
HAL Id: hal-01192859
https://hal.inria.fr/hal-01192859

Submitted on 3 Sep 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Attainable Unconditional Security for Shared-Key
Cryptosystems

Fabrizio Biondi, Thomas Given-Wilson, Axel Legay

To cite this version:
Fabrizio Biondi, Thomas Given-Wilson, Axel Legay. Attainable Unconditional Security for Shared-
Key Cryptosystems. The 14th IEEE International Conference on Trust, Security and Privacy in
Computing and Communications (IEEE TrustCom-15), Aug 2015, Helsinki, Finland. �hal-01192859�

https://hal.inria.fr/hal-01192859
https://hal.archives-ouvertes.fr

Attainable Unconditional Security
for Shared-Key Cryptosystems

Fabrizio Biondi∗, Thomas Given-Wilson∗, Axel Legay∗
∗Inria

Email: {fabrizio.biondi,thomas.given-wilson,axel.legay}@inria.fr

Abstract—Preserving the privacy of private communication is
a fundamental concern of computing addressed by encryption.
Information-theoretic reasoning models unconditional security
where the strength of the results is not moderated by compu-
tational hardness or unproven results. Perfect secrecy is often
considered the ideal result for a cryptosystem, where knowledge
of the ciphertext reveals no information about the message or
key, however often this is impossible to achieve in practice. An
alternative measure is the equivocation, intuitively the average
number of message/key pairs that could have produced a given
ciphertext. We show a theoretical bound on equivocation called
max-equivocation and show that this generalizes perfect secrecy
when achievable, and provides an alternative measure when per-
fect secrecy is not. We derive bounds for max-equivocation, and
show that max-equivocation is achieved when the entropy of the
ciphertext is minimized. We consider encryption functions under
this new perspective, and show that in general the theoretical best
is unachievable, and that some popular approaches such as Latin
squares or Quasigroups are also not optimal. We present some
algorithms for generating encryption functions that are practical
and achieve 90 − 95% of the theoretical best, improving with
larger message spaces.

I. INTRODUCTION

Preserving privacy of private communication is a funda-
mental concern of computer science. Modern efforts can be
divided into two categories: computational and unconditional
security. Computational security of the privacy of a message
depends on the assumed superpolynomial lower bound on
complexity of some particular functions, e.g. factorization.
Such lower-bound results are currently unproven, and may be
weakened by technological progress in engineering, algorith-
mic theory, and quantum computing. Unconditional security is
based on information-theoretic reasoning and proven indepen-
dently of computational hardness. For this reason, uncondi-
tional security results are more general and solid than com-
putational security results. However, the strict requirements
to obtain unconditionally-secure cryptographic algorithms can
make them generally impractical.

The first formal results on unconditional security were
published by Shannon [1] using results from the formal theory
of communication that he had just invented [2]. Shannon
considers the transmission of an encrypted message on a
public channel between two agents A and B that share a
cryptographic key. Shannon investigates how long the key has
to be to transmit the message with perfect secrecy, meaning
that a third agent intercepting the encrypted message obtains
no information about the original message. Shannon proves
that to achieve perfect secrecy the key must be as long as the

message and can be used only once, and that the one-time pad
algorithm achieves this under uniform message distribution.
This means that, to transmit each n-bit long message, the
sender and receiver have to have previously agreed on a fresh
n-bit long key, which is often impractical. Perfect secrecy is
proven to be unachievable with a shared key shorter than the
message to be transmitted.

In this work we consider the same scenario in which a
key with a different size to the message is shared between
A and B, and we ask how many bits of message can be sent
while respecting a suitable definition of unconditional security.
However, we want to define a security condition that is also
attainable also when the key is smaller than the message, since
this is the most common case in practice.

Since perfect secrecy cannot be achieved in this scenario,
we define the maximum achievable security and how to attain
it. Secrecy, as defined by Shannon, is a measure based on
mutual information, and measures how much information is
leaked by the communication, but not how hard it is for the
attacker to decrypt the message given this leaked information.
Instead of measuring secrecy, we measure the message equiv-
ocation of the encryption, measured as the conditional entropy
of the message given the ciphertext. Equivocation, introduced
by Shannon, measures how difficult it is for the attacker to de-
crypt the message after intercepting the ciphertext. Intuitively,
equivocation measures the average number of message/key
pairs that could have produced a given ciphertext.

We show a theoretical upper bound on equivocation, and
we call this condition max-equivocation. We show that max-
equivocation generalizes perfect secrecy, corresponding to
perfect secrecy when it can be achieved and providing a
characterization of maximum possible security when perfect
secrecy cannot be achieved.

We derive upper and lower bounds to equivocation. We
show that max-equivocation is achieved when the entropy of
the ciphertext is minimized, contrarily to intuition. That is, the
best theoretical encryption scheme is one that minimizes the
entropy of the ciphertext.

We then consider encryption functions under this new
perspective and show that in general the theoretical best is
not achievable. Further, we show that popular approaches to
encryption functions, such as Latin squares or Quasigroups [3],
[4], [5], are also not practically optimal.

