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Abstract. Differential privacy is a notion of privacy that was initially designed

for statistical databases, and has been recently extended to a more general class

of domains. Both differential privacy and its generalized version can be achieved

by adding random noise to the reported data. Thus, privacy is obtained at the cost

of reducing the data’s accuracy, and therefore their utility.

In this paper we consider the problem of identifying optimal mechanisms for gen-

eralized differential privacy, i.e. mechanisms that maximize the utility for a given

level of privacy. The utility usually depends on a prior distribution of the data, and

naturally it would be desirable to design mechanisms that are universally optimal,

i.e., optimal for all priors. However it is already known that such mechanisms do

not exist in general. We then characterize maximal classes of priors for which a

mechanism which is optimal for all the priors of the class does exist. We show

that such classes can be defined as convex polytopes in the priors space.

As an application, we consider the problem of privacy that arises when using,

for instance, location-based services, and we show how to define mechanisms

that maximize the quality of service while preserving the desired level of geo-

indistinguishability.

1 Prologue

Privacy is an instance of the general problem of information protection, which consti-

tutes one of the main topics of the research of our team Cométe. The history of our

interest for this topic has an important milestone in the visit of Prakash to Cométe in

2006, in the context of our équipe associée Printemps. We had been working for a while

on a probabilistic approach to anonymity, and when Prakash arrived, he suggested to

consider an information-theoretic approach instead. This was the beginning of a very

fruitful collaboration between Prakash and our team, and two of the papers that origi-

nated from this collaboration became the backbone of the PhD thesis of Konstantinos

Chatzikokolakis. Furthermore, the collaboration with Prakash influences, still today, our

research on information protection, in the sense that our research is characterized by the

paradigmatic view of a system as a noisy channel – the central concept of information

theory. The present paper, which explores the properties of the channel matrix in the

context of differential privacy, is a tribute to the fundamental role that Prakash has had

in Cométe’s scientific life and evolution.

⋆ This work is partially funded by the Inria large scale initiative CAPPRIS, the EU FP7 grant

no. 295261 (MEALS), the INRIA Equipe Associée PRINCESS, and by the project ANR-12-

IS02-001 PACE.
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2 Introduction

It is often the case that a privacy threat arises not because of direct access to sensi-

tive data by unauthorized agents, but rather because of the information they can infer

from correlated public data. This phenomenon, known as information leakage, is quite

general and it has been studied in several different domains, including programming

languages, anonymity protocols, and statistical databases (see, for instance, [1–3]). Nat-

urally, the settings and the approaches vary from domain to domain, but the principles

are the same.

In the case of statistical databases, the public information is typically defined by

the kind of queries we are allowed to ask, and the concerns for privacy focus on the

consequences that the participation in the databases may have for the confidential data

of a single individual. Differential privacy [4, 5] was designed to control these conse-

quences. Since it has been recognized that the deterministic methods offer little resis-

tance to composition attacks (i.e. to the combination of information inferred from dif-

ferent databases, see for instance [6, 7]), differential privacy targets probabilistic mech-

anisms, i.e. mechanisms that answer the query in a probabilistic fashion. Typically,

they generate the output by adding random noise to the true answer, according to some

probabilistic distribution. The aim of differential privacy is to guarantee that the partic-

ipation of a single individual in the database will not affect too much the probability of

each reported answer. More precisely, (the log of) the ratio between the likelihoods of

obtaining a certain answer, from any two adjacent databases (i.e., differing only for the

presence of an individual), must not exceed a given parameter ǫ. The rationale of this

notion comes from the fact that it is equivalent to the property that the reported answer

does not change significantly the probabilistic knowledge of the individual data. Differ-

ential privacy has become very popular thanks to the fact that it is easy to implement:

it is sufficient to add Laplacian noise to the true answer. Furthermore, the notion and

the implementation are independent from the side knowledge of the adversary about

the underlying database (represented as a prior probability distiribution over possible

databases). Finally, it is compositional, in the sense that the privacy loss caused by the

combination of attacks is the sum of the single privacy losses.

There have been several studies aimed at applying differential privacy to other areas.

In this work, we focus on the approach proposed in [8], which introduced the concept

of dX -privacy, suitable for any domain X equipped with a notion of distance dX . Given

a mechanism K from the set of secrets X to distribution over some set of outputs Z ,

we say that K satisfies dX -privacy if for any two secrets x1 and x2, and any output z,

the log of the ratio between K(x1) and K(x2) does not exceed dX (x1, x2). Note that

dX -privacy is an extension of differential privacy: the latter can be obtained by setting

X to be the set of databases (seen as tuples of individual records) and dX to be the

Hamming distance between these tuples, scaled by ǫ. Furthermore, it is a conservative

extension, in the sense that it preserves the implementability by means of Laplacian

noise, the independence from the prior probability, the interpretation in terms of prob-

abilistic knowledge, and the compositionality properties. From the practical point of

view, dX -privacy is particularly suitable to protect the accuracy of the values, like in

the case of smart-meter signatures [8] and the precise geographical position in location-
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based services [9]. Similar extensions of differential privacy obtained by generalizing

the distance or the adjacency relation have been considered in [10–12].

Besides guaranteeing privacy, a mechanism should of course provide an answer

which is “useful” enough for the service it has been designed. This second goal is mea-

sured in terms of utility, which represents the average gain that a rational user obtains

from the reported answer. More precisely, let y be the true answer and let z be the out-

put reported by the mechanism. On the basis of the latter, the user tries to make a guess

y′ (remapping) about the (hidden) true answer y. His gain g(y, y′) is determined by a

given function g. The utility is then defined as the expected gain under the best possible

remapping. While the gain function can take various forms, in this paper we restrict our

analysis to the binary gain function, which evaluates to 1 when the user’s guess is the

same as the query result (y = y′) and evaluates to 0 otherwise.

Obviously, there is a trade-off between privacy and utility, and we are interested in

mechanisms that offer maximal utility for the desired level of dX -privacy. Such mecha-

nisms are called optimal. Naturally, we are also interested in mechanisms that are uni-

versally optimal, i.e., optimal under any prior1, as we don’t want to design a different

mechanism for each user2. A famous result by Gosh et al. [13] states that this is possi-

ble for the counting queries, namely the queries of the form “how many records in the

database have the property p”, for some p. Unfortunately Brenner and Nissim showed

that in differential privacy universally optimal mechanisms do not exist for any other

kind of query [14]. However, one can still hope that it is possible to design mechanisms

that are optimal for a significant class of users. These are exactly the main objectives

of this paper: identify regions of priors which admit a robust optimal mechanism, i.e. a

mechanism whose optimality is not affected by changes in the prior (within the region),

and provide a method to construct such mechanism.

A related issue that we consider in this paper is the amount of information leaked by

a mechanism, a central concept in the area of quantitative information flow . There have

been various proposals for quantifying the information leakage, we consider here an

information-theoretic approach based on Rényi min-entropy [15, 16], which is suitable

for one-try attacks. A main difference between the min-entropy leakage and dX -privacy

is that the former measures the expected risk of disclosure of sensitive information,

while the latter focuses on the worst case, i.e., it considers catastrophic any such disclo-

sure, no matter how unlikely it is.

Recently, researchers have investigated the relation between differential privacy and

min-entropy leakage [17–19], and in particular it has been proved in [18] that differen-

tial privacy induces a bound on the min-entropy leakage, which is met by a certain

mechanism for the uniform prior (for which min-entropy leakage is always maximum).

In this paper, we extend the above result to provide a more accurate bound for any prior

in the special regions described above. More precisely, we provide a bound to the leak-

age specific to the prior and that can be met, under a certain condition, by a suitable

mechanism.

Contributions

1 Note that, in contrast to dX -privacy, utility does depend on the prior.
2 We recall that the prior represents the side knowledge of the user.
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– We identify, for an arbitrary metric space (Y, dY), the class of the dY-regular distri-

butions of Y . The interest of this class is that for each prior distribution in it we are

able to provide a specific upper bound to the utility of any dY-private mechanism.

We characterize this class as a geometric region, and we study its properties.

