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Abstract

We compare the performance of three usual allocations, namely max-min fairness, pro-
portional fairness and balanced fairness, in a communication network whose resources are
shared by a random number of data flows. The model consists of a network of processor-
sharing queues. The vector of service rates, which is constrained by some compact, convex
capacity set representing the network resources, is a function of the number of customers in
each queue. This function determines the way network resources are allocated. We show
that this model is representative of a rich class of wired and wireless networks. We give in
this general framework the stability condition of max-min fairness, proportional fairness and
balanced fairness and compare their performance on a number of toy networks.
Keywords: Resource allocation, flow-level modeling, stability, insensitivity.

1 Introduction

Following the seminal work of Kelly et al. [22], considerable recent research effort has been
devoted to the issue of optimally allocating resources of wired and wireless communication
networks [21, 26, 28, 32, 33, 34, 38]. As a general rule a resource allocation is said to be optimal
if it maximizes the overall “utility” of a given set of users, where the utility of each user is
some concave function of the bit rate allocated to that user. The dynamic nature of traffic is
not taken into account in this framework. In real networks, data flows do not last forever but
arrive at random times and leave the network once the corresponding digital document has been
transferred. This results in a random, dynamic set of active users that impacts the bit rate that
can be allocated to each of them. Conversely, the bit rate allocated to each user determines how
long that user will stay active and thus impacts the evolution of the set of active users. The
study of resource allocation cannot therefore be decoupled from that of the stochastic process
describing the set of active users. This is best illustrated by an example.
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Consider a wireless system where a base station transmits data to mobiles that experience
constant radio conditions that can be classified as either “good” or “bad”. Those mobiles that
experience bad radio conditions require more radio resources (e.g., bandwidth, transmission
power) than the other mobiles to get the same bit rate. Thus the overall bit rate is maximized
by allocating all resources to those mobiles having a good radio channel. Such an allocation is
not “fair”, however. It would be much more “fair” to maximize the minimum bit rates (so-called
max-min fairness). But most resources are then consumed by those mobiles having a bad radio
channel. We see that there is a trade-off between “efficiency” and “fairness”, which is captured
by the above mentioned utility maximizing allocations. A well-known example is proportional
fairness, obtained with a logarithmic utility function [22].

Now let us account for the fact that the number of active mobiles is dynamic. It is then
unclear what an “optimal” resource allocation is. Maximizing the overall bit rate in each state
starves those mobiles that experience bad radio conditions. Such mobiles, which are served only
in the absence of mobiles with good radio conditions, stay longer in the system. This results
in a steady state where most active mobiles have bad radio conditions. Conversely, max-min
fairness gives relatively few resources to those mobiles with good radio conditions, which results
in an unnecessarily high number of such mobiles in steady state. We see that the performance of
an allocation depends critically on the steady state it leads to. The apparent trade-off between
“efficiency” and “fairness” vanishes.

It may be argued that network resources should rather be allocated so as to minimize the
mean duration of data transfers. Such an “optimal” allocation may depend on detailed traf-
fic characteristics like the distribution of data transfer volumes, however. A more practically
interesting objective is to allocate resources in such a way that the steady state does not de-
pend on these traffic characteristics, making performance robust with respect to user behaviour.
Balanced fairness is such an “insensitive” allocation [8, 9].

The objective of the present paper is to compare the performance of max-min fairness, pro-
portional fairness and balanced fairness in a dynamic setting with a randomly varying number
of ongoing data flows. We represent the data network as a network of processor-sharing queues
where each queue corresponds to a particular flow class. The service rate of each queue, which
represents the overall bit rate allocated to the corresponding flow class, depends on the entire
network state. The vector of service rates is constrained by some compact, convex set repre-
senting the capacity of the considered communication network. Such a queueing network is
representative of a rich class of wired and wireless networks, as illustrated by the various toy
examples presented in the following. We use these simple, reference examples as a basis to
compare the performance of max-min fairness, proportional fairness and balanced fairness. A
complete study involving more realistic scenarios is certainly needed to validate the preliminary
conclusions drawn in the present paper.

An overview of related work is given in the next section (see also [40] for a survey in the
context of wired networks). Section 3 describes the model and section 4 the corresponding
queueing system. Section 5 is devoted to the definition and key properties of max-min fairness,
proportional fairness and balanced fairness. Stability issues are addressed in section 6. Examples
of wired and wireless networks are presented in sections 7 and 8, respectively. Section 9 concludes
the paper.
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2 Related work

The flow-level modeling of communication networks as networks of processor-sharing queues
started with the analysis of radio systems by Telatar and Gallager [44] and Stamatelos and
Koukoulidis [42]. Based on the observation that TCP shares bandwidth in an approximately
fair way, Heyman et al. [20] and Massoulié and Roberts [31] applied similar models to wired IP
networks. Practical dimensioning rules were developed on this basis by Berger and Kogan [4].
Ben Fredj et al. observed the insensitivity of the results to detailed traffic characteristics like
the structure of user sessions [3]. Many papers proposed modified models that account more
precisely for the way bandwidth is shared by TCP, see [25] for example.

Stability issues were first addressed by Tassiulas and Ephremides [43] in their seminal work
on ad-hoc networks. A class of resource allocations that maximize the stability region of some
wireless networks were considered in related papers by Armony and Bambos [1] and Bambos and
Michailidis [2]. De Veciana et al. [45], Bonald and Massoulié [7] and Ye [46] proved the stability
of wired networks under various allocations like max-min fairness and proportional fairness. In
the present paper, we extend these results to any network whose resources are constrained by
some compact, convex capacity set (see proposition 1 and theorem 2).

The first analytical performance result for networks with multiple resources was derived
by Massoulié and Roberts [31]. They observed that under proportional fairness, the Markov
process describing the number of ongoing flows on each route of a homogeneous linear network
is reversible. This result was extended to homogeneous grids by Bonald and Massoulié [7]
and further generalized to homogeneous hypercubes by Kelly (unpublished communication; see
[8]). Bonald and Proutière [8] derived similar results for any network topology under balanced
fairness and proved the insensitivity of these results in a similar way as in [3]. They also proved
that utility maximizing allocations lead to sensitive results except for proportional fairness in
homogeneous hypercubes. This explains why so few analytical results exist for such allocations.
The known results reduce to a mean-field approximation of max-min fairness in a homogeneous
star network by Fayolle et al. [18] and a fluid limit analysis of so-called α-fair allocations by
Kelly and Williams [23]. We prove in this paper that max-min fairness is also sensitive in the
general context of a compact, convex capacity set except in the trivial case where the network
reduces to a set of independent links (see theorem 1). We also find a new class of capacity sets
for which proportional fairness is insensitive (see §5.4). This class is quite restrictive, however,
and proportional fairness turns out to be sensitive in most cases of practical interest.

The performance of balanced fairness has been studied in a number of papers. Some bounds
and recursive formulas were derived in [9, 11, 12, 13]. The notion of balanced fairness, initially
introduced for wired networks with single-path routing [8], was applied to wired networks with
traffic splitting by Leino and Virtamo [27] and to wireless ad-hoc networks by Penttinen and
Virtamo [37]. These results are included in the unified framework of a compact, convex capacity
set introduced in the present paper.

