 := cum(x1, x2), takes the form

Ŝ12 = η1

[
X1X

>
2 −N Ê(x1)Ê(x2)>

]
, (43)

where Ê(x1) = N−1
∑

n x1n, Ê(x2) = N−1
∑

n x2n, and η1 = 1/(N − 1).

Substitution of the finite sample estimators of the 2nd and 3rd cumulants (see, e.g., Appendix C.4 of Po-
dosinnikova et al. (2015)) into the definition of the DCCA T-cumulants (17) leads to the following expres-
sions

Ŵ1T̂12j(vj)Ŵ
>
2 = η2[(Ŵ1X1)diag(X>j vj)]⊗ (Ŵ2X2)

+ η2〈vj , Ê(xj)〉2N [Ŵ1Ê(x1)]⊗ [Ŵ2Ê(x2)]

− η2〈vj , Ê(xj)〉(Ŵ1X1)⊗ (Ŵ2X2)

− η2[(Ŵ1X1)(X>j vj)]⊗ [Ŵ2Ê(x2)]

− η2[Ŵ1Ê(x1)]⊗ [(Ŵ2X2)(X>j vj)]

− η1(Ŵ
(j)
1 X1)⊗ (Ŵ

(j)
2 X2)

+ η1N [Ŵ
(j)
1 Ê(x1)]⊗ [Ŵ

(j)
2 Ê(x2)],

where η2 = N/((N − 1)(N − 2)) and Ŵ (1)
1 = Ŵ1diag(v1), Ŵ (1)

2 = Ŵ2, Ŵ (2)
1 = Ŵ1, and Ŵ (2)

2 =

Ŵ2diag(v2).

In the expressions above, Ŵ1 and Ŵ2 denote whitening matrices of Ŝ12, i.e. such that Ŵ1Ŝ12Ŵ
>
2 =

I .
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D Implementation details

D.1 Computation of whitening matrices

One can compute such whitening matrices (31) via the singular value decomposition (SVD) of S12. Let
S12 = UΣV > be the SVD of S12, then one can define W1 = U1:KΛ and W2 = V1:KΛ, where U1:K and
V1:K are the first K left- and right-singular vectors and Λ = diag(σ

−1/2
1 , . . . , σ

−1/2
K ) and σ1, . . . , σK are the

K largest singular values.

Although SVD is computed only once, the size of the matrix S12 can be significant even for storage. To
avoid construction of this large matrix and speed up SVD, one can use randomized SVD techniques (Halko
et al., 2011). Indeed, since the sample estimator Ŝ12 has the form (43), one can reduce this matrix by
sampling two Gaussian random matrices Ω1 ∈ RK̃×M1 and Ω2 ∈ RK̃×M2 , where K̃ is slightly larger than
K. Now, if U and V are the K largest singular vectors of the reduced matrix Ω1Ŝ12Ω2, then Ω†1U and
Ω†2V are approximately (and up to permutation and scaling of the columns) the K largest singular vectors of
Ŝ12.

D.2 Applying whitening transform to DCCA T-cumulants

Transformation of the T-cumulants (29) with whitening matrices W1 and W2 gives new tensors T̂12j ∈
RK×K×K :

T̂12j := T12j ×1 W
>
1 ×2 W

>
2 ×3 W

>
j , (44)

where j = 1, 2. Combining this transformation with the projection (28), one obtains 2P + 1 matrices

W1S12W
>
2 , W1T12j(W

>
j ujp)W

>
2 , (45)

where p = 1, . . . , P and j = 1, 2 and we used vjp = W>j ujp to take into account whitening along the third
direction. By choosing ujp ∈ RK to be the canonical vectors of the RK , the number of tensor projections is
reduced from M = M1 +M2 to 2K.

D.3 Choice of projection vectors or processing points

For the T-cumulants (29), we choose theK projection vectors as v1p = W>1 ep and v2p = W>2 ep, where ep is
one of the columns of theK-identity matrix (i.e., a canonical vector). For the generalized S-covariances (30),
we choose the processing points as t1p = δ1v1p and t2p = δ2v2p, where δj , for j = 1, 2 are set to a small
value such as 0.1 divided by

∑
m E(|xjm|)/Mj , for j = 1, 2.