– We describe a dY-private mechanism, called “tight-constraints mechanism”, which

meets the upper bound for every dY-regular prior, and is therefore robustly optimal

in that region. We provide necessary and sufficient conditions for the existence of

such mechanism, and an effective method to test the conditions and to construct the

mechanism.

– We consider the domain of databases (X , dX ), where dX is the Hamming distance,

and we recast the above definitions and results in terms of min-entropy leakage. We

are able to improve a result from the literature which says that differential privacy

induces a bound on the min-entropy leakage for the uniform prior: We provide more

accurate bounds, and show that these bounds are valid for all the dX -regular priors

(not just for the uniform one). A construction similar to the one in the previous

point yields the tight-constraints mechanism which reaches those upper bounds.

A preliminary version of this paper, restricted to standard differential privacy, and

without proofs, appeared in POST 2013.

Plan of the paper In the next section we recall the basic definitions of generalized

differential privacy, utility, and min-entropy mutual information. Section 3 introduces

the notion of dY-regular prior, investigates the properties of these priors, and gives a

geometric characterization of their region. Section 4 shows that for all dY-regular priors

on the true answers (resp. databases), dY-privacy induces an upper bound on the utility

(resp. on the min-entropy leakage). Section 5 identifies a mechanism which reaches the

above bounds for every dY-regular prior, and that is therefore the universally optimal

mechanism (resp. the maximally leaking mechanism) in the region. Section 6 illustrates

our methodology and results using the example of the sum queries and location privacy.

Section 7 concludes and proposes some directions for future research.

3 Preliminaries

In this section we recall the generalized variant of differential privacy from [8], con-

sidering an arbitrary set of secrets X , equipped with a metric dX . We then discuss two

instantiations of the general definition: first, standard differential privacy is defined on

databases under the Hamming distance. Second, geo-indistinguishability [9], a notion

of location privacy, is obtained by using geographical locations as secrets, under the

Euclidean distance. Finally, we recall a standard way for measuring the utility of a

mechanism, and the notion of min-mutual information.

3.1 Generalized privacy

As discussed in the introduction, a generalized variant of differential privacy can be

defined on an arbitrary set of secrets X , equipped with a metric dX . Intuitively, dX (x, x
′)
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gives the “distinguishability level” between secrets x, x′, based on the privacy semantics

that we wish to obtain. The smaller the distinguishability level is, the harder it should

be for the adversary to distinguish the two secrets, hence offering privacy, while secrets

at great distance are allowed to be distinguished, giving the possibility to obtain some

controlled knowledge about the secret.

A mechanism from X to Z is a function K : X → P(Z), where P(Z) denotes the

set of probability distributions over some set of outputs Z . In this paper we consider

X ,Z to be finite, hence the involved distributions to be discrete. The mechanism’s

outcome K(x) is then a probability distribution, and K(x)(z) is the probability of an

output z ∈ Z when running the mechanism on x ∈ X . For simplicity we write K :
X → Z to denote a machanism from X to Z (omitting P).

The multiplicative distance dP between probability distributions µ1, µ2 ∈ P(Z) is

defined as dP(µ1, µ2) = supz∈Z | ln µ1(z)
µ2(z)

| with the convention that | ln µ1(z)
µ2(z)

| = 0 if

both µ1(z), µ2(z) are zero and ∞ if only one of them is zero.

We are now ready to give the definition of dX -privacy:

Definition 1. A mechanism K : X → Z satisfies dX -privacy, iff ∀x, x′ ∈ X :

dP(K(x),K(x′)) ≤ dX (x, x
′)

or equivalently:

K(x)(z) ≤ edX (x,x′) K(x′)(z) ∀z ∈ Z

The intuition behind this definition is that the attacker’s ability to distinguish two secrets

should depend on their distinguishability level dX (x, x
′). The closer two secrets are, the

more similar the mechanism’s output on those secrets should be, making it harder for

the adversary to distinguish them. Depending on the choice of dX , the definition can be

adapted to the application at hand, giving rise to different notions of privacy.

In [8], two alternative characterizations of dX -privacy are also given, in which the

attacker’s knowledge is explicitly quantified, which makes it easier to understand the

privacy guarantees obtained by a particular choice of dX .

Answering queries. In practice, we often want to learn some information about our

secret, that is we want to obtain the answer to a query f : X → Y . To do so privately, we

can compose f with a “noise” mechanism H : Y → Z , thus obtaining an “oblivious”

mechanism H ◦ f : X → Z , called oblivious since the answer depends only on f(x)
and not on x itself. The role of H is to add random noise to the true query result f(x)
and produce a “noisy” reported output z ∈ Z .

Since we assume all sets to be finite, the mechanism H can be described by a

stochastic matrix H = (hyz), called the noise matrix, whose rows are indexed by the

elements of Y and whose columns are indexed by the elements of Z . Hence, hyz is the

probability of reporting z when the true query result is y.

Given a metric dY on Y , the generalized definition of privacy allows us to directly

talk about the privacy of H , without involving f at all. Using matrix notation, dY-

privacy for H (Definition 1) can be written as

hyz ≤ edY(y,y′)hy′z ∀y, y′ ∈ Y, z ∈ Z (1)
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A natural question, then, is how dX -privacy of the composed mechanism H ◦ f
relates to dY-privacy of H . The connection between the two comes from the concept of

uniform ∆-sensitivity.

Definition 2. A sequence y1, . . . , yn is called a chain from y1 to yn. We say that such

chain is tight if dY(y1, yn) =
∑

i dY(yi, yi+1). Two elements y, y′ ∈ Y are called ∆-

expansive iff dY(y, y
′) = ∆dX (x, x

′) for some x ∈ f−1(y), x′ ∈ f−1(y′). A chain is

∆-expansive iff all steps yi, yi+1 are ∆-expansive.

Finally, f is uniformly ∆-sensitive wrt dX , dY iff:

– for all x, x′ ∈ X : dY(f(x), f(x
′)) ≤ ∆dX (x, x

′), and

– for all y, y′ ∈ Y: there exists a tight and ∆-expansive chain from y to y′.

The intuition behind this definition is that f expands distances by at most ∆, and

there are no answers that are always the results of a smaller expansion: all y, y′ ∈ Y
can be linked by a chain in which the expansion is exactly ∆. Under this condition, it

has been shown in [8] that the privacy of H characterizes that of H ◦ f .

Theorem 1 ([8]). Assume that f is uniformly ∆-sensitive wrt dX , dY . Then H satisfies

dY-privacy if and only if H ◦ f satisfies ∆dX -privacy.

In the remaining of the paper, we give results about dY-privacy for H , for an ar-

bitrary metric dY , independently from any function f . The results can be used either

to talk about the privacy of H itself, or – given the above theorem – about the privacy

of oblivious mechanisms of the form H ◦ f , for some function f for which uniform

sensitivity can be established. A typical case of uniform sensitivity arises in standard

differential privacy when dY is the metric obtained from the induced graph of f , as

discussed in the next section. But uniform sensitivity can be established for other types

of metrics; some examples are given in [8].

3.2 Differential privacy

The notion of differential privacy, introduced by Dwork in [4], imposes constraints on

data reporting mechanisms so that the outputs produced by two databases differing

only for one record are almost indistinguishable. Let V be a universe of values and u
the number of individuals. The set of all possible databases (u-tuples of values from V )

is V = V u. Two databases x, x′ ∈ V are called adjacent, written x ∼ x′, iff they differ

in the value of exactly one individual. The adjacency relation ∼ defines a graph, and the

length of the shortest path between two databases x, x′ in the graph, written dh(x, x
′),

defines a metric called the Hamming distance. In other words, dh(x, x
′) is the number

of individuals in which x and x′ differ.

The property of ǫ-differential privacy requires that, for any two adjacent databases,

the ratio of the probabilities of producing a certain output is bound by eǫ. It is easy to

see that this property is equivalent to ǫdh-privacy, under the Hamming distance dh.