We present some algorithms for generating encryption
functions from the message and key information that are

practical and achieve reasonably good results. In general these
give solutions with a quality of 90 − 95% of the theoretical
best when the message space is less than 211, and the quality
improves as the message space increases in size.

The structure of the paper is as follows. Section II recalls
key concepts. Section III introduces max-equivocation and
theoretic bounds. Section IV presents results on when the
theoretic bounds can and cannot be achieved. Section V
introduces some algorithms for finding encryption functions.
Section VI analyzes the experimental results of the algorithms.
Section VII briefly discusses alternative measures of entropy.
Section VIII draws conclusions and discusses related work.

II. BACKGROUND

We denote with |S| the size of set S. Given sets A and B
we say that a function f : A → B is injective if ∀a1, a2 ∈ A
it holds that f(a1) = f(a2)⇒ a1 = a2.

We refer to literature [6] for the definitions of sample space
X , probability P (E) of an event E ⊆ X , random variable X
on X , entropy H(X) of a random variable, mutual information
I(X;Y) of X and Y , and so on. We will write ρX (X) for
a probability distribution on the random variable X on the
sample space X , abbreviated in ρ(X) when the sample space
is unambiguous.

Recall that if X and Y are independent random variables
on sample spaces X and Y respectively, then H(X,Y) =
H(X) +H(Y).

A. Shared-Key Cryptosystems

A shared-key cryptosystem can be defined as follows.

Definition 1: A (shared-key) cryptosystem is a 3-tuple
(M,K, enc) where:

• the message space M is a finite set of possible
messages;

• the key space K is a finite set of possible keys;

• the encoder enc is a function M×K → C to some
space C such that ∀m ∈ M. enc(m, ·) is injective,
and ∀k ∈ K. enc(·, k) is injective.

A shared-key cryptosystem induces the set of its possible
ciphertexts and a decoder function.

Definition 2: Let C = {c | ∃m ∈ M. ∃k ∈ K. c =
enc(m, k)} be the ciphertext space, i.e. the set of possible
ciphertexts c given M, K and enc.

Definition 3: Let the decoder dec be the function C×K →
M such that dec(enc(m, k), k) = m.

The existence and uniqueness of such a decoder function is
ensured by the requirement that enc(·, k) is injective. Note that
injectivity of enc(m, ·) is not strictly necessary, but is chosen
here to preserve symmetry of the results.

The channel model of a cryptosystem was introduced by
Shannon [1]. In this model, agent A wants to send a message
m ∈ M to agent B on a public channel that is eavesdropped
by agent E. Initially, A and B share a secret key k ∈ K.

A encodes the message m with key k using an appropriate
encoder function enc, obtaining the ciphertext c. A sends c to B
via a public channel, where c is also read by the eavesdropper
E. Knowing the key k, B decodes the message m using the
inverse of the encoding function, dec. Not knowing the key
k, E tries to infer m from their knowledge of enc and c and
using unlimited computational power.

Consider the information available to agent E. Agent E
knows the encoder function enc, and ciphertext c, but not
the message m or key k. We will use random variables to
model E’s knowledge about the communication before and
after E intercepts the ciphertext c. Let M (resp. K, C) be a
random variable on the support setM (resp. K, C) representing
the a priori value of the message m (resp. key k, ciphertext
c) according to E, i.e. the value before the ciphertext is
intercepted.

Random variables M and K are assumed to be indepen-
dent, so

H(M,K) = H(M) +H(K) .

We call H(M) the prior entropy of M , modeling the
amount of uncertainty that E has on the message before
observing the ciphertext. Similarly, we call H(M |C) the
posterior entropy of M given C, modeling the uncertainty
left on the message after observing the ciphertext. The prior
entropy gives a measure of how hard it is for E to guess the
message before observing the ciphertext, while the posterior
entropy measures the same after observing the ciphertext.

Shannon defined perfect secrecy as the highest possible
security condition attainable on a cryptosystem [1]. Perfect
secrecy is attained when the mutual information between the
message and the ciphertext is zero; when knowledge of the
ciphertext gives no information about the message. That is, the
prior and posterior entropies coincide, meaning that observing
the ciphertext did not reduce the uncertainty of E on the
message in any way.

Definition 4 (Perfect Secrecy): A cryptosystem attains
perfect secrecy iff

H(M) = H(M |C)

It can be shown that

H(M) = H(M |C)⇔ I(M ;C) = 0

thus perfect secrecy is attained when the mutual information
between the message and the ciphertext is 0.

Shannon also proved that for a cryptosystem to be perfectly
secure it is necessary that the key space is at least as large as
the message space, i.e.

|K| ≥ |M|

making perfect secrecy hard to achieve in practice. Indeed,
Shannon proved that perfect secrecy can be achieved when
|K| = |M | as long as the keys are uniformly distributed [1].
Observe that such requirements induce the relation that

H(K) ≥ H(M) .

However, this requires A and B to have exchanged such a key
k before sending the message m, and k can be used only once.

B. Latin Squares and Rectangles

A Latin rectangle is a a × b matrix with elements in
{1, . . . , b} such that all of its rows and columns are distinct.
It is a Latin square iff a = b.