While network performance is generally evaluated at normal traffic loads, Massoulié and
Roberts [30] and Boyer et al. [14] explored the possibility of an overload and recognized the
need for admission control. The related issue of load balancing has recently been addressed by
Bonald et al. [6]. The corresponding model is a queueing network with both state-dependent
arrival rates and service rates. We do neither consider admission control nor load balancing in
the present paper.

Finally, a number of papers are devoted to the integration of data traffic with streaming
traffic. Núñez Queija et al. [35] and Delcoigne et al. [17] evaluated the performance of data

3



traffic in a network where priority is given to streaming traffic. Key et al. [24] proved that the
stability of a network with adaptive streaming traffic is not affected by this traffic under α-fair
sharing. Bonald and Proutière [10] derived insensitive performance bounds for a similar network
under balanced fairness. We here restrict the analysis to data traffic alone.

3 Flow-level modeling of data networks

In this section, we present the model in terms of traffic characteristics and network resources,
and describe the performance metric to be used in the rest of the paper.

3.1 Traffic characteristics

We model traffic at flow level. Specifically, we ignore the complex interaction of packet level
mechanisms (like congestion control, scheduling, routing, buffer management) at short-time
scales and are only interested in the long-term resource allocation they realize. The flow content
is then viewed as a fluid which is transmitted as a continuous stream through the network.
The transmission rate changes at flow arrivals and flow departures only. This abstraction is
suitable for the performance evaluation of relatively large flows (more than 100 packets, say)
that typically generate most traffic.

In practice, flows are generated within sessions, each session being composed of a succession
of flows separated by intervals of inactivity referred to as “think-times”. A typical example
is the succession of Web pages downloaded by a user in a period of continuous activity. This
may result in a bursty flow arrival process, depending on the number of flows in a session, the
distribution of flow sizes and think-time durations and their possible correlation. The session
arrival process, on the other hand, is typically a Poisson process [36]. This is due to the fact
that sessions are generated independently by a large population of users. For a limited user
population, sessions may simply be considered as permanent, cf. [4, 20].

It turns out that the performance of “fair” allocations like max-min fairness and proportional
fairness is not highly sensitive to these detailed traffic characteristics. This insensitivity property
is even exact for balanced fairness [8]. Thus in the rest of the paper, we assume that flows arrive
as a Poisson process and have i.i.d. exponential sizes. The study of the degree of sensitivity of
max-min fairness and proportional fairness is beyond the scope of the present paper.

3.2 Network resources

Each flow is characterized by the network resources it requires. A typical example in a wired
network is the set of links on the path from source to destination. We consider an arbitrary set
of N flow classes. All flows within the same class have the same resource requirements. Class-i
flows arrive as a Poisson process of intensity λi > 0 and have i.i.d. exponential sizes of mean
σi > 0 (in bits). Let ρi = λiσi be the traffic intensity of class-i flows (in bit/s). This is the
traffic volume generated by class-i flows per unit of time. We denote by ρ the vector of traffic
intensities (ρ1, . . . , ρN ).

Let xi be the number of class-i flows in progress. We refer to the vector x = (x1, . . . , xN )
as the network state. The total bit rate allocated to class-i flows in state x is equally shared
by these flows and denoted by φi(x). We refer to the vector φ(x) = (φ1(x), . . . , φN (x)) as the
resource allocation in state x. The resource allocation is constrained by some compact, convex,
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coordinate convex1 set C referred to as the capacity set. This is illustrated by Figure 1 for a
wired network with N = 2 flow classes.

(x)φ

2

1

2

1

Figure 1: A wired network and its capacity set.

Flows may additionally be constrained by individual rate limits representing for instance the
speed of the user access line to the network. This results into a state-dependent capacity set, see
e.g. [8, 12]. We here restrict the analysis to a fixed capacity set. The notation C(x) is used to
denote the set of vectors of C whose i-th component is equal to 0 if xi = 0, for all i = 1, . . . , N .
By convention, we let φi(x) = 0 if xi = 0 so that φ(x) ∈ C(x) for all states x.

3.3 Performance metric

We are interested in the steady-state performance when the network is stable, in the sense that
the Markov process X(t) that describes the network state at time t is positive recurrent. We
shall see in section 6 that for max-min fairness, proportional fairness and balanced fairness, the
network is stable provided the vector of traffic intensities ρ belongs to the interior of the capacity
set. A number of performance metrics could then be considered to evaluate the quality-of-service
experienced by the data transfers. We focus on the mean flow duration for each class. By Little’s
law, the mean duration of class-i flows is given by:

x̄i

λi

,

where x̄i denotes the mean number of class-i flows in steady state. A convenient, equivalent
performance metric is the flow throughput, defined as the ratio of the mean flow size to the mean
flow duration. In view of the above expression, the class-i flow throughput γi is the ratio of the
class-i traffic intensity ρi = λiσi to the mean number of class-i flows:

γi =
ρi

x̄i
. (1)

4 Representation as a queueing system

We now show how the considered flow-level model of data networks may be represented as a
queueing system. For pedagogical purposes, we start with the case of a single queue.

1A set A ⊂ R
N
+ is said to be coordinate convex if b ∈ A implies a ∈ A for all a ∈ R

N
+ such that a ≤ b

component-wise.
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4.1 A single processor-sharing queue

If the data network consists of a single resource of capacity C bit/s, referred to as the link, the
model corresponds to a single processor-sharing queue. If there is a single flow class with arrival
rate λ and mean size σ, the queue is an M/M/1 queue with arrival rate λ and service rate C/σ.
The queue is stable if and only if the traffic intensity ρ ≡ λσ is less than C, in which case the
stationary distribution of the number of ongoing flows is given by:

π(x) = π(0)
( ρ

C

)x

. (2)

We deduce the mean number of ongoing flows:

x̄ =
ρ

C − ρ

and, in view of (1), the flow throughput:

γ = C − ρ. (3)

The stationary distribution of the processor-sharing queue is known to be insensitive to the
distribution of service requirements, which implies that the performance of a single data link
with fair sharing is independent of the flow size distribution. More generally, the stationary
distribution (2) is insensitive to all traffic characteristics described in §3.1 beyond the traffic
intensity [3]. The only required assumption is that sessions arrive as a Poisson process.

4.2 A network of processor-sharing queues

In general, the model may be viewed as a network of N processor-sharing queues where each
queue corresponds to a flow class. Customers arrive at queue i as a Poisson process of intensity
λi and have i.i.d. exponential service requirements of mean σi (bits). The service rate φi(x) of
queue i (in bit/s) depends on the entire network state x. Such queueing networks are known to
be intractable unless the following balance property holds. We denote by ei is the N -dimensional
vector with 1 in component i and 0 elsewhere.