Given a query f : V → Y , the adjacency relation ∼ can be extended to Y , giving

rise to the induced graph ∼f of f [14, 19], defined as:

y ∼f y′ iff x ∼ x′ for some x ∈ f−1(y), x′ ∈ f−1(y′)
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f3(x) =
(count(x, p1), count(x, p2))

Fig. 1. The induced graph of different queries

Figure 1 shows the induced graph of three different queries. In these examples count(x, p)
refers to a counting query which returns the number of records in the database x which

satisfy a certain property p. Other queries in the figure are expressed using the count

function.

Furthermore, let d∼f
(y, y′) be the metric on Y defined as the shortest ∼f -path from

y to y′. It has then been shown in [8] that any function f is uniformly 1-sensitive wrt

dh, d∼f
. As a consequence of this, and of Theorem 1, ǫ-differential privacy of an obliv-

ious mechanism H ◦ f can be characterized by the ǫd∼f
-privacy privacy of H .

Corollary 1. For any query f : V → Y , H satisfies ǫd∼f
-privacy if and only if H ◦ f

satisfies ǫdh-privacy.

3.3 Geo-indistinguishability

An advantage of the generalized definition of privacy is that it can be applied in cases

when there is a single individual involved – hence the notion of adjacency is inadequate

– by using a metric that gives a meaningful notion of privacy for the application at hand.

An example of such a notion is geo-indistinguishability [9], proposed as a formal notion

of location privacy in the context of Location Based Services (LBSs).

Consider a mobile user, typically using a GPS-enabled hand-held device, who wishes

to obtain information related to his current location, for instance restaurants close to

him. To do so, he can query an LBS provider, providing his actual location x as part

of the query. However, location information is not only inherently sensitive itself, but

also correlated to a variety of other sensitive information, such as political and reli-

gious beliefs, medical information, etc. Hence, the user would like to perform the LBS

query privately, that is without disclosing his exact location to the provider. Note that

protecting the user’s identity is not the goal here; in fact, the user might wish to be

authenticated to the service provider in order to obtain personalized recommendations.

What he is interested in, instead, is hiding his location.

A possible solution is to use a location obfuscation mechanism [20], producing a

noisy location z which is reported to the service provider. A natural goal then is to
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formalize the privacy guarantees provided by such a mechanism, for which various

approaches have been proposed in the literature [21].

Geo-indistinguishability provides such a formal definition of location privacy, and

can be expressed as an instance of dX -privacy. Secrets X are now locations (a subset of

R
2), and ǫ-geo-indistinguishability is ǫd2-privacy, where d2 is the Euclidean distance

between locations.3 Intuitively, dP(K(x),K(x′)) ≤ ǫd2(x, x
′) requires that the closer

(geographically) two locations x, x′ are, the more likely to produce the same reported

location z they should be. This allows the provider to get some approximate informa-

tion necessary to provide the service (e.g. distinguish locations in Paris from those in

London), but prevents him from learning x with high accuracy (since locations x′ close

to x produce the same z with similar probabilities).

The results of this paper refer to an arbitrary metric between secrets, hence they are

directly applicable to geo-indistinguishability. A case-study in the context of location

privacy is given in Section 6.2.

3.4 Utility model

The main role of a noise mechanism H : Y → Z is to guarantee dY-privacy while pro-

viding useful information about the true query result, i.e. to satisfy a trade-off between

the privacy and utility. For quantifying the utility of H we follow a standard model from

[13]. Let y ∈ Y be the result of executing a query f . The mechanism H : Y → Z pro-

cesses y and produces an output z in some domain Z to the user. Based on the reported

output z and prior knowledge about the likely results of f , she applies a remapping

function R : Z → Y to z to produce a guess y′ ∈ Y for the real query result. Note that

the composite mechanism R ◦H : Y → Y is a mechanism whose output domain is the

query results domain Y . We say that H is remapped to R ◦ H by the remap R. Now,

with the user’s guessed value y′, a real-valued gain function g : Y × Y → R quantifies

how informative y′ is compared to the real query result y. In this paper we restrict our

analysis to the binary gain function gb which is defined as gb(y, y
′) = 1 iff y′ = y and

0 otherwise. The choice of this gain corresponds to the preference of a user to guess the

true query result.

In practice, the user usually bases her guess y′ about the real query result on prior

knowledge about the underlying secret and the underlying query. This knowledge is

modeled by a probability distribution π (called prior) over the domain Y of query

results. Now the utility of a mechanism H : Y → Z with respect to a prior π and a

remap R : Z → Y is the expected value of the underlying gain function gb, and is

therefore expressed as

U(H,π, R) =
∑

y,y′ πy (HR)yy′ gb(y, y
′). (2)

Using the definition of gb, the above expression reduces to a convex combination of the

diagonal elements of HR as follows.

U(H,π, R) =
∑

y πy (HR)yy. (3)

3 Note that any other meaningful geographical distance could also be used, such as the Manhat-

tan or a map-based distance.
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Accordingly, we say that a dY-private mechanism H is dY-optimal for a prior π if

there is a remap R such that U(H,π, R) is maximal for all dY-private mechanisms and

all remaps.4 In general the optimality of a mechanism depends on the prior (related to

the user). That is a mechanism that is optimal for a prior may not be optimal for another

one. In the setting of differential privacy, it has been proven [14] that for any query,

other than a single counting one, there is no mechanism that is optimal for all priors

simultaneously. Nevertheless, we identify in Section 3 a region of priors, where it is

possible to find a single mechanism which is optimal to all of them.

3.5 Min-mutual information

In this section we recall the use of an information-theoretic notion, namely mutual

information, to quantify the amount of information conveyed by a mechanism H :
Y → Z as an information theoretic channel.

Following recent works in the area of quantitative information flow ([15–17]), we

adopt Rényi’s min-entropy ([22]) as our measure of uncertainly. The min-entropy H∞(π)
of a prior π, defined as H∞(π) = − log2 maxi πi, measures the user’s uncertainty

about the query result. Then, the corresponding notion of conditional min-entropy, de-

fined as H∞(H,π) = − log2
∑

z∈Z
maxy πy hyz , measures the uncertainty about the

query result after observing an output z ∈ Z . Finally, subtracting the latter from the

former brings us to the notion of min-mutual information:

L(H,π) = H∞(π)−H∞(H,π)

which measures the amount of information about the query result conveyed by the

mechanism H . In the area of quantitative information flow this quantity is known as

min-entropy leakage; the reader is referred to [15] for more details about this notion.

4 Regular priors

In this section we describe a region of priors, called ‘dY-regular’. These priors are de-

termined by the metric dY on the domain Y . Recall that the dY-privacy constraints

for H can be written as hyz/hy′z ≥ e−dY(y,y′) for all y, y′ ∈ Y . Since every lower

bound e−dY(y,y′) depends only on y, y′, the constraints can be described altogether by

a square matrix Φ formed by such lower bounds. We refer to this matrix as the privacy-

constraints matrix.

Definition 3 (privacy-constraints matrix). The privacy-constraints matrix Φ of a met-

ric dY is a square matrix, indexed by Y ×Y , where φyy′ = e−dY(y,y′) for all y, y′ ∈ Y .

Note that Φ is symmetric (φyy′ = φy′y) due to the symmetry of dY . Recall that dY

describes the privacy restrictions imposed on the domain Y . In particular these restric-

tions become vacuous if dY(y, y
′) → ∞ for all y, y′ : y 6= y′. In this extreme case

the privacy-constraints matrix Φ converges to the identity matrix where each diagonal

4 Note that there may exist many optimal mechanisms for a given prior.
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entry is 1 and all other entries are 0. We now define the dY-regular priors, in terms of the

privacy-constraints matrix of dY . For a vector µ having cardinality |Y|, we use µ ≥ 0

to denote ∀y : µy ≥ 0.

Definition 4 (dY-regular prior). A prior π is called dY-regular iff there exists a row

vector µ ≥ 0 such that π = µΦ.

In the following we describe the common properties of these priors and also give a

geometric characterization for their region comparing it to the whole prior space. As

a first observation, this region converges to the entire prior space when the privacy

constraints on Y become vacuous. This is because, as described above, Φ approaches

the identity matrix where the vector µ exists for each prior π (just define µ = π).