An encoder function can be represented as a Latin rectangle
if |C| = max (|M |, |K|), in the form of a |K| × |M | matrix
with elements in {c1, . . . , c|C|} [1], [7]. However, we will
show in Section IV that the optimal encoder function is in
general not a Latin rectangle.

C. Unicity

Informally, the unicity of a cryptosystem is the average
length of the ciphertext such that only one pair of message and
key could have produced the ciphertext. This is only an issue
when not all bit strings are messages. It is possible to compute
the ciphertext length for which the number of messages per
ciphertext reduces to 1. This is called the unicity point.

Let Mn (resp. Cn) be a random variable on messages (resp.
ciphertexts) of length n. Then the unicity point u is defined
as the least positive value of n such that H(Mn) + H(K) −
H(Cn) = 0.

III. MAX-EQUIVOCATION GENERALIZES PERFECT
SECRECY

We want to provide a measure of the security of a shared-
key cryptosystem that is meaningful whether or not the the
key used is smaller than the message to be sent.

Consider the entropy H(M) of the message m. It measures
the lack of information that E has about the message, so a
higher H(M) corresponds to a greater difficulty for E to guess
the message. In our scenario, A and B share a secret key k,
and the lack of information that E has about k is measured
by H(K). The amount of entropy left in the message after
the attacker has intercepted the ciphertext is measured by the
message equivocation H(M |C), so we focus upon this.

Shannon proved that H(K) ≥ H(M) is a necessary but
not sufficient condition to find an encoder function enc such
that I(M ;C) = 0. Since I(M ;C) = H(M) − H(M |C),
this corresponds to H(M |C) = H(M), thus the message
equivocation is equivalent to the entropy of the message.
Since H(K) ≥ H(M), it is also true that H(M |C) ≤
min(H(M), H(K)).

Consider the complementary case in which H(K) <
H(M). Since E knows every other detail of the communication
except for k, we conjecture that it is not possible to encrypt
m as a ciphertext c ∈ C in a way such that the message
equivocation H(M |C) is greater than the entropy H(K),
i.e. H(M |C) ≤ H(K). Since H(K) < H(M), this again
corresponds to H(M |C) ≤ min(H(M), H(K)).

We conclude that irrespective of the relative sizes of the
entropies of the message space and key space, the maxi-
mum equivocation is always achieved when it corresponds
to their minimum. We say that a cryptosystem respects max-
equivocation when it achieves this upper bound.

Definition 5: A cryptosystem achieves max-equivocation
iff

H(M |C) = min(H(M), H(K)) .

Key equivocation can similarly be defined as H(K|C),
measuring the average number of keys that could have pro-
duced a given ciphertext.

We will now introduce semi-injectivity, the core property
of an encoder function. We will show that as a consequence
of the encoder function being semi-injective on both message
and key, message equivocation and key equivocation actually
coincide, so we can just call them equivocation.

A. Semi-injectivity

We introduce the concept of semi-injectivity of a function,
that will be used throughout the paper.

Definition 6: A function f : A× B → C is semi-injective
on B iff it holds that

∀a ∈ A, ∀bi, bj ∈ B. f(a, bi) = f(a, bj)⇔ bi = bj .

Observe that a function on a tuple can be semi-injective on
any element of the tuple, and that a semi-injective function on
a single argument is injective. Semi-injectivity is equivalent to
the property that the function can be Curried and after being
applied to one argument the remaining function is injective,
i.e. f : A × B → C is semi-injective on B when f ′ : A →
B → C and f ′(a) : B → C is injective.

Lemma 1: Let a function f : A×B → C be semi-injective
on A. The image f [A,B] of f in C has at least the size of A:

|f [A,B]| ≥ |A| .

Consequently, if f is semi-injective in both A and B then

|f [A,B]| ≥ max(|A|, |B|) .

Lemma 2: Let f : A× B → C be semi-injective on A, A
be a random variable on A, ρA(A) a probability distribution
on A, and H(A) the entropy of ρA(A). Similarly, let C be a
random variable on f [A,B], ρC(C) a probability distribution
on C, and H(C) the entropy of ρC(C). Then

H(A) ≤ H(C) .

Proof: Recall that |f [A,B]| ≥ |A| by Lemma 1. If
|f [A,B]| = |A| then there must be one c ∈ f [A,B] that
corresponds to each a ∈ A and thus H(A) ≤ H(C). If
|f [A,B]| > |A| then there must be at least two ci and cj
such that f(a, bx) = ci and f(a, by) = cj . This increases the
entropy, due to either H(B) (when bx 6= by), or via f itself
otherwise. In either case, H(A) ≤ H(C).

Definition 7: A function enc :M×K → N is an encoder
function iff it is semi-injective on M and K.

Since the encoder function is semi-injective onM, then the
message is uniquely determined by a given ciphertext c and key
k, thus H(M |K,C) = 0. Analogous reasoning on the encoder
being semi-injective on K shows that H(K|M,C) = 0. We
use these results to show that message equivocation and key
equivocation coincide.

Theorem 1: H(M |C) = H(K|C) .