Definition 1 (Balance property) The allocation φ is said to be balanced if for all pairs of
classes i, j and all states x such that xi > 0 and xj > 0,

φi(x)φj(x − ei) = φi(x − ej)φj(x). (4)

The corresponding queueing network is then a Whittle network [41]. The balance property
is in fact equivalent to the reversibility of the Markov process X(t) that describes the evolution
of the network state. The invariant measure of X(t) is then given by:

π(x) = π(0)Φ(x)ρx1

1 . . . ρxN

N . (5)

The function Φ, generally referred to as the balance function, is defined by Φ(0) = 1 and

∀x 6= 0, Φ(x) =
1

φi1(x)φi2(x − ei1) . . . φin(ein)
, (6)

where x, x−ei1 , x−ei1 −ei2 , . . . , ein , 0 denotes any path from state x to state 0 and n =
∑N

i=1 xi.
Note that this definition is independent of the considered path in view of (4). If the invariant
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measure π has a finite sum, the Markov process X(t) is positive recurrent and its stationary
distribution follows by normalisation.

When the balance property holds, the queueing network is insensitive in the sense that the
stationary distribution of X(t) is independent of the distribution of service requirements beyond
the mean [41]. Again, this stationary distribution is then insensitive to all traffic characteristics
described in §3.1 beyond the traffic intensity [8]. Moreover, the balance property is a necessary
and sufficient condition for insensitivity. For a non-balanced allocation, the stationary distribu-
tion is sensitive to all traffic characteristics and generally intractable. This is the case of most
networks under max-min fairness and proportional fairness, as shown in the following section.
Balanced fairness, on the other hand, satisfies the balance property by construction.

5 Resource allocation

This section is devoted to the definition and the properties of max-min fairness, proportional
fairness and balanced fairness. We first introduce two key properties of resource allocations.

5.1 Pareto efficiency

A resource allocation is said to be Pareto efficient if all resources are “consumed” in the sense
that the bit rate allocated to one flow cannot be increased without decreasing the bit rate
allocated to another flow.

Definition 2 (Pareto efficiency) The allocation φ is said to be Pareto efficient if for all states
x, any vector ϕ ∈ C(x) such that ϕ ≥ φ(x) component-wise is equal to φ(x).

Note that Pareto efficiency implies that φ(x) belongs to the boundary of the capacity set in
any state x. Both properties are in fact equivalent if the boundary of the capacity set does not
contain any segment parallel to one of the class-i axes, i = 1, . . . , N .

5.2 Homotheticity

A resource allocation is said to be homothetic if changing the resources available for a given
class by some factor changes the bit rate allocated to this class by the same factor. This may be
formalized as follows. For any a ∈ R

N
+ , denote by φa the allocation associated with the capacity

set a × C defined as the set of vectors a × ϕ, ϕ ∈ C, where a × ϕ denotes the vector whose i-th
component is equal to the product aiϕi.

Definition 3 (Homotheticity) The allocation φ is said to be homothetic if:

∀a ∈ R
N
+ , φa = a × φ.

As shown in sections 7 and 8, the homotheticity property simplifies the analysis of some
networks whose capacity set is the homothetic version of that of some other networks.

5.3 Max-min fairness

The notion of max-min fairness is well known in political science [39]. It was introduced as
a design objective for communication networks by Bertsekas and Gallager [5]. The principle
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of max-min fairness is to allocate network resources in such a way that the bit rate of a flow
cannot be increased without decreasing the bit rate of a flow having a smaller bit rate. Max-min
fairness is uniquely defined by the following water-filling procedure:

1. start from a bit rate equal to zero for all flows;

2. increase the bit rate of all flows at the same speed until the bit rate of some flows is
constrained by the capacity set; freeze the bit rate of these flows;

3. apply step 2 repeatedly to non-frozen flows until the bit rate of all flows is constrained by
the capacity set.

Note that max-min fairness is Pareto efficient. If the boundary of the capacity set does not
contain any segment parallel to one of the class-i axes, i = 1, . . . , N , the water-filling procedure
stops after the first instance of step 2 and the allocation is simply given by the intersection of
the line of direction x with the boundary of the capacity set. In particular, max-min fairness is
non-homothetic. The following theorem states that max-min fairness is non-balanced except in
the trivial case where the network reduces to a set of independent links. The proof of this result
is given in Appendix A.

Theorem 1 Max-min fairness is balanced if and only if for some L ≥ 1, the network reduces
to a set of L independent links in the sense that there exists a partition I1, . . . , IL of the set of
classes {1, . . . , N} and some positive constants c1, . . . , cL such that:

C =







ϕ :
∑

i∈I1

ϕi ≤ c1, . . . ,
∑

i∈IL

ϕi ≤ cL







.

5.4 Proportional fairness

Proportional fairness was introduced by Kelly et al. [22]. This is the most commonly cited utility
maximizing allocation. For any network state x, φ(x) is defined as the unique vector ϕ that
maximizes the quantity

N
∑

i=1

xi log(ϕi)

under the constraint ϕ ∈ C(x).
Like any utility maximizing allocation, proportional fairness is Pareto efficient. It may

easily be verified, on the other hand, that this is the only utility maximizing allocation that
is homothetic. Proportional fairness is non-balanced except for some specific capacity sets like
those of so-called homogeneous hypercubes [8], sets of vectors ϕ such that ϕβ

1 + . . .+ϕβ
N ≤ 1, for

some β ≥ 1, and combined, homothetic versions of these sets. An example with N = 3 classes
is the set of vectors ϕ such that ϕβ

1 + ϕβ
2 ≤ 1 and ϕβ

1 + ϕβ
3 ≤ 1, for which we get in any state

x 6= 0:

φ1(x) =

(

x1

x1 + x2 + x3

)
1

β

,

φ2(x) =

(

x2 + x3

x1 + x2 + x3

) 1

β

if x2 > 0, φ3(x) =

(

x2 + x3

x1 + x2 + x3

) 1

β

if x3 > 0.

It may easily be verified that the balance property indeed holds in this case.
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5.5 Balanced fairness

The notion of balanced fairness was introduced by Bonald and Proutière as a means to approx-
imately evaluate the performance of “fair” allocations like max-min fairness and proportional
fairness in wired networks [8]. Balanced fairness is defined as the unique allocation that satisfies
the balance property and such that φ(x) belongs to the boundary of the capacity set in all states
x 6= 0. Let Φ be the corresponding balance function. In view of (6), we have for all states x 6= 0:

φi(x) =
Φ(x − ei)

Φ(x)
, i = 1, . . . , N, (7)

with the convention Φ(x) = 0 for all x 6∈ Z
N
+ . Thus Φ(x) is recursively defined as the minimum

positive constant α such that:

1

α
(Φ(x − e1), . . . ,Φ(x − eN )) ∈ C,

with Φ(0) = 1. If the capacity set is a polytope, which means that C = {ϕ : ϕA ≤ C} for some
L ≥ 1, some N ×L-dimensional non-negative matrix A and some L-dimensional positive vector
C, this recursion takes the following simple form:

Φ(x) = min
l=1,...,L

1

Cl

N
∑

i=1

Φ(x − ei)Ail.

Explicit expressions for the flow throughput can be derived from this recursion [11, 12]. It turns
out that the capacity set is a polytope in most practically interesting case (cf. the examples of
sections 7 and 8).