When projecting a tensor T12j onto a vector, part of the information contained in this tensor gets lost. To
preserve all information, one could project a tensor T12j onto the canonical basis of RMj to obtain Mj

matrices. However, this would be an expensive operation in terms of both memory and computational time.
In practice, we use the fact, that the tensor T12j , for J = 1, 2, is transformed with whitening matrices (44).
Hence, the projection vector has to include multiplication by the whitening matrices. Since they reduce the
dimension to K, choosing the canonical basis in RK becomes sufficient. Hence, the choice v1p = W>1 ep
and v2p = W>2 ep, where ep is one of the columns of the K-identity matrix.

Importantly, in practice, the tensors are never constructed (see Appendix C.2).

The choice of the processing points of the generalized covariance matrices has to be done carefully. Indeed,
if the values of t1 or t2 are too large, the exponents blow up. Hence, it is reasonable to maintain the values
of the processing points very small. Therefore, for j = 1, 2, we set tjp = δjvjp where δj is proportional to a
parameter δ which is set to a small value (δ = 0.1 by default), and the scale is determined by the inverse of
the empirical average of the component of xj , i.e.:

δj := δ
NMj∑N

n=1

∑Mj

m=1[|Xj |]mn
, (46)

for j = 1, 2. See Appendix F.2 for an experimental comparison of different values of δ (the default value
used in other experiments is δ = 0.1).
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D.4 Finalizing estimation of D1 and D2

The non-orthogonal joint diagonalization algorithm outputs an invertible matrix Q. If the estimated factor
loading matrices are not supposed to be non-negative (continuous case of NCCA (4)), then

D1 = W †1Q,

D2 = W †2Q
−1,

(47)

where † stands for the pseudo-inverse. For the spectral algorithm, where Q are eigenvectors of a non-
symmetric matrix and are not guaranteed to be real, only real parts are kept after evaluating matrices D1

and D2 in accordance with (47).

If the matrices D1 and/or D2 have to be non-negative (the discrete case of DCCA (5) and MCCA (6)), they
have to be further mapped. For that, we select the sign of each column such that the vector (column) has less
negative than positive components, which is measured by the sum of squares of the components of each sign,
(this is necessary since the scaling unidentifiability includes the scaling by −1) and then truncate all negative
values at 0.

In practice, due to the scaling unidentifiability, each column of the obtained matrices D1 and D2 can be
further normalized to have the unit `1-norm. This is applicable in all cases (D/M/NCCA).

E Jacobi-like joint diagonalization of non-symmetric matrices

Given N non-defective (a.k.a. diagonalizable) not necessary normal7 matrices

A = {A1, A2, . . . , AN} ,

where each matrix An ∈ RM×M , find such matrix Q ∈ RM×M that matrices

Q−1AQ =
{
Q−1A1Q, Q

−1A2Q, . . . , Q
−1ANQ

}
are (jointly) as diagonal as possible. We refer to this problem as a non-orthogonal joint diagonalization
(NOJD) problem.8

Algorithm 1 Non-orthogonal joint diagonalization (NOJD)

1: Initialize: A(0) ← A and Q(0) ← IM and iterations ` = 0
2: for sweeps k = 1, 2, . . . do
3: for p = 1, . . . , M − 1 do
4: for q = p+ 1, . . . , M do
5: Increase ` = `+ 1
6: Find the (approx.) shear parameter y∗ defined in (54)
7: Find the Jacobi angle θ∗ defined in (53)
8: Update Q(`) ← Q(`−1)S

(`)
∗ U

(`)
∗

9: Update A(`) ← U
(`)>
∗ S

(`)−1
∗ A(`−1)S

(`)
∗ U

(`)
∗

10: end for
11: end for
12: end for
13: Output: Q(`)

Algorithm. Non-orthogonal Jacobi-like joint diagonalization algorithms have the high level structure which
is outlined in Alg. 1.

The algorithm iteratively constructs the sequence of matrices A(`) =
{
A

(`)
1 , A

(`)
2 , . . . , A

(`)
N

}
, which is

initialized with A(0) = A. Each such iteration ` corresponds to a single update (Line (9) of Alg. (1)) of the
matrices with the optimal shear S(`)

∗ and unitary U (`)
∗ transforms:

A(`)
n = U

(`)>
∗ S

(`)−1
∗ A(`−1)

n S
(`)
∗ U

(`)
∗ ,

7A real matrix A is normal if A>A = AA>.
8An orthogonal joint diagonalization problem corresponds to the case where the matrices A1, A2, . . . , AN are normal and, hence,

diagonalizable by an orthogonal matrix Q.
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where S(`)
∗ = S(`)(y∗) and U (`)

∗ = U (`)(θ∗) for the chosen in accordance with some rules (see below)
optimal shear parameter y∗ and optimal Jacobi (=Givens) angle θ∗.