Proof: The proof adapts the similar proof of Theorem 1
of [8, sec. 7.3]:

H(M |C) = H(M,C)−H(C)

= H(M,K,C)−H(K|M,C)−H(C)

= H(M,K,C)−H(M |K,C)−H(C)
(since H(M |K,C) = H(K|M,C) = 0)

= H(K,C)−H(C) = H(K|C) .

Since message equivocation and key equivocation coincide
by Theorem 1, henceforth we will refer to them just as
equivocation, denoted by H(M |C).

B. Bounds on Equivocation

This section is dedicated to studying upper and lower
bounds for equivocation, and to find necessary and sufficient
conditions for a cryptosystem to achieve max-equivocation.

Consider after agent E intercepts the ciphertext c, their a
posteriori information about the message is measured by the
equivocation H(M |C).

Lemma 3: The entropy of the ciphertext has: lower bound
of the greater of the entropy of the message or the key; and
upper bound of the entropy of the message plus the entropy
of the key. That is,

max(H(M), H(K)) ≤ H(C) ≤ H(M) +H(K) .

Proof: By definition of enc and Lemma 1.

Lemma 4: The entropy of the ciphertext given the message
is that of the key. That is, H(C|M) = H(K).

Proof: By definition of enc being semi-injective on K
and Lemma 2.

Theorem 2: Equivocation ranges from 0 to the minimum
of the entropy of the message and the entropy of the key, i.e.

0 ≤ H(M |C) ≤ min(H(M), H(K)) .

Proof:

H(M |C) = H(C|M) +H(M)−H(C)

= H(K) +H(M)−H(C) (by Lemma 4)

with the lower bound being

H(M |C) ≥ H(K) +H(M)− (H(M) +H(K))
(by Lemma 3)

= 0

and upper bound

H(M |C) ≤ H(K) +H(M)− (max(H(M), H(K)))
(by Lemma 3)

= min(H(K) +H(M)−H(M),

H(K) +H(M)−H(K)))

= min(H(K), H(M)) .

Corollary 1: A necessary and sufficient condition for max-
equivocation is that the entropy of the ciphertext is equivalent

Fig. 1. Graph showing equivocation H(M |C) as a function of the entropy
of the ciphertext H(C). The gray area is unachievable, since H(C) ≥
max(H(M), H(K)) by Lemma 3, thus the maximum possible equivocation
is H(M |C) = min(H(M), H(K)).

to the maximum between the entropy of the key and the
entropy of the message:

H(C) = max(H(K), H(M))

m
H(M |C) = min(H(K), H(M)) .

Since by Lemma 3 we know that H(C) ≥
max(H(K), H(M)), this means that max-equivocation
is achieved when the entropy of the ciphertext is minimal. The
relation between equivocation and entropy of the ciphertext is
depicted in Figure 1.

Note that the idea that the entropy of the ciphertext has
to be minimized goes against common intuition in the field of
unconditional security, and claims of the opposite can be found
e.g. in [8, p. 117]. In the next Sections we will study how to
construct an encoder function minimizing the entropy of the
ciphertext, and we will show that the theoretical minimum of
H(C) = max(H(K), H(M)) cannot always be achieved.

IV. UNIFORM KEY, NON-UNIFORM MESSAGE

A. Motivation

Since we have assumed that the eavesdropper E has un-
limited computational power, we must address the problem of
unicity. If, in the language in which the message m is encoded,
all sequences of symbols are messages, this is not a problem.
Otherwise, there will be a certain ciphertext length after which
there is only a single message that can be decoded from the
ciphertext. Thus, a viable form of attack for E is to decrypt
the ciphertext with all possible keys and keep the only possible
message. We refer to [1], [8] for a more thorough treatment
of unicity.

Let L be the language used for the message, |L | the
number of its symbols, and HL its entropy per symbol. Then
the average amount of ciphertext symbols that E needs to have
a single message behaves as H(K)/RL , where RL = 1 −
HL

log |L | is the redundancy of the language.

Redundancy of a language can typically be significantly
reduced by using compression methods upon the language and
then using the compressed result as the message. While this
reduces redundancy, it still creates some structure within the
language and does not achieve uniform message distribution.

Even languages that have a fixed or bounded message
length (such that redundancy does not ensure a unique message
from a given ciphertext) do not in general have uniform
distributions over the messages [9].

Thus we shall consider max-equivocation where the mes-
sage distribution is non-uniform. We assume the key distri-
bution is uniform for simplicity, although no results implicitly
rely upon this assumption. From Corollary 1 and Lemma 3 we
have that the max-equivocation is ensured when the entropy of
the ciphertext is minimized. Unfortunately max-equivocation
(and thus perfect secrecy) cannot be achieved in all scenarios.

B. Achieving Max-Equivocation

Max-equivocation can be achieved for any distribution over
the message space when the key space is of equal size and the
key distribution is uniform. The solution for max-equivocation
in this case is any encryption function that can be represented
as a Latin square.

Observe from Corollary 1 that H(C) =
max(H(K), H(M)) and that since |K| = |M| and K
has uniform distribution that H(K) ≥ H(M). From this we
require that H(C) = H(K) for max-equivocation.