Balanced fairness is not always Pareto efficient [8]. If balanced fairness is not Pareto efficient
for a particular capacity set C, no balanced allocation is Pareto efficient on C. Conversely, if
balanced fairness is Pareto efficient for a capacity set C, there is no other allocation that is both
balanced and Pareto efficient. Finally, balanced fairness is homothetic. This follows from the
fact that for any vector a ∈ R

N
+ , the allocation defined by φa = a × φ is balanced and belongs

to the boundary of the capacity set. The corresponding balance function Φa is given by:

Φa(x) = Φ(x)
1

ax1

1

. . .
1

axN

N

. (8)

6 Stability issues

We give in this section the stability condition of max-min fairness, proportional fairness and
balanced fairness.

6.1 Necessary condition

We first show that for any allocation, a necessary stability condition is that the traffic intensity
vector belongs to the capacity set.

Proposition 1 For any allocation, a necessary stability condition is ρ ∈ C.
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Proof. If ρ 6∈ C, there exists a half-space H that contains C but not ρ (by the convexity of C)
and whose boundary intersects each axis (by the compactness and the coordinate convexity of
C). We denote by δi the intersection of the boundary of H with the class-i axis. Since

H =

{

ϕ :

N
∑

i=1

ϕi

δi
≤ 1

}

,

the network associated with the capacity set H ∩ R
N
+ corresponds to a multi-class processor-

sharing queue with unit speed, class-i arrival rate λi and class-i mean service time σi/δi. The
load of this queue is equal to:

N
∑

i=1

ρi

δi
.

Since ρ 6∈ H, we have:
N
∑

i=1

ρi

δi

> 1,

so that the queue is unstable. Since H contains C, the network is unstable. 2

6.2 Sufficient condition

The above necessary stability condition is also a sufficient stability condition up to the critical
case where the traffic intensity vector belongs to the boundary of the capacity set. Let C̆ be the
interior of the capacity set. The following result is proved in Appendix B.

Theorem 2 For max-min fairness, proportional fairness and balanced fairness, a sufficient
stability condition is ρ ∈ C̆.

7 Wired networks

The rest of the paper is devoted to examples. In all numerical applications, we take the same
traffic intensities for all classes. The performance of max-min fairness and proportional fairness
is obtained by simulation (except when analytical results are available) with the same mean
flow size for all classes. Each simulation point corresponds to the flow throughput measured
over 1,000,000 events (arrival or departure) after a warm-up period of 100,000 events. The
performance of balanced fairness, on the other hand, is always obtained analytically.

We first consider a wired network, represented as a set of L links and K routes where each
route k is defined as a subset rk of the set of links {1, . . . , L}. Let Cl > 0 be the capacity of link
l (in bit/s units). We denote by C the vector (C1, . . . , CL). We refer to the incidence matrix as
the K × L-dimensional matrix A whose k, l-entry is equal to 1 if l ∈ rk and 0 otherwise.

7.1 Single-path routing

In case of single-path routing, each flow is assigned a particular route in the network so that
N = K. The corresponding capacity set is given by:

C = {ϕ : ϕA ≤ C}.
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Consider for instance the 3-branch symmetric tree of figure 2. We have in this case:

C = (2, 1, 1, 1) and A =





1 1 0 0
1 0 1 0
1 0 0 1



 .

The corresponding capacity set is shown in figure 2.

2 1

1

1

11

1

Figure 2: A symmetric tree network and its capacity set.

The flow throughput (1) depends on the allocation and on the vector of traffic intensities.
For balanced fairness, we obtain applying the results of [12]:

γ1 = γ2 = γ3 =
(2 − %)(3 − %)(6 + %)

(4 − %)(9 + %)
,

where % denotes the total traffic intensity ρ1 +ρ2 +ρ3, with ρ1 = ρ2 = ρ3. Note that the stability
condition is % < 2. Figure 3 gives the flow throughput as a function of the traffic intensity %.
We observe from figure 3 that the performance of max-min fairness and proportional fairness
cannot be distinguished from that of balanced fairness.
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Figure 3: Flow throughput for the network of figure 2.

Now consider the 2-branch tree of figure 4, defined by:

C = (2, 1) and A =

(

1 1
1 0

)

.
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Figure 4: An asymmetric tree network and its capacity set.

The corresponding capacity set is shown in figure 4.
For balanced fairness, the flow throughputs are given by [12]:

γ1 = 2 − %, γ2 =
(2 − %)(4 − %)

8 − %
,

where % denotes the total traffic intensity ρ1 + ρ2, with ρ1 = ρ2. The stability condition is still
% < 2. As shown in figure 5, the three allocations again give very similar results.
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Figure 5: Flow throughput for the network of figure 4.

Note that the model can be used to represent multicast flows as well. In the network of
figure 4 for instance, the class-2 flows may correspond to multicast flows from one source (located
between the two links) to two destinations (one per link). Similarly for the network of figure 2, a
multicast flow whose packets are replicated on each of the three branches after their transmission
on the root link may be represented by an additional route that contains all network links. In
all cases, the bit rate of the multicast flow is determined by the most constraining link of the
multicast tree.

7.2 Multi-path routing

Now assume that each flow class is not assigned a single route but a set of routes. Specifically,
each class i chooses at any time one route in a subset si of the set of routes {1, . . . ,K}. Let R
be the set of N ×K stochastic matrices2 such that on each row i, the i, k-entries are equal to 0

2A matrix is said to be stochastic if its entries are non-negative and the sum of the entries on each row is equal

to 1.
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for all k except one in the set si. Each matrix R ∈ R corresponds to a particular route choice.
The routing scheme, referred to as multi-path routing, is assumed to operate at a much higher
frequency than the typical flow duration, like all other packet-level mechanisms (cf. §3.1). The
capacity set is then the convex hull of the capacity sets associated with the routing matrices
R ∈ R:

C = convex hull of {ϕ : ∃R ∈ R, ϕRA ≤ C}.

Consider the example of figure 6 with two unit capacity links. Class 2 chooses either one
link or the other. We have in this case:

C = (1, 1), A =

(

1 0
0 1

)

and R =





1 0
1 0
0 1



 or





1 0
0 1
0 1



 .

The corresponding capacity set is shown in figure 6. It coincides with the capacity set of the
tree network of figure 2, so that both networks are in fact equivalent. The flow throughput is
the same for the three classes and given by figure 3 as a function of the overall traffic intensity.

Class 3

Class 2

Class 1

or

1

1 Class 1

Class 2

Class 3

11

1

Figure 6: A symmetric network with multi-path routing and its capacity set.

Consider now the example of figure 7 with two links of different capacities:

C = (2, 1), A =

(

1 0
0 1

)

and R =

(

1 0
0 1

)

or

(

1 0
1 0

)

.

The corresponding capacity set, shown in figure 7, does not coincide with any wired network
with static routes. This is in fact a homothetic version of the capacity set of figure 4.

1

or

2

Class 1

Class 2

Class 2

Class 1

2

21

Figure 7: An asymmetric network with multi-path routing and its capacity set.

Using the homotheticity property (8) and the results of [12], we get for balanced fairness:

γ1 =
8 − 3%

4
, γ2 =

(8 − 3%)(4 − %)(8 − %)

2(64 − 24% + %2)
,
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where % denotes the total traffic intensity ρ1+ρ2, with ρ1 = ρ2. The stability condition is % < 8/3.
The results, shown in figure 8, are similar for the three allocations except for proportional fairness
that leads to a slightly higher flow throughput for class 2 at moderate load.
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Figure 8: Flow throughput for the network of figure 7.