An important property of any dY-regular prior is that the ratio between any two of

its entries πy, πy′ is always bound by edY(y,y′). Because of this property, such a prior is

called dY-regular.

Proposition 1. For every dY-regular prior π and for all y, y′ ∈ Y we have that πy

/

πy′ ≤

edY(y,y′).

Proof. By Definition 4, the ratio πy/πy′ is given by

πy

/

πy′ =

∑

y′′ µy′′φy′′y
∑

y′′ µy′′φy′′y′

. (4)

By the definitions of φy′′y′ , φy′′y we also have that

φy′′y′ = e−dY(y′′,y′) ≥ e−(dY(y′′,y)+dY(y,y′)) = e−dY(y,y′) φy′′y.

The above inequality is implied by the triangle inequality, dY(y
′′, y′) ≤ dY(y

′′, y) +
dY(y, y

′) and the fact that e−1 < 1. Since µy′′ ≥ 0 for all y′′, we have

∑

y′′

µy′′φy′′y′ ≥ e−dY(y,y′)
∑

y′′

µy′′φy′′y

Substituting the above inequality in Eq. (13) completes the proof. ⊓⊔

The above property restricts nearby elements of Y (with respect to the metric dY) to

have ‘similar’ probabilities. In practice, this property holds for a large class of users

who have no sharp information that discriminates between nearby elements of Y . Note

that the above property is not equivalent to Definition 4. Namely, it is not true that all

priors having such a property are dY-regular.

A consequence of the above proposition is that for any dY-regular prior π, the prob-

ability πy associated with y ∈ Y is restricted by upper and lower bounds as follows.

Proposition 2. For every dY-regular prior π and for every y ∈ Y we have that

1
/

∑

y′∈Y
edY(y,y′) ≤ πy ≤ 1

/

∑

y′∈Y
e−dY(y,y′).
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Proof. By Proposition 1, it holds for every pair of entries πy, πy′ that

πy′ ≤ edY(y,y′) πy and e−dY(y,y′) πy ≤ πy′ .

Summing the above inequalities over y′, we get

∑

y′∈Y

πy′ ≤ πy

∑

y′∈Y

edY(y,y′) and πy

∑

y′∈Y

e−dY(y,y′) ≤
∑

y′∈Y

πy′ .

Since
∑

y′∈Y
πy′ = 1, the above inequalities imply the upper and lower bounds for

πy . ⊓⊔

One obvious implication is that any dY-regular prior must have full support, that is

πy > 0 for all y ∈ Y . In the following we describe the set of dY-regular priors as a

region in the prior space. For doing so, we first define in the following set of priors

which we refer to as the corner priors.

Definition 5 (corner priors). For every y ∈ Y , a corresponding corner prior, denoted

by c
y , is defined as

cyy′ =
φyy′

∑

y′′∈Y
φyy′′

∀y′ ∈ Y.

Note that the above definition is sound, i.e. cy is a probability distribution for all y ∈ Y .

Note also that there are |Y| corner priors; each one corresponds to an element y ∈ Y . By

inspecting the entries of cy , observe that cyy has the maximum value compared to other

entries, and moreover this value is exactly the upper bound specified by Proposition 2.

We can therefore interpret this observation informally as cy is ‘maximally biased’ to y.

It can be also seen that each corner prior is dY-regular. In fact for any corner cy , there

is a row vector µ that satisfies the condition in Def. 4; this vector is obtained by setting

µy = 1/
∑

y′∈Y
φyy′ and µy′ = 0 for all y′ 6= y. Here it is easy to verify that cy = µΦ.

Now we can describe the region of the dY-regular priors using the corner priors.

Precisely, this region consists of all convex combinations of the corner priors.

Proposition 3 (convexity). A prior π is dY-regular iff it is a convex combination of the

corner priors, i.e. there exist real numbers γy ≥ 0, y ∈ Y such that

π =
∑

y∈Y
γy c

y and
∑

y∈Y
γy = 1.

Proof. By Definition 4, a prior π is dY-regular iff there exists vector µ ≥ 0 such that

π = µΦ; that is iff there are reals µy ≥ 0 for all y ∈ Y , such that π can be written as a

linear combination of Φ’s rows as follows.

π =
∑

y∈Y

µy Φy,

where Φy is the row of Φ corresponding to the element y ∈ Y . From Def. 5, observe that

each row Φy is equal to
(

∑

y′∈Y
φyy′

)

c
y . By substitution in the above equation for π,

we get that π is dY-regular iff π = γy Φy where γy = µy

(

∑

y′∈Y
φyy′

)

. Note that the

existence of the vector µ ≥ 0 is equivalent to the existence of the coefficients γy ≥ 0.

Observe also that
∑

y∈Y
γy = µΦ = 1. These observations complete the proof. ⊓⊔
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Fig. 2. Regions of dY -regular priors for Example 1

From Proposition 3 the region of dY-regular priors is a convex set, where each point

(prior) in this region is a convex combination of the corner priors. This region is there-

fore geometrically regarded as a convex polytope in the prior space. Since the corner

points always exists, this region is never empty. For a prior π in this region, the coef-

ficients γy model the ‘proximity’ of π to each corner prior cy . In particular, note that

0 ≤ γy ≤ 1, and γy = 1 iff π = c
y . We demonstrate this geometric interpretation

using the following examples.

Example 1. Consider a simple domain Y consisting of 3 elements organized in a graph

structure where dg(y, y
′) is the graph distance between y, y′. Now for an arbitrary scal-

ing number ǫ > 0, we can define the metric dY as dY(y, y
′) = ǫ dg(y, y

′). Since ev-

ery prior on Y has 3 entries (specifying the probability of every element y ∈ Y), the

prior space for Y can be represented by the 3-dimensional Euclidean space. Figure 2

visualizes the region of dY-regular priors in two cases: when the graph structure of

Y is a line, and when it is a circle. Note that in both cases, we have 3 corner priors

c
1, c2, c3. In each case, the region is depicted for ǫ = 0.7 and ǫ = 1.6. Note in this

example that ǫ controls the privacy constraints imposed by dY-privacy, which in turn

determine the size of the region of dY-regular priors. In particular with ǫ = 1.6 (less

privacy), the region is larger than the one with ǫ = 0.7. In general the region expands

as ǫ increases and converges to the entire region of priors defined by the corner points

{(0, 0, 1), (0, 1, 0), (0, 0, 1)} when ǫ → ∞.

Example 2. Suppose that Y contains 4 elements, and dY is defined as dY(y, y
′) = D

for all y, y′ : y 6= y′. In this case every prior contains 4 entries and therefore is not

possible to be plotted in the 3-dimensional space. However, using the fact that the fourth

component is redundant (
∑

i πi = 1), every prior is fully described by its ‘projection’

onto the 3-dimensional subspace. Figure 3 shows the projection of the dY-regular prior

region for different values of D. Again the privacy constraints enforced by dY-privacy

are determined by D. The less restricted is D (i.e. having a higher value), the bigger the

region is; and eventually coincides with the entire space when D → ∞.
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Fig. 3. Regions of dY -regular priors for Example 2

5 Upper bounds for utility and min-mutual information

In this section, we further describe the dY-regular priors on the domain Y in terms of the

utility that can be achieved for these priors by a mechanism H : Y → Z satisfying dY-

privacy. We also describe the amount of information that can be conveyed by H to users

with such priors. More precisely, we identify for any dY-regular prior π upper bounds

for the utility and min-mutual information, considering all dY-private mechanisms and

all possible remaps. These bounds are indeed induced by the privacy constraints defined

by the metric dY .

5.1 Utility

For a given domain Y equipped with the metric dY , consider a dY-private mechanism

H : Y → Z producing observables in some domain Z . In the following analysis we

derive a linear algebraic expression for U(H,π, R), the utility of H for a prior π using

the remap R : Z → Y . Such an expression will play the main role in the subsequent

results. We start by observing that the matrix product of H and the remap R describes an

dY-private mechanism HR : Y → Y . Therefore the entries of HR satisfy the following

subset of constraints.

e−dY(y,y′) (HR)y′y′ ≤ (HR)yy′

for all y, y′ ∈ Y . Using Definition 3 of the privacy-constraints matrix Φ, and taking into

account that
∑

y′∈Y
(HR)yy′ = 1 for all y (as both H and R are stochastic), we get

the following inequalities.