The easiest way to achieve H(C) = H(K) is for |C| = |K|
and for the distribution of C to be uniform. This is achieved
when the encryption function corresponds to a Latin square.

Theorem 3: Given |K| = |M| and uniform distribution
over K, any encryption function enc that can be represented
as a Latin square achieves max-equivocation.

Proof: As enc can be represented as a Latin square
it follows that every c ∈ C must appear in each row and
each column exactly once. Since the key distribution is uni-
form, the probability for each c is

∑
m∈M

ρ(m)
|K| and since∑

m∈M ρ(m) = 1 it follows that ρ(c) = 1
|K| . Conclude via the

uniform distribution over C and |C| = |K| that H(C) = H(K)
and Corollary 1.

There are other heuristics for achieving max-equivocation
that can exploit much smaller key spaces. For example, when
the message distribution can be partitioned into subsets Mp

where ∀mi,mj ∈ Mp, ρ(mi) = ρ(mj) holds for all p, and
where ∀p, |Mp| ≥ |K|. Then by using uniform distribution of
keys and having every c ∈ C abide by ∀mi,mj . enc(mi, kx) =
c = enc(mj , ky)⇔ mi,mj ∈Mp for some kx, ky and p.

C. Unachievable Max-Equivocation

In general max-equivocation cannot be achieved. Indeed,
there are small examples where H(C) cannot be made to
match max(H(K), H(M)). For example, consider when there
are three messages with probabilities ρ(m1) = 0.2 and
ρ(m2) = 0.3 and ρ(m3) = 0.5 and the key space is of
size 2 with uniform distribution. It turns out that there is no
encoder function such that H(C) = H(M) u 1.4854. The
best possible is a Latin rectangle where the symbols must
have the probabilities ρ(c1) = 0.25 and ρ(c2) = 0.35 and
ρ(c3) = 0.4 which yields H(C) u 1.5588.

D. Non-Optimality of Latin Rectangles

When |M| 6= |K|, each Latin rectangle of size |K| × |M|
represents an encoder function with |C| = max(|M|, |K|). We
compute the minimum and maximum entropy of the ciphertext
space generated by such an encoder function:

Lemma 5: The entropy of the ciphertext when the encoder
function can be represented as a Latin rectangle has: lower
bound of the greater of the entropy of the message and the
entropy of the key; and upper bound of the logarithm of the
size of the maximum between the sizes of the message space
and the key space. That is,

max(H(M), H(K)) ≤ H(C) ≤ log(max(|M|, |K|)) .

Proof: By definition of enc and Lemma 1 we have that
max(H(M), H(K)) ≤ H(C) and the upper bound is the
maximum entropy for the ciphertext.

When the distribution on the larger side of the rectangle is
uniform then any Latin rectangle achieves max-equivocation,
as shown in Section IV-B.

When the distribution on the larger side of the rectangle is
not uniform, it is possible that the optimal encoder function
is not a Latin rectangle. For instance, let M = {m1,m2,m3}
with distribution ρ(M) = {m1 7→ 0.02,m2 7→ 0.49,m3 7→
0.49} and let the key be uniform on K = {k1, k2}. The
best Latin rectangle encoding shown in Table I(a) has C =
{c1, c2, c3} and H(C) u 1.5097, while the optimal encoding
shown in Table I(b) has C = {c1, c2, c3, c4} and H(C) u
1.1414. Note that neither reaches the theoretical lower bound
of H(C) = H(M) u 1.1214.

TABLE I. OPTIMAL ENCODINGS FOR A) 3 SYMBOLS (BEST LATIN
RECTANGLE) B) 4 SYMBOLS (OPTIMAL)

(a) Message

m1 m2 m3

K
ey k1 c1 c2 c3

k2 c2 c3 c1

(b) Message

m1 m2 m3

K
ey k1 c1 c2 c3

k2 c4 c3 c2

Due to the inherent complexity of finding an encoder func-
tion that minimizes the entropy of the ciphertext, computing
an optimal encoder function for a given key and message
distribution is not trivial. In the next Section we experimentally
compare different heuristics.

V. ENCODER GENERATOR HEURISTICS

We propose 4 different heuristic algorithms that pro-
duce an encoder function for a given message space M =
{m1,m2, . . . ,m|M|} with a given probability distribution
ρ(M) and a given key space K = {k1, k2, . . . , k|K|} with
uniform distribution. We will assume that |K| < |M| and
ρ(m1) ≤ ρ(m2) ≤ · · · ≤ ρ(m|M|).

The algorithms we propose are similar as they all consider
the encoder function as a |K| × |M| matrix C where the

Data: message space M = {m1,m2, . . . ,m|M|},
probability distribution ρ(M), key space
K = {k1, k2, . . . , k|K|}.