7.3 Traffic splitting

Suppose now that each class i can use all routes in the set si at the same time. Let S be the
set of N × K stochastic matrices such that on each row i, the i, k-entries are equal to 0 for all
k except those in the set si. Each matrix S ∈ S corresponds to a particular traffic splitting
scheme. The capacity set is:

C = {ϕ : ∃S ∈ S, ϕSA ≤ C}.

Consider the example of figure 9, which corresponds to the network of figure 6 but with traffic
splitting instead of multi-path routing. We have in this case:

C = (1, 1), A =

(

1 0
0 1

)

and S =





1 0
α1 α2

0 1



 with α1 + α2 = 1.

The corresponding capacity set, shown in figure 9, coincides with that of the tree network of
figure 2 where the capacity of one of the three branches is equal to 2.

We get for balanced fairness:

γ1 = γ3 =
2(2 − %)(3 − %)

12 − 5%
, γ2 = 2 − %,

where % denotes the total traffic intensity ρ1+ρ2+ρ3, with ρ1 = ρ2 = ρ3. The stability condition
is % < 2. The results are given in figure 10.

8 Wireless networks

We now consider a wireless network with a pre-determined set of transmission profiles to be used
in a sequential way. Each transmission profile corresponds to a specific allocation of the radio
resources. We denote by M the number of transmission profiles and by C the M×N -dimensional
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Figure 9: A wired network with traffic splitting and its capacity set.
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Figure 10: Flow throughput for the network of figure 9.

matrix whose m, i-entry gives the bit rate allocated to class-i flows in transmission profile m.
Let T be the set of M -dimensional non-negative row vectors summing to 1. Each element τ ∈ T
defines a particular schedule in the sense that the component m of τ gives the fraction of time
the transmission profile m is used. As mentioned in §3.1, the scheduling is assumed to operate
at a much higher frequency than the typical flow duration, so that the capacity set is given by:

C = {ϕ : ∃τ ∈ T , ϕ ≤ τC}.

8.1 A single base station

We first consider the downlink channel of a single base station that serves each flow one at
a time, using a TDMA access scheme. There are N transmission profiles. The base station
transmits to a class-i flow in transmission profile i, i = 1, . . . , N . Thus C is an N -dimensional
diagonal matrix. In view of the homotheticity property, proportional fairness and balanced
fairness allocate the transmission time equally among the flows. The corresponding model is a
processor sharing queue. Max-min fairness, on the other hand, is not homothetic. It equalizes
the bit rates so that the fraction of transmission time allocated to each class-i flow is inversely
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proportional to Ci, the i-th diagonal element of the matrix C. The corresponding model is a
discriminatory processor sharing queue.

1

or

3

Class 1 Class 2

1

3 Class 1

Class 2

Figure 11: A single base station with two classes (time-sharing).

Consider the simple case of two classes, as shown in figure 11 with C1 = 3 and C2 = 1.
The model is basically that considered in section 1 where mobiles experience either “good” or
“bad” radio conditions. For proportional fairness and balanced fairness, the flow throughputs
are given by:

γ1 = C1(1 − %) and γ2 = C2(1 − %),

where % ≡ ρ1/C1 + ρ2/C2 corresponds to the cell load. The stability condition is % < 1.
For max-min fairness, we obtain using the results of Fayolle et al. [18] on the discriminatory

processor sharing queue:

γ1 = C1
(1 − %)(2 − %)

2 − % − %C1

C2

C2−C1

C2+C1

and γ2 = C2
(1 − %)(2 − %)

2 − % − %C2

C1

C1−C2

C1+C2

.

The results are given in figure 12 as a function of the overall traffic intensity ρ1 +ρ2 when C1 = 3
and C2 = 1. Observe that max-min fairness leads to much worse performance for class 1 since
the corresponding flows are allocated three times less transmission time than class-2 flows. The
corresponding gain for class-2 flows is negligible because class-1 flows generate most of the load.
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Figure 12: Flow throughput for the network of figure 11.

It is interesting to compare these results with those obtained for the maximum capacity set,
as predicted by information theory. We assume that the radio channel can be represented by a
Gaussian channel. The system then corresponds to the Gaussian broadcast channel [16], whose
capacity set is given for two classes by:

ϕ1 = W log2

(

1 +
P1

N1

)

, ϕ2 = W log2

(

1 +
P2

N2 + P1

)

, P1 + P2 ≤ P,
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where W is the bandwidth, P is the total transmit power, N1 is the noise power for class-1
mobiles and N2 > N1 is the noise power for class-2 mobiles.

1
3

Class 1 Class 2

and

1

3 Class 1

Class 2

Figure 13: A single base station with two classes (broadcast channel).

Unlike the above considered time sharing scheme, the base station transmits simultaneously
to both classes. Data is jointly coded so as to cancel the interference due to class-2 data at
the reception of class-1 data. We take W = 1, P/N1 = 8.5 dB and P/N2 = 0 dB so that the
maximum bit rates of class 1 and class 2 are approximately equal to 3 and 1 as in the example
of figure 11. The capacity set is given by figure 13. Note that, unlike in the previous examples,
this is not a polytope. The corresponding flow throughputs are shown in figure 14. Observe
that the stability condition is less stringent than with a time sharing scheme.
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Figure 14: Flow throughput for the network of figure 13.

8.2 Soft hand-over

We now show how the model may be used to represent a soft hand-over mechanism that allows
a mobile to receive data from several base stations. This is in fact the analog of the multi-path
routing and traffic splitting schemes introduced for wired networks in §7.2-7.3, depending on
whether or not the mobile is able to receive data from several base stations at the same time.

Consider the simple example of figure 15 with two base stations and three classes. The bit
rate of class-1 and class-3 flows when scheduled is equal to 3 and the bit rate of class-2 flows
when scheduled is equal to 1. If the mobile is not able to receive data from the two base stations
at the same time, there are three transmission profiles and we get:

C =





3 0 3
3 1 0
0 1 3



 .
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Figure 15: Soft hand-over with alternating (top) vs. simultaneous transmission (bottom).

The capacity set, shown in figure 15 (top graph), is the homothetic version of the capacity set
of a 3-branch symmetric tree network (cf. figure 2). For balanced fairness, it follows from the
homotheticity property (8) and the results of [12] that:

γ1 = γ3 =
9 − %

3

(

9 − %

18 − 5%
+

9(3 − %)

54 − 9% − %2

)−1

, γ2 =
3 − %

9

(

3 − %

18 − 5%
+

9 − %

54 − 9% − %2

)−1

,

where % denotes the total traffic intensity ρ1+ρ2+ρ3, with ρ1 = ρ2 = ρ3. The stability condition
is % < 3. The corresponding flow throughputs are given in figure 16 (top graphs). Note that
when % tends to 3, the number of class-2 flows tends to infinity so that the base station tends to
serve simultaneously either class-1 flows and class-2 flows or class-2 flows and class-3 flows. For
class-1 flows and class-3 flows, the system corresponds to a single, fairly shared link of capacity
3. In view of (3), their flow throughput tends to 3 − (ρ1 + ρ3), which is equal to 1 in the limit
% = 3, in accordance with figure 16.