∑

y′∈Y
φyy′ (HR)y′y′ ≤ 1, ∀y ∈ Y.

The inequality operators can be replaced by equalities while introducing slack variables

sy : 0 ≤ sy ≤ 1 for all y ∈ Y . The above inequalities can therefore be written as

follows.
∑

y′∈Y
φyy′ (HR)y′y′ + sy = 1, ∀y ∈ Y.
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Let the slack variables sy form a column vector s indexed by Y . Let also 1 denote a

column vector of the same size and having all entries equal to 1. Using these vectors

and the privacy-constraints matrix Φ (for the given metric dY), the above equations can

be rewritten in the following matrix form.

Φ diag(HR) + s = 1, (5)

where diag(HR) is the column vector consisting of the diagonal entries of HR. Now,

for any mechanism H : Y → Z and a remap R : Z → Y satisfying Eq. (4), and for a

prior π, we want to refine the generic expression (3) of the utility by taking Eq. (4) into

account. We start by rewriting Eq. (3) in the following matrix form.

U(H,π, R) = π diag(HR). (6)

Now, let µ be a row vector such that

π = µΦ. (7)

Note that, the above matrix equation is in fact a system of |Y| linear equations. The yth

equation in this system is formed by the yth column of Φ, and the yth entry of π as

follows.

µΦy = πy ∀y ∈ Y.

Solving this system of equations for the row vector µ has the following possible out-

comes: If the matrix Φ is invertible, then, for any prior π, Eq. (6) has exactly one

solution. If Φ is not invertible (i.e. it contains linearly dependent columns), then there

are either 0 or an infinite number of solutions, depending on the prior π: If the entries

of π respect the linear dependence relation then there are infinitely many solutions.

Otherwise, the equations are ‘inconsistent’, in which case there are no solutions.

Whether Φ is invertible or not, we consider here only the priors where the matrix

equation (6) has at least one solution µ. Note that, by definition, all the dY-regular priors

have this property, but there can be others for which the solution µ has some negative

components. In some of the results below (in particular in Lemma 1) we consider this

larger class of priors for the sake of generality.

Multiplying Equation (4) by µ yields

µΦ diag(HR) + µ s = µ1. (8)

Substituting Equations (6) and (5) in the above equation consecutively provides the

required expression for the utility and therefore proves the following lemma.

Lemma 1. For a metric space (Y, dY) let π be any prior on Y . Then for every row

vector µ satisfying π = µΦ, the utility of any dY-private mechanism H for π using a

remap R is given by

U(H,π, R) = µ1− µs, (9)

for a vector s satisfying 0 ≤ sy ≤ 1 for all y ∈ Y .
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Lemma 1 expresses the utility function for any dY-private mechanism H , for a prior

π satisfying π = µΦ, and using a remap R. This utility is expressed as a function

of the vector µ and the slack vector s. Although the matrix H and the remap R do

not explicitly appear on the right side of Equation (8), the utility still depends on them

indirectly through the vector s. Namely, according to Equation (4), the choice of H
and R determines the slack vector s. The utility function depends also on the prior π,

because the choice of π determines the set of vectors µ satisfying Eq. (6). Substituting

any of these vectors in Eq. (8) yields the same value for U(H,π, R).
Now recall from Definition 4 that for every dY-regular prior π there is µ satisfying

π = µΦ and µ ≥ 0. This characteristic together with Lemma 1 implies an upper

bound on the utility of any dY-private mechanism H for π.

Theorem 2 (utility upper bound). Let π be a dY-regular prior and H : Y → Z be

a dY-private mechanism. Then for all row vectors µ ≥ 0 satisfying µΦ = π, and any

remap R, it holds that

U(H,π, R) ≤
∑

y∈Y
µy. (10)

Furthermore the mechanism H and remap R satisfy the equality in (9) for every dY-

regular prior iff Φ diag(HR) = 1.

Proof. Since π is dY-regular, we have π = µΦ for a vector µ ≥ 0. Applying Lemma 1

and noting that sy ≥ 0 for all y ∈ Y , we observe that µs ≥ 0 and hence the utility is

upper-bounded by µ1 =
∑

y∈Y
µy .

It remains to show that this bound is attained for every dY-regular prior if and only

if Φ diag(HR) = 1, which is equivalent (according to Eq. (4)) to s = 0: Clearly, if

s = 0, then applying Lemma 1 yields the equality in (9) for every dY-regular prior.

For the ‘only if’ direction, it is sufficient to find a regular prior for which s = 0 must

hold to satisfy the equality in (9). For this purpose we recall that every corner prior cy

satisfies µ
yΦ = c

y where µy
y > 0. Now consider the prior π̄ = (1/|Y|)

∑

y∈Y
c
y ,

which is dY-regular by Proposition 3. It is easy to see that it holds µ̄Φ = π̄ where

µ̄ = (1/|Y|)
∑

y∈Y
µ

y . Observe here that µ̄y > 0 for all y ∈ Y . Suppose now that the

equality in (9) holds for µ̄. Therefore it must hold, by Lemma 1, that µ̄ s = 0. Since

µ̄y > 0 for all y ∈ Y , it must hold that s = 0. This completes the proof. ⊓⊔

The above result can be also seen from the geometric perspective. As shown by Propo-

sition 3, each member in the region of dY-regular priors is described as a convex

combination of the corner priors. That is there are coefficients γy ≥ 0 for y ∈ Y
which form this combination. It can be shown (as in the proof of Proposition 3) that

γy = µy

(

∑

y′∈Y
φyy′

)

. Hence, the upper bound given by Theorem 2 can be written

as follows using the coefficients γy .

U(H,π, R) ≤
∑

y∈Y

γy
∑

y′∈Y
φyy′

.

Inspecting the above result for corner priors, recall that for a corner c
y , γy′ is 1 for

y′ = y and is 0 otherwise; thus, the utility upper bound for cy is therefore 1/
∑

y′ φyy′ .

Moreover, the upper bound for each dY-regular prior π can be regarded (according to
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the above equation) as a convex combination of the upper bounds for the corner priors.

That is, from the geometric perspective, the utility upper bound for π linearly depends

on its proximity to the corner priors.

5.2 Min-mutual information

In this paper we use the information-theoretic notion of min-mutual information in two

distinct ways: first, we use it to measure the information conveyed about the result

of a specific query, similarly to the use of “utility” in the previous section. Mutual

information and utility are indeed closely related, which allows us to transfer the bound

obtained in the previous section to the information-theoretic setting.

Second, we use it to quantify the information about the secret itself, thus obtaining

what is known in the area of quantitative information flow as min-entropy leakage [15].

The above bound can therefore be interpreted as a bound on the information leaked

by any mechanism, even non-oblivious ones, independently from the actual query. For

arbitrary priors, we obtain in a more natural way the bound conjectured in [17] and

proven in [19]. Moreover, if we restrict to specific (dY-regular) priors, then we are able

to provide more accurate bounds.

The following result from [19] shows that min-mutual information corresponds to

the notion of utility under the binary gain function and using an optimal remap, i.e., a

remap that gives the best utility among all possible remaps, for the given prior.

Proposition 4 ([19]). Given a mechanism H : Y → Z and a prior π, let R̂ be an

optimal remap for π, H . Then, we have

L(H,π) = log2
U(H,π, R̂)

maxy πy

This connection allows us to transfer the upper-bound given by Theorem 2 to min-

mutual information.

Proposition 5 (min-mutual information upper bound). Let π be a dY-regular prior

and H : Y → Z be a dY-private mechanism. Then for all row vectors µ ≥ 0 satisfying

µΦ = π, we have:

L(H,π) ≤ log2

∑

y∈Y
µy

maxy πy

. (11)

Furthermore, H satisfies the equality for every dY-regular prior iff there is a remap R
such that Φ diag(HR) = 1.