Result: matrix form C of an encoder enc.
1 Set Ci,j = cj , ∀1 ≤ i ≤ |K|, 1 ≤ j ≤ |M|;
2 for j ← 1 to |M| do
3 for i← 1 to |K| do
4 if c = Ci,j is a conflict then
5 Find the best swap C[c↔ c′] with any

element c′ on row i;
6 Find the best transformation C[c← cν];
7 if H(C[c← cν]) < H(C[c↔ c′]) then
8 C← C[c← cν]
9 else

10 C← C[c↔ c′])
11 end
12 end
13 end
14 end
15 Return C;

Algorithm 1: INCROW

rows correspond to values of the key and the columns to the
values of the message, as in Table I. The cell Ci,j contains the
ciphertext symbol produced when the key is ki and message
is mj . For brevity we denote by H(C) the entropy of the
ciphertext induced by the encoder function represented by C.

The algorithms initialize C by assigning to each value in
the column mj the symbol cj , for 1 ≤ j ≤ |M|. The resulting
ciphertext would have exactly H(C) = H(M) and thus
achieve max-equivocation, however it is not a valid encoder
function since the same symbol is repeated more than once
in each column. The algorithms then transform it into a valid
encoder function while greedily trying to increase the entropy
of the ciphertext by the smallest possible amount.

For C to be an encoder function, it must be that in each
row and column of C each symbol appears at most once. We
call a symbol c = Ci,j a conflict if it violates this property,
i.e. if c appears more than once in row i or column j.

The algorithms proceed by reducing the number of conflicts
in C, and returning C when there are no conflicts left and
consequently C represents an encoder function. A conflict
can be replaced in two different ways: by swapping it with
a symbol in a different position in C or by transforming it to
another symbol.

Swapping c = Ci,j and c′ = Ci′,j′ means that we simul-
taneously set Ci,j ← c′ and Ci′,j′ ← c. A swap is considered
valid only if c is not a conflict in position (i′, j′) and c′ is not
a conflict in position (i, j). The algorithms perform only valid
swaps, so each swap strictly reduces the number of conflicts
in C. We will denote the result of the swap with C[c↔ c′]. A
best swap operation C[c↔ c′] for a given conflict c is a valid
swap such that ∀c′′ ∈ C. H(C[c↔ c′]) ≤ H(C[c↔ c′′]).

Transforming c = Ci,j means finding a symbol cν that
does not appear in row i nor in column j and setting
Ci,j ← cν . A transformation reduces the number of conflicts
by one. We will denote the result of the transformation with

Data: message space M = {m1,m2, . . . ,m|M|},
probability distribution ρ(M), key space
K = {k1, k2, . . . , k|K|}.

Result: matrix form C of an encoder enc.
1 Set Ci,j = cj , ∀1 ≤ i ≤ |K|, 1 ≤ j ≤ |M|;
2 while C is not an encoder function do
3 Let minC← C, minH ←∞;
4 foreach conflict c do
5 Find the best swap C[c↔ c′] with any element

c′ ∈ C;
6 Find the best transformation C[c← cν];
7 if H(C[c← cν]) < H(C[c↔ c′]) then
8 Let candidateC← C[c← cν];
9 else

10 Let candidateC← C[c↔ c′];
11 end
12 if H(candidateC) < minH then
13 minC← candidateC;
14 minH ← H(candidateC);
15 end
16 C← minC;
17 end
18 Return C;

Algorithm 2: EXTENSIVE

C[c ← cν]. Note that no encoder function has more than
|M × K| different symbols. A best transformation operation
C[c← cν] for a given conflict c is a transformation such that
∀c′ ∈ {c1, c2, ..., c|M×K|}. H(C[c← cν]) ≤ H(C[c← c′]).

All algorithms always terminate. We introduce them and
explain how they differ.

The INCROW algorithm scans C’s columns in increasing
order of probability, and each column from top to bottom.
When it finds a conflict c, it considers the best swap C[c↔ c′]
of c with elements on the same row and the best transformation
of c with a different symbol C[c ← cν]. If H(C[c ← cν]) <
H(C[c ↔ c′]) it performs the best transformation, otherwise
the best swap. The pseudocode of INCROW is described in
Algorithm 1.

The DECROW algorithm is equivalent to INCROW except
that the columns are scanned in decreasing order of probability.
The pseudocode of DECROW is the same as the one described
in Algorithm 1 except that the order of the for on line 2 is
j ← |M| to 1.

The RANDROW algorithm is equivalent to INCROW ex-
cept that the columns are scanned in a random order. The
pseudocode of RANDROW is the same as the one described
in Algorithm 1 except that the order of the columns of C is
randomized after line 1.

The EXTENSIVE algorithm considers all conflicts in C and
for each one the best swap and the best transformation, and
then it performs the swap or transformation operation that is
the best among all possible conflict resolutions (ties in favor
of swaps). It repeats this step until there are no conflicts left.
The pseudocode of EXTENSIVE is described in Algorithm 2.

Lemma 6: Algorithms INCROW, DECROW, RANDROW
and EXTENSIVE terminate.

Proof: Since each iteration of the main cycle of each
algorithm reduces the number of conflicts.

In the next section we perform experiments on the proposed
heuristics to determine which one is the most effective in
producing an encoder function approaching max-equivocation.

VI. EXPERIMENTAL RESULTS

A. Methodology

Unless otherwise specified, the results are from running
tests on randomly generated message spaces and probability
distributions. In general the message space sizes are randomly
chosen between 3 and 50, and two algorithms (PROBA and
PROBB) are used to generate the probability distributions.
(Message spaces with H(M) < 1 are discarded and new dis-
tribution found.) The key space size is randomly chosen to be
between 2 and the maximum |K| such that H(K) < H(M).

