
HAL Id: hal-00984057
https://hal.inria.fr/hal-00984057

Submitted on 27 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Computer-Algebra-Based Formal Proof of the
Irrationality of ζ(3)

Frédéric Chyzak, Assia Mahboubi, Thomas Sibut-Pinote, Enrico Tassi

To cite this version:
Frédéric Chyzak, Assia Mahboubi, Thomas Sibut-Pinote, Enrico Tassi. A Computer-Algebra-Based
Formal Proof of the Irrationality of ζ(3). ITP - 5th International Conference on Interactive Theorem
Proving, 2014, Vienna, Austria. �hal-00984057�

https://hal.inria.fr/hal-00984057
https://hal.archives-ouvertes.fr

A Computer-Algebra-Based Formal Proof of the

Irrationality of ζ(3)

Frédéric Chyzak1, Assia Mahboubi1, Thomas Sibut-Pinote2, Enrico Tassi1

1 Inria (France)
2 ENS de Lyon (France)

Abstract. This paper describes the formal verification of an irrational-
ity proof of ζ(3), the evaluation of the Riemann zeta function, using the
Coq proof assistant. This result was first proved by Apéry in 1978, and
the proof we have formalized follows the path of his original presenta-
tion. The crux of this proof is to establish that some sequences satisfy
a common recurrence. We formally prove this result by an a posteriori
verification of calculations performed by computer algebra algorithms in
a Maple session. The rest of the proof combines arithmetical ingredients
and some asymptotic analysis that we conduct by extending the Mathe-
matical Components libraries. The formalization of this proof is complete
up to a weak corollary of the Prime Number Theorem.

1 Introduction

The irrationality status of the evaluations of the Riemann ζ-function at positive
odd integers is a long-standing challenge of number theory. To date, ζ(3) is the
only one known to be irrational, although recent advances obtained by Rivoal [20]
and Zudilin [25] showed that one at least of the numbers ζ(5), . . . , ζ(11) must
be irrational. The number ζ(3) is sometimes referred to as the Apéry constant,
after Roger Apéry who first proved that it is irrational [3]. As reported by van
der Poorten [22], Apéry announced this astonishing result by giving a rather
obscure lecture that raised more skepticism than enthusiasm among the audience.
His exposition indeed involved a number of suspicious assertions, proclaimed
without a proof, among which was a mysterious common recurrence for two
given sequences (see Lemma 2). After two months of work, however, Cohen,
Lenstra, and van der Poorten completed, with the help of Zagier, a verification
of Apéry’s proof.

Theorem 1 (Apéry, 1978). The constant ζ(3) is irrational.

Almost at the same time, symbolic computation was emerging as a scientific
area of its own, getting fame with the Risch algorithm [19] for indefinite integra-
tion. It gradually provided efficient computer implementations and got attention
in experimental mathematics. Beside commutative algebra, differential and re-
currence equations remained a central research topic of computer algebra over
the years. In particular, the sequences used by Apéry in his proof belong to a class
of objects well known to combinatorialists and computer-algebraists. Following
seminal work of Zeilberger’s [23], algorithms have been designed and imple-
mented in computer-algebra systems, which are able to obtain linear recurrences

2 Frédéric Chyzak, Assia Mahboubi, Thomas Sibut-Pinote, Enrico Tassi

for these sequences. For instance the Maple packages gfun and Mgfun (both dis-
tributed as part of the Algolib [2] library) implement these algorithms, among
other. Basing on this implementation, Salvy wrote a Maple worksheet [21] that
follows Apéry’s original method but interlaces Maple calculations with human-
written parts, illustrating how parts of this proof, including the discovery of
Apéry’s mysterious recurrence, can be performed by computations.

In the present paper, we describe a formal proof of Theorem 1, based on a
Maple session, in the Coq proof assistant. The computer-algebra system is used
in a skeptical way [16], to produce conjectures that are a posteriori proved for-
mally. Alternative proofs are known for Theorem 1, as for instance the elegant
one proposed by Beukers [5] shortly after Apéry. Our motivation however was
to devise a protocol to obtain formal proofs of computer-algebra-generated re-
currences in a systematic way. Interestingly, this work challenges the common
belief in the computer-algebra community that such an a posteriori checking
can be automatized. In addition to the formal verification of these computer-
algebra-produced assertions, we have also machine-checked the rest of the proof
of irrationality, which involves both elementary number theory and some asymp-
totic analysis. The latter part of the proof essentially consists in a formal study
of the asymptotic behaviors of some sums and of tails of sums. Our formal proof
is complete, up to a weak corollary of the repartition of prime numbers that we
use as an assumption.