Proof. By Proposition 4, the leakage L(H,π) is monotonically increasing with the util-

ity U(H,π, R̂). By Theorem 2, this utility is upper-bounded by
∑

y∈Y
µy . Substituting

this upper bound in Proposition 4 yields the inequality (10) where the equality holds iff

it holds in Theorem 2 for H and and an optimal remap R̂. That is iff Φ diag(HR̂) = 1.

This condition is equivalent to the condition of equality in Proposition 5, because if a

remap R satisfies this latter condition then it must be optimal because the utility with R
(by Theorem 2) is globally maximum, that is no other remap can achieve higher utility.

⊓⊔
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The above bound holds only for dY-regular priors. However, it is well-known ([16])

that min-mutual information is maximized by the uniform prior u, i.e. L(H,π) ≤
L(H,u) for all H,π. Thus, in cases when u is dY-regular, we can extend the above

bound to any prior.

Corollary 2. Suppose that the uniform prior u is dY-regular, and let H : Y → Z be

any dY-private mechanism. Then for all row vectors µ ≥ 0 satisfying µΦ = u, and for

all priors π, we have that

L(H,π) ≤ log2(|Y|
∑

y∈Y
µy)

5.3 Quantifying the leakage about the database

In the previous section we considered the information about the query result that is

revealed by a mechanism H . This information was measured by the min-mutual infor-

mation L(H,π).
We now turn our attention to the case of standard differential privacy, with the goal

of quantifying the information about the database that is conveyed by a differentially

private mechanism K (not necessarily oblivious). Intuitively, we wish to minimize this

information to protect the privacy of the users, contrary to the utility which we aim at

maximizing. We can apply the results of the previous section by considering the full

mechanism K, mapping databases V = V u to outputs (recall that u is the number

of individuals in the database and V the universe of values). Differential privacy corre-

sponds to ǫdh-privacy, where dh is the Hamming distance on the domain V of databases.

Correspondingly ǫdh-regularity will concern priors π on databases V .

In this case, L(K,π) measures the information about the database conveyed by

the mechanism, which we refer to as “min-entropy leakage”, and the bounds from the

previous section can be directly applied. However, since we now work on a specific

metric space (V, ǫdh), we can obtain a closed expression for the bound of Corollary 2.

We start by observing that due to the symmetry of the graph, the uniform prior u is ǫdh-

regular for all ǫ > 0. More precisely, we can show that the vector µ of size V having all

elements equal to
(

eǫ

|V |(|V | − 1 + eǫ)

)u

satisfies µΦ = u and µ ≥ 0. Thus, applying Corollary 2 we get the following result.

Theorem 3 (min-entropy leakage upper bound). Let V = V u be a set of databases,

let ǫ > 0, and let K be an ǫ-differentially private mechanism. Then for all priors π on

V , we have:

L(K,π) ≤ u log2
|V | eǫ

|V | − 1 + eǫ

This bound determines the maximum amount of information that any ǫ-differentially

privacy mechanism can leak about the database (independently from the underlying

query). The bound was first conjectured in [17] and independently proven in [19]; our

technique gives an alternative and arguably more intuitive proof of this result.
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Fig. 4. Leakage bounds for various values of ǫ

Note that the above bound holds for all priors. If we restrict to a specific ǫdh-

regular prior π, then we can get better results by using the bound of Proposition 5

which depends on the actual prior. This is demonstrated in the following example.

Example 3. Consider a database of 5 individuals, each having one of 4 possible values,

i.e. V = V u with V = {1, 2, 3, 4} and u = 5. Assume that each individual selects a

value independently from the others, but not all values are equally probable; in partic-

ular the probabilities of values 1, 2, 3, 4 are 0.3, 0.27, 0.23, 0.2 respectively. Let π be

the corresponding prior on V that models this information. We have numerically ver-

ified that for all 0.48 ≤ ǫ ≤ 1 (with step 0.01) π is ǫdh-regular. Thus we can apply

Proposition 5 to get an upper bound of L(K,π) for this prior.

The resulting bound, together with the general bound for all priors from Theorem 3,

are shown in Figure 4. We see that restricting to a specific prior provides a significantly

better bound for all values of ǫ. For instance, for ǫ = 0.5 we get that L(K,π) ≤ 1.2 for

this π, while L(K,π) ≤ 2.5 for all priors π.

6 Tight-constraints mechanisms

In general, the bounds for the utility (Theorem 2) and the min-mutual information

(Proposition 5) are not tight. That is for a given metric dY on a domain Y , there

may be no dY-private mechanism H that meets these bounds. Nevertheless, they pro-

vide ultimate limits, induced by the dY-privacy constraints, for all dY-private mech-

anisms and dY-regular priors. These bounds are simultaneously tight if the condition

Φ diag(HR) = 1 is satisfied (note that this condition is independent of the underlying

prior). In this section we exploit this ‘tightness’ condition and investigate the mecha-

nisms that, whenever exist, satisfy this condition and are therefore optimal for the entire

region of dY-regular priors. We call these mechanisms tight-constraints mechanisms.

Definition 6 (A tight-constraints mechanism). For a metric dY , a mechanism H :
Y → Y is called a tight-constraints mechanism iff it satisfies the following conditions

for all y, y′ ∈ Y .

e−dY(y,y′) hy′y′ = hyy′ . (12)
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It is important to note that, in general, there may exist zero, one or more tight-constraints

mechanisms for a given metric dY . The above definition enforces |Y| (|Y| − 1) linearly

independent equations, referred to as the ‘tight constraints’. Additionally it must also

hold that
∑

y′∈Y
hyy′ = 1 for all y ∈ Y . Thus we have, in total, |Y| |Y| equations. If

these equations are linearly independent, then they solve to unique values. If these val-

ues are non-negative, then they determine a unique tight-constraints mechanism. On the

other hand, if these equations are not linearly independent, then there may be multiple

solutions with non-negative entries, in which case we have multiple tight-constraints

mechanisms for dY .

6.1 Properties

The first feature that follows immediately from the definition of tight-constraints mech-

anisms, for a metric dY , is that they satisfy dY-privacy:

Proposition 6 (dY-privacy). For a given metric dY , every tight-constraints mechanism

is dY-private.

Proof. For a tight-constraints mechanism Ĥ , we want to show that for every pair of

query results y, y′ and every output z, we have

ĥyz ≤ edY(y,y′) · ĥy′z. (13)

By Definition 6, for every pair of elements y, y′ and every output z, we have

ĥy′z = e−dY(y′,z) · ĥzz and ĥyz = e−dY(y,z) · ĥzz. (14)

If ĥzz = 0 then ĥy′z = ĥyz = 0. In this case, Condition (14) is satisfied. Otherwise

(i.e. if ĥzz 6= 0), both ĥy′z and ĥyz are non-zero, and it follows from Equations (15)

that, for all inputs y and y′, and every output z,

ĥy′z

/

ĥyz = e−(dY(y′,z)−dY(y,z)).

By the triangle inequality, we have that dY(y
′, z)−dY(y, z) ≤ dY(y, y

′). Knowing also

that e−1 < 1, it follows from the above inequality that

ĥy′z

/

ĥyz ≥ e−dY(y,y′).

The above inequality is equivalent to Condition (14) of dY-privacy. ⊓⊔

Thanks to the above property, we can give a further useful characteristic for the tight-

constraints mechanisms distinguishing them from other dY-private mechanisms. More

precisely, the following proposition identifies a linear algebraic condition that is satis-

fied only by the tight-constraints mechanisms for the given metric dY :

Proposition 7 (diagonal characterization). For a metric dY , a dY-private mechanism

H : Y → Y is a tight-constraints mechanism iff

Φ diag(H) = 1. (15)
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Proof. If H is a tight-constraints mechanism, then by Definition 6 we have that hyy′ =

e−dY(y,y′) hy′y′ for all y, y′ ∈ Y . It also holds that
∑

y′∈Y
hyy′ = 1 for all y ∈ Y .