The PROBA algorithm splits the probability available x
(initially 1) randomly into two parts x1 and x2, and then
recursively calls itself with these parts of the two halves of
the message (sub-)space. This continues until the subspace is
a single message that is assigned the whole probability.

The PROBB algorithm splits the probability available into
two parts, assigns the first part to the current message (initially
the first), and then continues with the remaining probability
and remaining messages. This tends to generate more skewed
probability distributions than PROBA.

Once the message space size, message distribution, and key
space size have been chosen, each algorithm is run in turn on
the same initial state, with the data recorded after each encoder
function has been created.

The code to perform these test is written in Java 1.8 and
run on Linux 3.13 64-bit kernel on an Intel Core i7-3720QM
2.60GHz CPU with 8GB of RAM. The code used to run these
experiments is available upon request.

B. Comparing Algorithms

The tests generate random message spaces, message dis-
tributions, and key sizes; determining the domain for an
encryption function. The different algorithms for generating
encryption functions are then all run on the same random
examples and their outputs compared, in particular:

Win% The percentage of times each algorithm generates
the lowest entropy (may sum to over 100% since
more than one algorithm can generate the same
lowest entropy).

∆ The average percentage of the message entropy
that is lost; that is the average (H(C)−H(M))×100

H(M) .
Runtime The average runtime for the algorithm in millisec-

onds.

The results for comparing INCROW, DECROW,
RANDROW, and EXTENSIVE over 450,000 tests (equally
split across the two probability generation algorithms) are
shown in Table II. The results indicate that the DECROW
algorithm performs the best in all categories, followed
by RANDROW, then INCROW and finally EXTENSIVE. In
particular the results show that EXTENSIVE performs by far

TABLE II. COMPARISON OF INCROW, DECROW, RANDROW, AND
EXTENSIVE

Win% ∆ Runtime

INCROW 9.3462 11.04 0.3978
DECROW 80.5007 9.00 0.2909

RANDROW 21.5667 10.31 0.3608
EXTENSIVE 8.4744 11.00 172.4039

the worst, with much higher runtimes yielding the lowest
win percentage and only negligibly improved loss of message
entropy over the next worse INCROW. Although INCROW is
not significantly slower, the low win percentage and highest
entropy loss suggest that despite greediness not being optimal,
beginning with the smallest probabilities is worse than a
random selection. Thus, although DECROW and RANDROW
are not optimal, or even always better1 than INCROW and
EXTENSIVE, they are worthy of further consideration.

We now consider a more refined analysis of the DECROW
and RANDROW algorithms to contrast their results and study
the impacts of other factors.

The following results consider the DECROW and
RANDROW algorithms run while comparing message sizes.
Table III shows the results for 100,000 tests (equally split
across PROBA and PROBB) with fixed message size (and
random key space size such that 1 ≤ H(K) < H(M)).

The win percentage appears to be slightly dropping for
both algorithms, however this is due to them both achieving
the same result less often. The indication here is that DECROW
provides a better solution approximately 80% of the time,
and RANDROW approximately 20%. The loss of entropy is
also decreasing as the message size increases, suggesting that
with more message space to play with the algorithms can find
encoder functions that approach the optimal and theoretical
best (i.e. H(C) = H(M)). These are graphed in Figure 2
along with other experiments.

23 25 27 29 211

6

7

8

9

10

Message size

∆

RANDROW

DECROW

DECROW

Fig. 2. COMPARISON OF ∆’S FOR DECROW AND RANDROW VERSUS
MESSAGE SIZE

The other line in Figure 2 shows the DECROW algorithm
with only 200 tests using only the PROBA generation algorithm

1Although not clear in Table II there are experiments where either of
INCROW or EXTENSIVE have been the sole winning algorithm.

TABLE III. COMPARISON OF DECROW AND RANDROW BY MESSAGE
SIZE

DECROW Win% DECROW ∆ RANDROW Win% RANDROW ∆

8 82.041 8.90 35.402 10.26
16 81.741 9.01 20.836 10.33
32 81.715 8.91 18.462 10.19
64 81.112 8.79 18.914 10.03

128 80.700 8.73 19.325 9.95
256 81.033 8.56 18.986 9.75
512 80.455 8.55 19.569 9.72

(PROBB gives very skewed results that are unrepresentative
for large message spaces). Note that no win percentage is
calculated as only the DECROW algorithm was run.

VII. DIFFERENT ENTROPY MEASURES

Recently it has been shown that Shannon entropy measures
the effort for decrypting the ciphertext by asking arbitrary
binary questions, which is not a general security scenario
[10]. Other measures based on different entropies have been
introduced. Smith’s min-entropy [11] has been shown to
measure the resistance of the cryptosystem against one-time
attacks in which the attacker has a single chance to guess the
message correctly. Other entropy measures include g-leakage,
that parametrizes min-entropy with a given gain function [12],
and guessing entropy, that quantifies the effort required to
decrypt the ciphertext with equality tests [10].