For the theoretical analysis purposes, the two transforms are considered separately:

A′(`)n = S(`)−1(y)A(`−1)
n S(`)(y),

A(`)
n = A′′(`)n = U (`)>(θ)A′(`)n U (`)(θ).

(48)

Each such iteration ` is a combination of the iteration k and the pivots p and q (see Alg. 1). The iteration k is
referred to as a sweep. Within each sweep k, M(M − 1)/2 pivots p < q are chosen in accordance with the
lexicographical rule. The rule for the choice of pivots can affect convergence as was analyzed for the single
matrix case (see, e.g., Ruhe, 1968; Eberlein, 1962), where more sophisticated rules were proposed for the
algorithm to have a quadratic convergence phase. However, up to our best knowledge, no such analysis was
done for the several matrices case. We assume the simple lexicographical rule all over the paper.

The shear transform is defined by the hyperbolic rotation matrix S(`) = S(`)(y) which is equal to the identity
matrix except for the following entries(

S
(`)
pp S

(`)
pq

S
(`)
qp S

(`)
qp

)
=

(
cosh y sinh y
sinh y cosh y

)
, (49)

where the shear parameter y ∈ R. The unitary transform is defined by the Jacobi (=Givens) rotation matrix
U (`) = U (`)(θ) which is equal to the identity matrix except for the following entries(

U
(`)
pp U

(`)
pq

U
(`)
qp U

(`)
qp

)
=

(
cos θ sin θ
− sin θ cos θ

)
, (50)

where the Jacobi (=Givens) angle θ ∈
[
−π4 ,

π
4

]
.

The following two objective functions are of the central importance for this type of algorithms: (a) the sum
of squares of all the off-diagonal elements of the matrices9 A′′(`) which are the transformed with the unitary
transform U (`) matrices A′(`):

Off
(
A′′(`)

)
=

N∑
n=1

Off
(
U (`)>A′(`)n U (`)

)
(51)

and (b) the sum of the squared Frobenius norms of the matrices A′(`) which are the transformed with the
share transform S(`) matrices A(`−1):∥∥∥A′(`)∥∥∥2

F
=

N∑
n=1

∥∥∥S(`)−1A(`−1)
n S(`)

∥∥∥2

F
. (52)

We refer to (51) as the diagonality measure and to (52) as the normality measure.

All the considered algorithms find the optimal Jacobi angle θ∗ as the minimizer of the diagonality measure
of the (unitary transformed) matrices A′′(`) (48):

θ∗ = arg min
θ∈[−π4 ,

π
4 ]

Off
(
A′′(`)

)
, (53)

which admits a unique closed form solution (Cardoso & Souloumiac, 1996). The optimal shear parameter y∗

is found10 as a minimizer of the normality measure of the (shear transformed) matrices A′(`) (48):

y∗ = arg min
y∈R

∥∥∥A′(`)∥∥∥2

F
. (54)

All the considered algorithms (Fu & Gao, 2006; Iferroudjene et al., 2009; Luciani & Albera, 2010) solve this
step only approximately. In particular, the sh-rt algorithm (Fu & Gao, 2006) approximates the equation for
finding the nulls of the gradient of the objective; the JUST algorithm (Iferroudjene et al., 2009) replaces the
normality measure with the diagonality measure and provides a closed form solution for the resulting prob-
lem; and the JDTM algorithm (Luciani & Albera, 2010) replaces the normality measure with the sum of only
two squared elements A′n,pq and A′n,qp and provides a closed form solution for the resulting problem.

9In the JUST algorithm (Iferroudjene et al., 2009), this objective function is also considered for the (shear transformed) matrixA′(`).
10The JUST algorithm is an exception here, since it minimizes the diagonality measure Off[A′(`)] of the (shear transformed) matrices
A′(`) with respect to y.
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Figure 3: (left and middle) The continuous synthetic data experiment from Appendix F.1 with M1 = M2 =
20, c = c1 = c2 = 0.1 and Ln = Ls = 1000. The number of factors: (left) K1 = K2 = K = 1 and
(middle) K1 = K2 = K = 10. (right): An experimental analysis of the performance of DCCAg with
generalized covariance matrices using different parameters δj for the processing points. The numbers in the
legend correspond to the values of δ defining δj via (46) in Appendix D.3. The default value (def) is δ = 0.1.
The data is the discrete synthetic data as described in Section 5 with the parameters set as in Fig. 2 (right).