Combining these equations yields

∑

y′∈Y

e−dY(y,y′) hy′y′ = 1, ∀y ∈ Y. (16)

Using the privacy-constraints matrix Φ, the above equations can be written in the matrix

form (12). Now we prove the other direction of implication as follows. Suppose that

Eq. (??) (which is equivalent to Eq. (12)) is satisfied by a dY-private mechanism H .

Then it holds for all y, y′ ∈ Y that hyy′ ≥ e−dY(y,y′) hy′y′ . Suppose for a contradiction

that this inequality is strict for some y, y′ ∈ Y , i.e. hyy′ > e−dY(y,y′) hy′y′ . Then
∑

y′∈Y
hyy′ >

∑

y′∈Y
e−dY(y,y′) hy′y′ = 1, where the last equality holds by Eq. (??).

That is, the sum of the entries of a row in H is strictly greater than 1 which violates the

validity of H . ⊓⊔

The above proposition provides a way to check the existence of, and also compute,

the tight-constraints mechanisms for a given metric dY . Since Condition (12) is satisfied

only by these mechanisms, there is at least one tight-constraints mechanism if there is

a vector z, with non-negative entries, that satisfies the equation Φ z = 1. In this case a

tight-constraints mechanism is obtained by setting its diagonal to z, and evaluating the

non-diagonal entries from the diagonal using Eqs. (11).

Now we turn our attention to the region of dY-regular priors and identify the mech-

anisms that are optimal with respect to both utility and min-mutual information in this

region. Precisely, we show that the set of these optimal mechanism consists exactly of

all mechanisms that can be mapped to a tight-constraints one using some remap R.

Theorem 4 (Optimality). Let dY be a metric for which at least one tight-constraints

mechanism exists. Then a dY-private mechanism H : Y → Z is dY-optimal (wrt both

utility and min-mutual information) for every dY-regular prior π iff there is a remap

R : Z → Y such that HR is a tight-constraints mechanism for dY .

Proof. If there exists a tight-constraints mechanism H ′ for a given metric dY , then H ′

must satisfy Eq. (12). This implies that the upper-bound in Theorem 2 is reachable by

H ′ and the identity remap. Thus the upper-bound, in this case, is tight. Now consider a

dY-private mechanism H : Y → Z . By Theorem 2, H meets that upper bound for the

utility (and therefore is dY-optimal) iff it satisfies the condition Φ diag(HR) = 1, with

some remap R. Since H is dY-private, HR is also dY-private. Now by Proposition 7,

satisfying the condition Φ diag(HR) = 1 (meaning that H is optimal) is equivalent to

that HR is a tight-constraints mechanism (for dY). Using the relation, given by Propo-

sition 4, between utility and min-mutual information, the same argument holds for the

latter. ⊓⊔

Observe that tight-constraints mechanisms are optimal because they are mapped to

themselves by the identity remap. In the light of Theorem 4, we consider the special

case of the uniform prior, denoted by u, where all results in Y are equally likely. Note

that this prior corresponds to users having unbiased knowledge about the query results,
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i.e. they assume that all the true results Y are yielded, by executing the query, with

the same probability. Firstly, the following lemma proves an equivalence between the

existence of at least one tight-constraints mechanism on one hand and the uniform prior

u being dY-regular on the other hand.

Proposition 8. For a given metric dY , there exists at least one tight-constraints mech-

anism iff the uniform prior u is dY-regular.

Proof. By Proposition 7, if there is at least a tight-constraints mechanism Ĥ , then Eq.

(12) must hold for this mechanism. Taking the transpose of both sides in this equation,

and noting that Φt = Φ (because Φ is symmetric), then we get that

(diag(Ĥ))t · Φ = 1
t.

Scaling the above equation by 1/|Y| yields the row vector u, the uniform prior, on the

right hand side. Thus if a tight-constraints mechanism Ĥ , exists then

(1/|Y|) (diag(Ĥ))t · Φ = u.

which means (By Def. 4) that u is dY-regular, because the row vector (diag(Ĥ))t has

only non-negative entries. For the opposite implication, assume that u is dY-regular.

Then by the definition there is a row vector µ with non-negative entries such that µΦ =
u. Taking the transpose of both sides, and multiplying by |Y|, yields that Eq. (12) is

satisfied for H , whose diagonal is given by diag(H) = |Y| · µt (non-negative). Thus

there exists a tight-constraints mechanism for dY . ⊓⊔

It is worth noticing that in general the region of dY-regular priors may or may not

include the uniform prior. However, as shown earlier in Section 3, this region is enlarged

and converges to the entire prior space as the distances dY(y, y
′) → ∞ for all y 6= y′.

In particular the dY-regular priors accommodate the uniform prior u if dY is scaled up

by an appropriate factor.

In the case of ǫ-differential privacy it holds that dY = ǫ dh where dh is the Hamming

distance on databases. Thus there is always a threshold ǫ∗, above which the uniform

prior u is ǫ dh-regular. This can provide a design criteria to select a setting for ǫ such

that, according to Proposition 8, there is a tight-constraints mechanism that is optimal

for all ǫ dh-regular priors.

Using Proposition 8, we can describe the optimal mechanisms for the uniform prior

as a corollary of Theorem 4.

Corollary 3. Let dY be a metric for which there exists at least one tight-constraints

mechanism. Then a mechanism H is dY-optimal for the uniform prior on Y iff HR is a

tight-constraints mechanism for some remap R : Z → Y .

In summary, the existence of tight-constraints mechanisms and their structures de-

pend on the given metric. The choice of such metric corresponds to the required pri-

vacy guarantee. Consider in particular the conventional ǫ-differential privacy, where

any two adjacent elements in a domain Y are required to be indistinguishable relative

to ǫ. In this case, the domain Y and its adjacency relation ∼f are modeled by the graph
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G = (Y,∼f ); and the requirement of satisfying ǫ-differential privacy for Y translates in

our general model to the metric dY(y, y
′) = ǫ d∼f

(y, y′), where d∼f
(y, y′) is the graph

distance between y, y′. With this metric, we find that tight-constraints mechanisms cap-

ture other known differentially-private mechanisms. For example, if we set Y to be

the output domain of a counting query executed on a database, we find that the tight-

constraints mechanism for Y is exactly the truncated-geometric mechanism, which was

shown by [13] to be optimal for every prior. Also, we instantiate, in the following, the

tight-constraints mechanism when the metric space (Y, dY) satisfies a certain symme-

try. This symmetry captures, in particular, the graphs for which an optimal mechanism

is constructed in [19] for the uniform prior u. Once again this mechanism is precisely a

tight-constraints one. Note that an additional conclusion which we add here is that this

mechanism is optimal not only for u but also for all dY-regular priors.

6.2 Tight-constraints mechanism for symmetric metric spaces

We consider the mechanisms that satisfy dY-privacy for a given domain Y . We focus

here on the metric spaces (Y, dY) that satisfy a certain symmetry which we call ball-

size symmetry. To describe this property, we recall the standard notion of balls in metric

spaces: a ball of radius r around a point y ∈ Y is the set BdY
r (y) = {y′ ∈ Y :

dY(y, y
′) ≤ r}. Now we define the ball-size symmetry as follows.

Definition 7 (ball-size symmetry). A metric space (Y, dY) is said to be ball-size sym-

metric if for all y, y′ ∈ Y , and all radii r, we have |BdY
r (y)| = |BdY

r (y′)|.

Note that the above condition is equivalent to saying that for any y ∈ Y , the number

of elements that are at distance r from y depends only on r, allowing us to write this

number as nr. Inspecting the privacy-constraints matrix Φ in this case, we observe that

the row sum
∑

y′ φyy′ for every y ∈ Y is the same and equal to
∑

r nr e
−r. This means

that the column vector z, of which every element is equal to 1/
∑

r nr e
−r, satisfies

Φ z = 1 and therefore yields (by Proposition 7) the diagonal of a tight-constraints

mechanism H . The other (non-diagonal) entries of H follow from the diagonal as in

Definition 6. Thus we conclude the following result.