Now if the mobile is able to receive data from both base stations at the same time, there is
an additional transmission profile and we get:

C =









3 0 3
3 1 0
0 1 3
0 2 0









.

The capacity set, shown in figure 15 (bottom graph), is the homothetic version of the capacity
set of a 3-branch asymmetric tree network. For balanced fairness, we obtain:

γ1 = γ3 =
(18 − 5%)(18 − 2%)

3(36 − 7%)
, γ2 =

18 − 5%

9
.

The stability condition is % < 18/5. The flow throughputs are given in figure 16 (bottom graphs).
Observe that the three allocations differ quite significantly for classes 1 and 3 at moderate load.
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Figure 16: Flow throughput for the wireless network of figure 15 with alternating (top) vs. si-
multaneous transmission (bottom).

8.3 Interference avoidance

In practice, the downlink capacity of a base station is mainly limited by the interference due to
other base stations. To limit the impact of interference, one may coordinate the transmission of
the base stations. Consider the example of figure 17 with two base stations, one class per base
station and three transmission profiles. Two profiles correspond to cases where one base station
is on and the other is off, one profile corresponds to the case where both base stations are on.
We have in this case:

C =





3 0
0 3
2 2



 .

The corresponding flow throughputs are given in figure 18. Note that the three allocations have
very similar performance.

8.4 Ad-hoc networks

Finally, we consider a wireless network without base stations. Such an ad-hoc network consists
of a set of L node-to-node wireless links and K routes where each route k is defined as a subset
rk of the set of links {1, . . . , L}. We denote by A the incidence matrix as for wired networks. We
assume as above that an arbitrary number M of transmission profiles are used in a sequential
way. We denote by C the M × L-dimensional matrix whose m, l-entry gives the capacity of
link l in transmission profile m. Nodes can store and relay the packets of any flow. Again, it is
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Figure 17: Two base stations with interference avoidance.
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Figure 18: Flow throughput for the network of figure 17.

assumed that the scheduling operates at a much higher frequency than the typical flow duration.
The considered ad-hoc network may then be viewed as a wired network with a varying topology,
as shown in the examples below.

We first consider single-path routing where each flow is assigned a particular route in the
network. We have N = K in this case. The capacity set is that of a wired network whose link
capacities are determined by the schedule:

C = {ϕ : ∃τ ∈ T , ϕA ≤ τC}.

Consider for instance the example of figure 19 with two links and two routes. We assume
nodes cannot transmit and receive at the same time, which results in two transmission profiles.
We have:

A =

(

1 0
1 1

)

and C =

(

2 0
0 2

)

.

In this case, the capacity set coincides with that of a wireless network with a single base station
(cf. figure 11).
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Figure 19: Ad-hoc network with two links and two routes.

Another example is given in figure 20. The network consists of three links and three routes.
There are again two transmission profiles. We have in this case:

A =





1 0 0
1 1 1
0 0 1



 and C =

(

2 0 2
0 2 0

)

.

The capacity set is the homothetic version of that of a 2-link linear wired network. For balanced
fairness, it follows from the homotheticity property (8) and the results of [8] that:

γ1 = γ3 = 2 − %, γ2 =
(2 − %)(3 − %)

6 − %
,

where % denotes the total traffic intensity ρ1+ρ2+ρ3, with ρ1 = ρ2 = ρ3. The stability condition
is % < 2. The flow throughputs are given in figure 21.

2 2

2

Class 1

Class 2

Class 3

(1)

(2)

Class 3 Class 1

Class 2
1

2 2

Figure 20: Ad-hoc network with three links and three routes.

9 Conclusion

The issue of resource allocation cannot be addressed without taking the random, dynamic nature
of traffic into account. By modeling traffic at flow level, we have shown that a rich class of
communication networks can be represented as a queueing network with state-dependent service
rates. The vector of service rates, which is constrained by some compact, convex capacity set,
determines how network resources are allocated.
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Figure 21: Flow throughput for the ad-hoc network of figure 20.

We proved that the stability condition of the network under max-min fairness, proportional
fairness and balanced fairness is that the vector of traffic intensities belongs to the interior of
the capacity set. We also proved that max-min fairness does not satisfy the balance property
except in the trivial case where the network reduces to a set of independent links. This explains
why so few analytical results exist for this allocation and confirms that one should not expect
such results. Proportional fairness is not balanced either except in some specific cases (cf. §5.4).
Balanced fairness, on the other hand, is balanced by construction and thus leads to a tractable
queueing network. No practical implementation of this allocation exists, however. Balanced
fairness should rather be considered as a mathematical tool useful for the performance evaluation
of more practical allocations like max-min fairness and proportional fairness.

The numerical results of sections 7 and 8 show that balanced fairness indeed constitutes a
good approximation of proportional fairness in most cases. Balanced fairness underestimates
the performance of proportional fairness in some cases (cf. figures 8, 16), but remains a good
approximation at high loads in all cases. This is confirmed by the preliminary results of Massoulié
suggesting that the allocation φ(x) of proportional fairness and balanced fairness coincide for
large states x [29].

Max-min fairness, on the other hand, may lead to much worse performance than balanced
fairness and proportional fairness (cf. figures 12, 14, 16, 21). This is due to the fact that max-min
fairness gives an absolute priority to flows with small bit rates. In wireless networks, this results
in an inefficient allocation where flows that experience bad radio conditions consume most radio
resources. Proportional fairness and balanced fairness, on the other hand, are homothetic so
that the allocated network resources do not depend on the radio conditions (cf. the example of
figure 11). These allocations are much more efficient and robust than max-min fairness in such
networks with heterogeneous flow classes.

A natural extension of the present work is the case where the capacity set is a function of
the network state. Such a model is representative of a wireless network where the base stations
interact through interference depending on their activity state for instance. If the base stations
do not cooperate as in the example of figure 17, the model does not belong to the framework
described in the present paper. The stability condition is unknown in general and the way
resources should be allocated remains an open issue.
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Appendix

A Proof of theorem 1

Consider a capacity set C for which max-min fairness has the balance property. We denote by
Ci the intersection of the boundary of the capacity set C with the class-i axis. We say that two
classes i, j are equivalent if Ci = Cj and C(ei + ej) is the set of vectors ϕ = ϕiei + ϕjej such
that ϕi + ϕj ≤ Ci. Note that this relationship is reflexive and symmetric. The following lemma
shows that it is transitive. It thus defines an equivalence relationship.

Lemma 1 Consider three classes, say 1,2,3, such that classes 1,2 are equivalent and classes 1,3
are equivalent. Then classes 2,3 are equivalent.