The three NOJD algorithms can have slightly different convergence properties, however, for the purposes of
this paper their performance can hardly be distinguished. That is, the difference in the performance of the
algorithms in terms of the `1-error of the factor loading matrices is hardly noticeable. For the experiments,
we use the JDTM algorithm, the other two algorithms could be equally used. To the best of our knowledge,
no theoretical analysis of the NOJD algorithms is available, except for the single matrix case when they boil
down to the (non-symmetric) eigenproblem (Eberlein, 1962; Ruhe, 1968).

The following intuitively explains why the normality measure, i.e. the sum of the squared Frobenius norms,
has to be minimized at the shear transform. As (Ruhe, 1968) mention, for every matrix A and non-singular
Q:

inf
Q

∥∥Q−1AQ
∥∥2

F
= ‖Λ‖2F ,

where Λ is the diagonal matrix containing the eigenvalues of A. Therefore, a diagonalized version of the
matrix A must have the smallest Frobenius norm. Since the unitary transform does not change the Frobenius
norm, it can only be minimized with the shear transform. Further, if a matrix is normal, i.e. A>A =
AA> with a symmetric matrix as a particular case, the upper triangular matrix in its Schur decomposition
is zero (Golub & Van Loan, 1996, Chapter 7) and then the Schur vectors correspond to the (orthogonal
in this case) eigenvectors of this matrix. Therefore, a normal non-defective matrix can be diagonalized by
an orthogonal matrix, which preserves the Frobenius norm. Hence, the shear transform by minimizing the
normality measure decreases the deviation from normality and then the unitary transform by minimizing the
diagonality measure decreases the deviation from diagonality.

F Supplementary experiments

F.1 Continuous synthetic data

This experiment is essentially a continuous analogue to the synthetic experiment with the discrete data from
Section 5.

Synthetic data. We sample synthetic data from the linear non-Gaussian CCA (NCCA) model (7) with each
view xj = Djα + Fjβj . The (non-Gaussian) sources are α ∼ zαGamma(c, b), where zα is a Rademacher
random variable (i.e., takes the values −1 or 1 with the equal probabilities). The noise sources are βj ∼
zβjGamma(cj , bj), for j = 1, 2, where again zβj is a Rademacher random variable. Parameters of the
gamma distribution are initialized by analogy with the discrete case (see Section 5). The elements of the
matrices Dj and Fj , for j = 1, 2, are sampled i.i.d. for the uniform distribution in [−1, 1]. Each column of
Dj and Fj , for j = 1, 2, is normalized to have the unit `1-norm.

Algorithms. We compare gNCCA (the implementation of NCCA with the generalized S-covariance matrices
with the default values of the parameters δ1 and δ2 as described in Appendix D.3) the spectral algorithm for
NCCA (also with the generalized S-covariance matrices) to the JADE algorithm11 (Cardoso & Souloumiac,
1993) for independent component analysis (ICA) and to classical CCA.

Synthetic experiment. In Fig. 3 (left and middle), the results of the experiment for the different number
of topics are presented. The error of the classical CCA is high due to the mentioned unidentifiability is-
sues.

11 The code is available at: http://perso.telecom-paristech.fr/ cardoso/Algo/Jade/jadeR.m
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F.2 Sensitivity of the generalized covariance matrices to the choice of the processing points

In this section, we experimentally analyze the performance of the DCCAg algorithm based on the generalized
S-covariance matrices vs. the parameters δ1 and δ2. We use the experimental setup of the synthetic discrete
data from Section 5 with K1 = K2 = K = 10. The results are presented in Fig. 3 (right).

F.3 Real data experiment – translation topics

For the real data experiment, we estimate the factor loading matrices (topics, in the following) D1 and D2

of aligned proceedings of the 36-th Canadian Parliament in English and French languages. This Hansard
collection can be found at http://www.isi.edu/natural-language/download/hansard/.

Although going into details of natural language processing (NLP) related problems is not the goal of this
paper, we do minor pre-processing (see Appendix F.4) of this text data to improve the presentation of the
estimated bilingual topics D1 and D2.