Proposition 9 (tight-constraints mechanism for symmetric metric spaces). For any

metric space (Y, dY) satisfying ball-size symmetry there is a tight-constraints mecha-

nism H : Y → Y which is given as hyy′ = edY(y,y′)
/
∑

r nr e
−r.

The main consequence of the above proposition is that the mechanism H is optimal for

every dY-regular prior including the uniform prior u.

The above result generalizes and extends a result by [19] in the context of differen-

tial privacy. The authors of [19] considered two types of graphs: distance-regular and

vertex-transitive graphs. They constructed for these graphs an ǫ-differentially private

mechanism optimal for the uniform prior. As shown earlier ǫ-differential privacy for a

graph (Y,∼f ) translates in our setting to the metric space (Y, ǫ d∼f
). It can be eas-

ily seen that if (Y,∼f ) is either distance-regular or vertex-transitive, the correspond-

ing metric space (Y, ǫ d∼f
) is ball-size symmetric. Therefore, we can instantiate the

tight-constraints mechanism of Proposition 9 to ǫd∼f
, which gives exactly the optimal
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(a) Sum query

(0,u) (1,u) (2,u) (u,u)

(0,2) (1,2) (2,2) (u,2)

(0,1) (1,1) (2,1) (u,1)

(0,0) (1,0) (2,0) (u,0)

(b) 2-count query

Fig. 5. Adjacency graphs

mechanism constructed in [19]. Hence, we directly obtain the same optimality results,

and moreover our analysis shows that this mechanism is optimal on the entire region of

ǫd∼f
-regular priors, instead of only the uniform one.

7 Case-studies

In this section we show the usefulness of the tight-constraints mechanism by applying

it to two contexts: standard differential privacy and geo-indistinguishability.

7.1 Differential privacy: sum and 2-count queries

We evaluate the tight constraints mechanism for two families of queries, namely sum

and 2-count queries. For each family, we apply the mechanism on databases consisting

of u individuals each having an integer value between 0 and v, and we compare its

utility to the geometric mechanism.

It is well-known that no universally optimal mechanism exists for these families; in

particular, the geometric mechanism, known to be optimal for a single counting query, is

not guaranteed to be optimal for sum queries or multiple counting queries. On the other

hand, as discussed in the previous section, tight-constraints mechanisms, whenever they

exist, are guaranteed to be optimal within the region of regular priors.

The comparison is made as follows: for each query, we numerically compute the

smallest ǫ (using a step of 0.01) for which a tight-constraints mechanism exists (i.e. for

which the uniform prior u is ǫd∼f
-regular, see Proposition 8). Then we compute the

utility (using an optimal remap) of both the tight constraints and the geometric mech-

anisms, for a range of ǫ starting from the minimum one. Note that the tight constraint

mechanism exists for any ǫ greater than the minimum one.

Sum query Let f be the query returning the sum of the values for all individuals, thus it

has range Y = {0, . . . , vu}. By modifying the value of a single individual, the outcome

of the query can be altered by at most v (when changing the value from 0 to v), thus

two elements i, j ∈ Y are adjacent iff |i− j| ≤ v. The induced graph structure on Y is

shown in Figure 5(a) (for the case v = 3).
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Fig. 6. Utility for various values of ǫ

For our case-study we numerically evaluate this query for u = 150, v = 5 and for

the uniform prior. We found that the minimum ǫ for which a tight-constraints mecha-

nism exists (and is in fact unique since Φ is invertible) is 0.8. Figure 6(a) shows the

utility of the tight-constraint mechanism, as well as that of the geometric mechanism,

for values of ǫ between 0.8 and 1.3, the uniform prior and using and optimal remap. We

see that the tight-constraints mechanism provides significantly higher utility than the

geometric mechanism in this case.

2-count query Consider now the query f consisting of 2 counting queries (i.e. reporting

the number of users satisfying properties p1 and p2), thus it has range Y = {0, . . . , u}×
{0, . . . , u}. By modifying the value of a single individual, the outcome of each counting

query can be altered by at most 1, thus two answers (i1, i2), (j1, j2) ∈ Y are adjacent

iff |i1 − j1| ≤ 1 and |i2 − j2| ≤ 1. The induced graph structure on Y is shown in

Figure 5(b).

We evaluate this query for u = 30 and for the uniform prior. We found that the

minimum ǫ for which a tight-constraints mechanism exists is 0.9. Figure 6(b) shows the

utility of the two mechanisms (with the geometric being applied independently to each

counting query) for values of ǫ between 0.9 and 1.3 and the uniform prior. Similarly

to the sum query, we see that the tight-constraints mechanism provides significantly

higher utility than the geometric mechanism in this case.

7.2 Geo-indistinguishability

As discussed in Section 2.3, geo-indistinguishability is a notion of location privacy

obtained by taking dX = ǫd2, where d2 is the Euclidean distance between locations.

In [9] it is shown that a planar version of the Laplace mechanism satisfies ǫ-geo-

indistinguishability. The Planar Laplace mechanism is continuous, having as input and

output the full R2, but in the case of a finite number of locations it can be discretized

and truncated while still satisfying geo-indistinguishability (for a slightly adjusted ǫ).
Although the Planar Laplace mechanism is simple, efficient and easy to implement,

it provides no optimality guarantees. On the other hand, for any finite number of loca-
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tions, the tight-constraints mechanism, if it exists, is guaranteed to be optimal for ǫd2-

regular priors. In this section we compare the two mechanisms on a grid of 100 × 100
locations, with step size 1 km.

Note that constructing the tight-constraints mechanism involves inverting the matrix

Φ, which can be done in time O(|X |2.376) using the Coppersmith-Winograd algorithm.

This complexity is much lower than that of recent methods for computing optimal loca-

tion obfuscation mechanisms. For instance, the well-known method of Shokri et al. [23]

– which uses the adversary’s expected error as the metric of privacy – involves solving

large linear optimization problems and was evaluated to a grid of only 30 locations

(compared to the 10,000 locations in our grid).

Figure 7 shows the utility of the two mechanisms for ǫ ranging from 0.4 to 1.3 and

for a uniform prior. As expected, the tight-constraints mechanism offers significantly

higher utility than the Planar Laplace mechanism for the same ǫ.
It should be emphasized, however, that our optimality results hold for the binary

gain function, which corresponds to an attacker trying to guess the true location of the

user (the utility being the probability of a correct guess). This might often be meaning-

ful, especially when the grid size is big: guessing any incorrect cell could be considered

equally bad. But it is also common to consider gain functions taking the distance be-

tween locations into account, with respect to which the tight-constraints mechanism is

not guaranteed to be optimal.

8 Conclusion and future work

In this paper we have continued the line of research initiated by [13, 14] about the ex-

istence of differentially-private mechanisms that are universally optimal, i.e., optimal

for all priors. While the positive result of [13] (for counting queries) and the negative

one of [14] (for essentially all other queries) answer the question completely, the latter

sets a rather dissatisfactory scenario, since counting queries are a very specific kind of

queries, and in general users can be interested in very different queries. We have then

considered the question whether we can achieve optimality with the same mechanism

for a restricted class of priors. Fortunately the answer is positive: we have identified a

region of priors, called dY-regular, and a mechanism, called tight-constraints, which is
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optimal for all the priors in this region. We have also provided a complete and effec-

tively checkable characterization of the conditions under which such mechanism exists,

and an effective method to construct it. As a side result, we have improved on the exist-

ing bounds for the min-entropy leakage induced by differential privacy. More precisely,

we have been able to give specific and tight bounds for each dY-regular prior, in general

smaller than the bound existing in the literature for the worst-case leakage (achieved by

the uniform prior [18]).

So far we have been studying only the case of utility for binary gain functions. In

the future we aim at lifting this limitation, i.e. we would like to consider also other

kinds of gain. Furthermore, we intend to study how the utility decreases when we use

a tight-constraints mechanism outside the class of dY-regular priors. In particular, we

aim at identifying a class of priors, larger than the dY-regular ones, for which the tight-

constraints mechanism is close to be optimal.
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