The results presented in this paper can be re-derived using
any other entropy measure, generating alternate definitions of
max-equivocation that consider different types of attackers.
Modification of the heuristics to use a different type of entropy
is trivial. While in general we do not expect that the optimal
encoder function for a type of entropy to be optimal also for
other measures that are not refinements of the first, we leave
this as an open question.

VIII. CONCLUSIONS

We have presented max-equivocation, a generalization of
Shannon’s perfect secrecy condition that can also be estab-
lished when the entropy of the key is smaller of the entropy
of the message. Message equivocation measures the number of
different messages that can be decrypted from the ciphertext,
and max-equivocation holds when this number is maximized.
Max-equivocation is achieved when the encoder function min-
imizes the entropy of the ciphertext.

We have considered the problem of finding an encoder
function when the distribution over the message space is non-
uniform and the distribution over the key space is uniform.

We have shown that having a ciphertext space larger than
the message space can increase the effectiveness of encoder
functions, proving the general non-optimality of encoder func-
tions that correspond to Latin rectangles. Also, we have shown
that in general it is impossible to give an encoder function that
achieves max-equivocation.

We have compared four heuristics to efficiently derive an
effective encoder function. We established that the DECROW
algorithm works better than the others under our experimen-
tal parameters, consistently providing encoder functions that
are only a few percentage points worst than the theoretical
optimum and in less time than the other heuristics. Finally,

we have shown that the effectiveness of the encoder functions
constructed by our heuristics improves with the size of the
message space, suggesting that they could be used on real
instances of the problem.

A. Related Work

Other works have considered variations or alternatives
to perfect secrecy in shared-key cryptosystems. Csiszár and
Körner [13] introduce ε-secrecy as a relaxing of the require-
ment of perfect secrecy to I(M ;C) ≤ ε for a given ε. Ho
et al. [14] consider the bounds required for perfect secrecy
in the sense of Shannon, while considering key reuse, and
parameterise by the entropy of the message space. Russell and
Wang [15] consider entropic security as an alternative, that
considers min-entropy bounded statistical security measures
and smaller key spaces.

The design of encryption functions, or their components
such as S-boxes, has been widely studied [3], [4], [5], par-
ticularly when designing optimal systems. The results here
suggest that when the message space (or inputs to an S-box) are
non-uniformly distributed then the result cannot ensure max-
equivocation. Further, finding optimal functions should not
be limited merely to Latin squares/rectangles or Quasigroups,
since higher max-equivocation can be achieved without such
tight restrictions.

REFERENCES

[1] C. E. Shannon, “Communication Theory of Secrecy Systems,” Bell
System Technical Journal, vol. 28, 1949.

[2] ——, “A mathematical theory of communication,” The Bell system
technical journal, vol. 27, pp. 379–423, Jul. 1948.

[3] Y. Wu, J. Noonan, and S. Agaian, “Dynamic and implicit latin square
doubly stochastic s-boxes with reversibility,” in SMC 2011, Oct 2011,
pp. 3358–3364.

[4] A. Mileva and S. Markovski, “Quasigroup representation of some feistel
and generalized feistel ciphers,” in ICT Innovations 2012, 2013, vol.
207, pp. 161–171.

[5] Y. Wu, Y. Zhou, J. P. Noonan, and S. Agaian, “Design of image cipher
using latin squares,” Information Sciences, vol. 264, no. 0, pp. 317 –
339, 2014.

[6] T. Cover and J. Thomas, Elements of Information Theory, ser. A Wiley-
Interscience publication. Wiley, 2006.

[7] A. Bruen and M. Forcinito, Cryptography, Information Theory, and
Error-Correction: A Handbook for the 21st Century. Wiley, 2011.

[8] D. Welsh, Codes and Cryptography. New York, NY, USA: Clarendon
Press, 1988.

[9] F. Reza, An Introduction to Information Theory, ser. Dover Books on
Mathematics Series. Dover, 1961.

[10] B. Köpf and D. A. Basin, “Automatically deriving information-theoretic
bounds for adaptive side-channel attacks,” Journal of Computer Secu-
rity, vol. 19, no. 1, pp. 1–31, 2011.

[11] G. Smith, “On the foundations of quantitative information flow,” in
FOSSACS 2009, ser. LNCS, L. de Alfaro, Ed., vol. 5504. Springer,
2009, pp. 288–302.

[12] M. S. Alvim, K. Chatzikokolakis, C. Palamidessi, and G. Smith,
“Measuring information leakage using generalized gain functions,” in
CSF 2012, S. Chong, Ed. IEEE, 2012, pp. 265–279.

[13] I. Csiszár and J. Körner, “Broadcast channels with confidential mes-
sages,” IEEE Transactions on Information Theory, vol. 24, no. 3, pp.
339–348, 1978.

[14] S.-W. Ho, T. Chan, and C. Uduwerelle, “Error-free perfect-secrecy
systems,” in ISIT 2011, July 2011, pp. 1613–1617.

[15] A. Russell and H. Wang, “How to fool an unbounded adversary with a
short key,” in EUROCRYPT, 2002, pp. 133–148.