The 20 topics obtained with DCCA are presented in Tables 2–6. For each topic, we display the 20 most
frequent words (ordered from top to bottom in the decreasing order). Most of the topic have quite clear
interpretation. Moreover, we can often observe the pairs of words which are each others translations in the
topics. Take, e.g.,

- the topic 10: the phrase “pension plan” can be translated as “régime de retraite”, the word “benefits”
as “prestations”, and abbreviations “CPP” and “RPC” stand for “Canada Pension Plan” and “Régime
de pensions du Canada”, respectively;

- the topic 3: “OTAN” is the French abbreviation for “NATO”, the word “war” is translated as “guerre”,
and the word “peace” as “paix”;

- the topic 9: “Nisga” is the name of an Indigenous (or “aboriginal”) people in British Columbia, the
word “aboriginal” translates to French as “autochtontes”, and, e.g., the word “right” can be translated
as “droit”.

Note also that, e.g., in topics 10, although the French words “ans” and “années” are present in the French
topic, their English translation “year” is not, since it was removed as one of the 15 most frequent words in
English (see Appendix F.4).

F.4 Data preprocessing

For the experiment, we use House Debate Training Set of the Hansard collection. To process this text data, we
perform case conversion, stemming, and removal of some stop words. For stemming, the SnowballStemmer
of the NLTK toolbox by Bird et al. (2009) was used for both English and French languages. Although this
stemmer has particular problems (such as mapping several different forms of a word to a single stem in one
language but not in the other), they are left beyond our consideration. Moreover, in addition to the standard
stop words of the NLTK toolbox, we also removed the following words that we consider to be stop words for
our task12 (and their possible forms):

- from English: ask, become, believe, can, could, come, cost, cut, do, done, follow, get, give, go, know,
let, like, listen, live, look, lost, make, may, met, move, must, need, put, say, see, show, take, think,
talk, use, want, will, also, another, back, day, certain, certainly, even, final, finally, first, future, general,
good, high, just, last, long, major, many, new, next, now, one, point, since, thing, time, today, way,
well, without;

- from French (translations in brackets): demander (ask), doit (must), devenir (become), dit (speak,
talk), devoir (have to), donner (give), ila (he has), met (put), parler (speak, talk), penser (think), pourrait
(could), pouvoir (can), prendre (take), savoir (know), aller (go), voir (see), vouloir (want), actuellement,
après (after), aujourd’hui (today), autres (other), bien (good), beaucoup (a lot), besoin (need), cas
(case), cause, cela (it), certain, chose (thing), déjà (already), dernier (last), égal (equal), entre (between),
façon (way), grand (big), jour (day), lorsque (when), neuf (new), passé (past), plus, point, présent, prêts
(ready), prochain (next), quelque (some), suivant (next), unique.

12This list of words was obtained by looking at words that appear in the top-20 words of a large number of topics in a first experiment.
Removing these words did not change much the content of the topics, but made them much more interpretable.
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farmers agriculteurs division no nato otan tax impôts
agriculture programme negatived vote kosovo kosovo budget budget
program agricole paired rejetée forces militaires billion enfants

farm pays declare voix military guerre families économie
country important yeas mise war international income années
support problème divided pairs troops pays country dollars
industry aide nays porte country réfugiés debt pays

trade agriculture vote contre world situation students finances
provinces années order déclaration national paix children familles

work secteur deputy suppléant peace yougoslavie money fiscal
problem provinces thibeault vice international milosevic finance milliards

issue gens mcclelland lethbridge conflict forces education libéraux
us économie ms poisson milosevic serbes liberal jeunes
tax industrie oversee mme debate intervention fund gens

world dollars rise plantes support troupes care important
help mesure past harvey action humanitaire poverty revenu

federal faut army perdront refugees nations jobs mesure
producers situation peterson sciences ground conflit benefits argent
national réformiste heed liberté happen ethnique child santé
business accord moral prière issue monde pay payer

Table 2: Topics 1 to 4.

work travail justice jeunes business entreprises board commission
workers négociations young justice small petites wheat blé
strike travailleurs crime victimes loans programme farmers agriculteurs

legislation grève offenders systéme program banques grain administration
union emploi victims crime bank finances producers producteurs

agreement droit system mesure money important amendment grain
labour syndicat legislation criminel finance économie market conseil
right services sentence contrevenants access secteur directors ouest

services accord youth peine jobs argent western amendement
negotiations voix criminal ans economy emplois election comité

chairman adopter court juge industry assurance support réformiste
public réglement issue enfants financial financiére party propos
party article law important billion appuyer farm important

employees retour community gens support créer agriculture compte
collective gens right tribunaux ovid choc clause prix

agreed conseil reform droit merger accés ottawa no
board collectivités country problème information milliards us dispositions

arbitration postes problem réformiste size propos vote information
grain grain person traité korea pme cwb mesure
order trésor support faut companies obtenir states produits

Table 3: Topics 5 to 8.