Proof. We let C1 = 1 without any loss of generality. We then have C1 = C2 = C3 = 1. By
the convexity of the capacity set, C(e2 + e3) contains the set of vectors ϕ = ϕ2e2 + ϕ3e3 with
ϕ2+ϕ3 ≤ 1. Since the max-min fair allocation φ(x) belongs to the boundary of C for any state x,
we deduce that either φ2(e2+e3) ≥ 1/2 or φ3(e2+e3) ≥ 1/2. Using the fact that φ1(e1+e3) = 1/2
and φ1(e1 + e2) = 1/2, it follows from the balance property applied to state e ≡ e1 + e2 + e3

that either φ1(e) ≤ φ2(e) or φ1(e) ≤ φ3(e). Now since φ2(e1 + e2) = 1/2 and φ3(e1 + e3) = 1/2,
it follows again from the balance property applied to state e that φ2(e) = φ3(e). We conclude
that φ1(e) ≤ φ2(e) = φ3(e).

Now assume that φ1(e) < φ2(e). In view of the water-filling procedure described in §5.3,
this implies that there is a segment from φ1(e)e to φ(e) that belongs to the boundary of C. The
direction of this segment is e2 + e3. It then follows from the convexity of C that φ1(e) ≥ 1.
Thus φ2(e) > 1, which contradicts the coordinate convexity of C. We deduce that φ1(e) = φ2(e)
and φ1(e) = φ3(e). Since φ1(e1 + e3) = 1/2 and φ1(e1 + e2) = 1/2, it follows from the balance
property applied to state e that φ2(e2 + e3) = 1/2 and φ3(e2 + e3) = 1/2. Since φ(e2 + e3)
belongs to the boundary of C, we obtain by the convexity of the capacity set that C(e2 + e3) is
the set of vectors ϕ = ϕ2e2 + ϕ3e3 such that ϕ2 + ϕ3 ≤ 1. 2

To prove theorem 1, we need the following additional two results.

Lemma 2 Consider n equivalent classes, say 1, . . . , n, for some n ≥ 2. Then C(e1 + . . . + en)
is the set of vectors ϕ = ϕ1e1 + . . . + ϕnen such that ϕ1 + . . . + ϕn ≤ C1.

Proof. The proof is by induction on n. The property holds for n = 2. Assume that it holds for
n− 1 classes, for some n ≥ 3. Consider n equivalent classes. We let C1 = . . . = Cn = 1 without
any loss of generality. We denote by e the state e1 + . . . + en.

By the induction assumption, we have φ1(e − ei) = φi(e − e1) for all i = 2, . . . , n. It then
follows from the balance property applied to state e that φ1(e) = φi(e) for all i = 2, . . . , n. By
the convexity of the capacity set, C(e) contains the set of vectors ϕ such that ϕ1 + . . . + ϕn ≤ 1.
Since φ(e) ≡ φ1(e)e belongs to the boundary of C, we deduce that φ1(e) ≥ 1/n. By the convexity
of C, the result will be proved if we show that φ1(e) = 1/n.
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Assume φ1(e) > 1/n. By the induction assumption, we know that φi(e + e1 − ej) = 1/n for
all i, j = 2, . . . , n, i 6= j. Applying the balance property to state e + e1, we deduce that

φ2(e + e1) = . . . = φn(e + e1).

Using again the induction assumption, we know that φ1(e+e1 −e2) = 2/n. Since φ1(e) = φ2(e),
we have φ2(e) > 1/n and it follows from the balance property applied to state e + e1 that
φ1(e + e1)/2 < φ2(e + e1). Thus:

φ1(e + e1)/2 < φ2(e + e1) = . . . = φn(e + e1).

In view of the water-filling procedure, this implies that there is a segment from φ1(e+e1)(e+e1)/2
to φ(e + e1) that belongs to the boundary of C. The direction of this segment is e2 + . . . + en.
It then follows from the convexity of C that φ1(e + e1) ≥ 1. Thus φ2(e + e1) > 1/2. By
the coordinate convexity of the capacity set, the vector φ1(e + e1)e1 + φ2(e + e1)e2 belongs to
C(e1 + e2). Since classes 1,2 are equivalent, we deduce that φ1(e + e1) + φ2(e + e1) ≤ 1, a
contradiction. 2

Lemma 3 Consider n classes, say 1, . . . , n, such that no two different classes are equivalent.
Then C(e1 + . . .+en) is the set of vectors ϕ = ϕ1e1 + . . .+ϕnen such that ϕ1 ≤ C1, . . . , ϕn ≤ Cn.

Proof. The proof is by induction on n. The property holds for n = 1. Assume that it holds for
n−1 classes, for some n ≥ 2. Consider n classes such that no two different classes are equivalent.
We denote by e the vector e1 + . . . + en and by C the vector C1e1 + . . . + Cnen. Note that, by
the coordinate convexity of C, it is sufficient to prove that C ∈ C to conclude the proof. We
assume without any loss of generality that φ1(e) ≤ φ2(e) ≤ . . . ≤ φn(e) and distinguish between
two cases:

• If φ1(e) < φn(e), it follows from the water-filling procedure that there is a segment from
φ1(e)e to φ(e) that belongs to the boundary of C. By the induction assumption, all vectors
ϕ = ϕ1e1 + . . . + ϕnen such that ϕ1 = C1, ϕ2 ≤ C2, . . . , ϕn ≤ Cn and ϕi = 0 for some
i = 2, . . . , n belong to C. By the convexity of C, we deduce that φ1(e) = C1. Since
φi(e − ei) = Ci and φ1(e − ei) = C1 for all i = 2, . . . , n by the induction assumption, we
deduce from the balance property applied to state e that φi(e) = Ci for all i = 2, . . . , n.
Thus C ∈ C.

• If φ1(e) = φn(e), we have φ1(e) = φ2(e) = . . . = φn(e). By the induction assumption, we
have φi(e − ej) = Ci for all i, j = 1, . . . , n, i 6= j so that, applying the balance property to
state e, C1 = . . . = Cn. If φ1(e) = C1, we have φi(e) = Ci for all i = 1, . . . , n and C ∈ C.
Since φ1(e) ≤ C1 by the coordinate convexity of C, we now assume that φ1(e) < C1. By
the convexity of C, we have φ2(e) ≥ (n − 1)C1/n. Note that the inequality is strict for
n = 2 since classes 1,2 are not equivalent. By the induction assumption, we know that
φ1(e + e1 − e2) = C1. Applying the balance property to state e + e1 we get

φ1(e + e1)φ2(e) = C1φ2(e + e1),

so that (n − 1)φ1(e + e1)/n ≤ φ2(e + e1), with a strict inequality for n = 2. Noting that
1/2 < (n − 1)/n for n > 2, we obtain φ1(e + e1)/2 < φ2(e + e1) for any n ≥ 2. In view of
the water-filling procedure, this implies that there is a segment from φ1(e + e1)(e + e1)/2
to φ(e + e1) that belongs to the boundary of C. Using the same argument as above, we
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deduce from the convexity of C that φ1(e + e1) = C1. In view of the above equality, we
get φ2(e) = φ2(e + e1). Since φ1(e) < C1 = φ1(e + e1), there is a segment from φ(e) to
φ(e + e1) that belongs to the boundary of C. Again, this implies that φ2(e) = C2. Since
φ1(e) = φ2(e) and C1 = C2, we get φ1(e) = C1, a contradiction.