After stemming and removing stop words, several files had different number of documents in each language
and had to be removed too. The numbers of these files are: 16, 36, 49 55, 88, 103, 110, 114, 123, 155, 159,
204, 229, 240, 2-17, 2-35.

We also removed the 15 most frequent words from each language. These include:

- in English: Mr, govern, member, speaker, minist(er), Hon, Canadian, Canada, bill, hous(e), peopl(e),
year, act, motion, question;

- in French: gouvern(er), président, loi, déput(é), ministr(e), canadien, Canada, projet, Monsieur, ques-
tion, part(y), chambr(e), premi(er), motion, Hon.

Removing these words is not necessary, but improves the presentation of the learned topics significantly.
Indeed, the most frequent words tend to appear in nearly every topic (often in pairs in both languages as
translations of each other, e.g., “member” and “député” or “Canada” in both languages, which confirms one
more time the correctness of our algorithm).

Finally, we select M1 = M2 = 5, 000 words for each language to form matrices X1 and X2 each containing
N = 11, 969 documents in columns. As stemming removes the words endings, we map the stemmed words
to the respective most frequent original words when showing off the topics in Tables 2-6.

Supplementary References
Jacod, J. and Protter, P. Probability Essentials. Springer, 2004.
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nisga nisga pension régime newfoundland terre health santé
treaty autochtones plan pensions amendment droit research recherche

aboriginal traité fund cotisations school modifications care fédéral
agreement accord benefits prestations education provinces federal provinces

right droit public retraite right école provinces soins
land nations investment emploi constitution comité budget budget

reserve britannique money assurance provinces éducation billion dollars
national indiennes contribution investissement committee enseignement social systéme
british terre cpp fonds system systéme money finances

columbia colombie retirement années reform enfants tax transfert
indian réserves pay ans minority vote system milliards
court non billion argent denominational amendement provincial domaine
party affaires change important referendum constitution fund sociale
law négociations liberal administration children religieux country années

native bande legislation dollars quebec référendum quebec maladie
non réformiste board propos parents article transfer important

constitution constitution employment milliards students réformiste debt programme
development application tax gens change québec liberal libéraux

reform user rate taux party constitutionnelle services environnement
legislation gestion amendment rpc labrador confessionnelles issue assurance

Table 4: Topics 9 to 12.

party pays tax agence quebec québec court pêches
country politique provinces provinces federal québécois right droit

issue important agency revenu information fédéral fisheries juge
us comité federal impôts provinces provinces decision cours

debate libéraux revenue fiscal protection protection fish gens
liberal réformiste taxpayers fédéral right renseignements issue décision

committee gens equalization contribuables legislation droit law important
work débat system payer provincial personnel work pays
order accord services taxe person privé us traité

support démocratique accountability péréquation law protéger party conservateur
reform québécois amendment argent constitution électronique debate région
election réglement billion services privacy article justice problème
world propos money fonction country commerce problem supréme

quebec collégue party modifier electronic provinciaux community tribunaux
standing parlementaire provincial article court bloc supreme faut
national appuyer public ministére bloc vie country situation
interest opposition business administration students application area victimes

important élections reform déclaration section citoyens case appuyer
right bloc office tps clear non order mesure

public industrie support provinciaux states nationale parliament trouve

Table 5: Topics 13 to 16.

legislation important national important vote voix water eau
issue environnement area gens yeas no trade ressources

amendment mesure parks environnement division adopter resources accord
committee enfants work parcs nays vote country environnement

support comité country pays agreed non agreement important
protection propos us marine deputy contre provinces industrie

information pays development mesure paired dépenses industry américains
industry appuyer support propos responsible accord protection pays

concerned protection community fédéral treasury conseil export provinces
right article federal jeunes divided budget environmental exportations

important droit issue appuyer order crédit us échange
change accord legislation années fiscal trésor freshwater conservateur
world gens help assurance amount oui federal responsabilité
law amendement liberal gestion pleased mise world effet

families adopter world conservateur budget propos issue quantité
work industrie responsible accord ms porte legislation traité

children non concerned région infrastructure lib environment commerce
order société committee problème board pairs responsible unis

national porte problem nationale consent veuillent development économie
states no important québec estimates vice culture alena

Table 6: Topics 17 to 20.
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