2

We show by induction on N that

C =







ϕ :
∑

i∈I1

ϕi ≤ c1, . . . ,
∑

i∈IL

ϕi ≤ cL







,

where I1, . . . , IL are the equivalence classes, that form a partition of the set {1, . . . , N}, and
c1 = Ci1 , . . . , cL = CiL for any i1 ∈ I1, . . . , iL ∈ IL. The property holds for N = 1. Assume it
holds for N − 1 classes, for some N ≥ 2. We denote by e the vector e1 + . . . + eN . If L = N ,
the result follows by lemma 3. If L < N , there exists an equivalence class that contains at least
two elements, say 1,2. By the induction assumption, we have:

C(e − e1) =







ϕ : ϕ1 = 0,
∑

i∈I1

ϕi ≤ c1, . . . ,
∑

i∈IL

ϕi ≤ cL







and

C(e − e2) =







ϕ : ϕ2 = 0,
∑

i∈I1

ϕi ≤ c1, . . . ,
∑

i∈IL

ϕi ≤ cL







.

By the convexity of C, we deduce that






ϕ :
∑

i∈I1

ϕi ≤ c1, . . . ,
∑

i∈IL

ϕi ≤ cL







⊂ C.

The result then follows from lemma 2 which, by the coordinate convexity of C, implies that:

C ⊂







ϕ :
∑

i∈I1

ϕi ≤ c1, . . . ,
∑

i∈IL

ϕi ≤ cL







.

B Proof of theorem 2

If ρ ∈ C̆, there exists ε > 0 such that (1 + ε)ρ ∈ C. For max-min fairness and proportional
fairness, we use Foster’s criterion to prove that the Markov process X(t) describing the network
state is positive recurrent [15]. Since the Markov process X(t) has bounded transition rates
q(x, y) (by the compactness of the capacity set C) and a finite number of transitions from any
state, we know that it is positive recurrent if for some finite set A ⊂ Z

N
+ , some non-negative

function f and some constant δ > 0,

∀x 6∈ A, ∆f(x)
def
=
∑

y 6=x

q(x, y)(f(y) − f(x)) ≤ −δ.
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Max-min fairness. Since (1 + ε)ρ ∈ C, it follows from the definition of max-min fairness and
the coordinate convexity of the capacity set C that for all states x 6= 0,

φi(x) ≥ xi min
j=1,...,N

(1 + ε)ρj

xj
.

Let ρ0
def
= mini=1,...,N ρi. Following Fayolle et al. [18], consider the function f defined by:

f(x) =
∑

i=1,...,N

xi
∑

n=1

γ
n
ρi ,

where γ is some constant such that γ > 1 and

γ
1

ρ0

1 + ε
≤ θ < 1.

We have:

∆f(x) =
∑

i=1,...,N

(

λiγ
xi+1

ρi −
φi(x)

σi

γ
xi
ρi

)

≤
∑

i=1,...,N

λiγ
xi
ρi (1 + ε)

(

θ −
xi

ρi

min
j=1,...,N

ρj

xj

)

.

Let k
def
= arg minj=1,...,N

ρj

xj
. We decompose the last sum as follows:

∑

i:
xi
ρi

>θ
xk
ρk

λiγ
xi
ρi (1 + ε)

(

θ −
xi

ρi

ρk

xk

)

≤ λkγ
xk
ρk (1 + ε)(θ − 1),

∑

i:
xi
ρi

≤θ
xk
ρk

λiγ
xi
ρi (1 + ε)

(

θ −
xi

ρi

ρk

xk

)

≤ γ
θ

xk
ρk (1 + ε)θ

∑

i=1,...,N

λi.

We obtain:

∆f(x) ≤ γ
θ

xk
ρk



(1 + ε)(θ − 1) min
i=1,...,N

λi + γ
(θ−1)

xk
ρk (1 + ε)θ

∑

i=1,...,N

λi



 .

For any δ > 0, there exists a constant C such that

(1 + ε)(θ − 1) min
i=1,...,N

λi + γ(θ−1)C(1 + ε)θ
∑

i=1,...,N

λi ≤ −δ.

Since γ > 1, we deduce ∆f(x) ≤ −δ for all states x 6∈ A, with A = {x ∈ Z
N
+ : x ≤ Cρ}.

Proportional fairness. Since (1 + ε)ρ ∈ C, it follows from the definition of proportional
fairness that for all states x,

N
∑

i=1

xi log((1 + ε)ρi) ≤
N
∑

i=1

xi log(φi(x)).

26



The function g : [0, 1] → R defined by

g(θ) =

N
∑

i=1

xi log((1 − θ)(1 + ε)ρi + θφi(x))

is concave and satisfies g(0) ≤ g(1). We deduce g ′(0) ≥ 0, that is

N
∑

i=1

xi

ρi

(φi(x) − (1 + ε)ρi) ≥ 0.

We obtain:
N
∑

i=1

xi

λi
(λi −

φi(x)

σi
) ≤ −ε

N
∑

i=1

xi.

Let f be the function defined by:

f(x) =

N
∑

i=1

x2
i

2λi
.

Using the fact that for all states x ∈ Z
N
+ ,

f(x + ei) = f(x) +
xi

λi
+

1

2λi
and f(x − ei) = f(x) −

xi

λi
+

1

2λi
if xi > 0,

we get:

∆f(x) =
N
∑

i=1

xi

λi

(λi −
φi(x)

σi

) +
N
∑

i=1

1

2λi

(λi +
φi(x)

σi

)

≤ −ε

N
∑

i=1

xi + C,

where C is some finite constant. Thus there exists some finite set A ⊂ Z
N
+ and some constant

δ > 0 such that ∆f(x) ≤ −δ for all states x 6∈ A.

Balanced fairness. We need the following preliminary result.

Lemma 4 Let Φ be the balance function of balanced fairness. The balance function Φ̃ associated
with any other balanced allocation satisfies Φ̃(x) ≥ Φ(x) for all states x ∈ Z

N
+ .

Proof. The proof is by induction on |x|
def
=
∑N

i=1 xi. Since Φ̃(0) = Φ(0) = 1, the inequality is
satisfied for x = 0. Assume it is satisfied for all states x such that |x| = n. Let x ∈ Z

N
+ be such

that |x| = n + 1. Since
(

Φ̃(x − e1)

Φ̃(x)
, . . . ,

Φ̃(x − eN )

Φ̃(x)

)

∈ C,

it follows from the induction assumption and the coordinate convexity of C that
(

Φ(x − e1)

Φ̃(x)
, . . . ,

Φ(x − eN )

Φ̃(x)

)

∈ C.
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By the definition of Φ(x), we deduce that Φ̃(x) ≥ Φ(x). 2

Since (1 + ε)ρ ∈ C, the allocation defined by φ̃(x) = (1 + ε)ρ in all states x is feasible and
balanced. The corresponding balance function is given by

Φ̃(x) =
1

((1 + ε)ρ1)x1
. . .

1

((1 + ε)ρN )xN
.

The result is then a simple consequence of (5) and lemma 4:

∑

x

Φ(x)ρx1

1 . . . ρxN

N ≤
∑

x

Φ̃(x)ρx1

1 . . . ρxN

N =
∑

x

1

(1 + ε)x1
. . .

1

(1 + ε)xN
< ∞.
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