In Section 2, we outline a proof of Theorem 1. Section 3 presents the al-
gorithms which are run in the Maple session we base on. Section 4 describes
the formalization of the formal proof we obtain from the data produced by the
computer-algebra system. Section 5 provides some concluding remarks and some
perspectives for future work.

Our Maple and Coq scripts will be found at http://specfun.inria.fr/

zeta-of-3/.

2 From Apéry’s recurrence to the irrationality of ζ(3)

In this section, we outline the path we have followed in our formalization, high-
lighting the places where we resorted to more elementary variants than Salvy
or van der Poorten. In particular, Section 2.3 describes a simple argument we
devised to simplify the proof of asymptotic considerations.

2.1 Overview

In all what follows, a Cauchy real (number) x is a sequence of rational numbers
(xn)n∈N for which there exists a function mx : Q → N, such that for any ǫ > 0
and any indices i and j, having i ≥ mx(ǫ) and j ≥ mx(ǫ) implies |xi − xj | ≤ ǫ.

Proposition 1. The sequence zn =
∑n

m=1
1

m3 is a Cauchy real.

The Cauchy real of Proposition 1 is our definition for ζ(3). Consider the two
sequences a and b of rational numbers defined as:

an =

n
∑

k=0

(

n
k

)2(

n+k
k

)2
, bn = anzn +

n
∑

k=1

k
∑

m=1

(−1)m+1
(

n
k

)2(

n+k
k

)2

2m3
(

n
m

)(

n+m
m

) . (1)

http://specfun.inria.fr/zeta-of-3/
http://specfun.inria.fr/zeta-of-3/

A Computer-Algebra-Based Formal Proof of the Irrationality of ζ(3) 3

Introducing the auxiliary sequences of real numbers:

δn = anζ(3) − bn, σn = 2ℓ3
nδn, for ℓn the lcm of the integers 1, . . . , n, (2)

the proof goes by showing that the sequence (σn)n∈N has positive values and
tends to zero. Now if ζ(3) was a rational number, then for n large enough,
every σn would be a (positive) integer, preventing σ from tending to zero.

2.2 Arithmetics, number theory

We extend the usual definition of binomial coefficients
(

n
k

)

for n, k ∈ N to n, k ∈ Z

by enforcing the Pascal triangle recurrence
(

n+1
k+1

)

=
(

n
k+1

)

+
(

n
k

)

for all n, k ∈ Z.
Although this extension is not required by the present proof, it spares us some
spurious considerations about subtraction over N. Binomial coefficients being
integers, an is also an integer for any nonnegative n ∈ N.

An important property of the sequence (bn)n∈N is that for any n ∈ N, the
product 2ℓ3

nbn is an integer. Therefore if ζ(3) were a rational number, then
ℓnζ(3), and hence σn = 2ℓ3

n(anζ(3) − bn), would be an integer for n larger than
the denominator of ζ(3). We follow the argument described by Salvy in [21], and
show that each summand in the double sum defining bn has a denominator that
divides 2ℓ3

n: after a suitable re-organization in the expression of the summand,
which uses standard properties of binomial coefficients, this follows easily from
the following slightly less standard property of theirs:

Lemma 1. For any integers i, j, n such that 1 ≤ j ≤ i ≤ n, j
(

i
j

)

divides ℓn.

Lemma 1 is considered as folklore in number theory. Its proof consists in showing
that for any prime p, the p-valuation of j

(

i
j

)

is smaller than the one of ℓn.
Standard presentations of Apéry’s proof make use of the asymptotic bound

ℓn = en (1+o(1)), which is a corollary of the distribution of the prime numbers.
A bound 3n is however tight enough for our purpose and has been proved by
several independent and elementary proofs, for instance by Hanson [14] and
Feng [12]. However, we have not yet formalized any proof of this ingredient,
which is completely independent from the rest of the irrationality proof. More
precisely, our formal proof is parametrized by the following assumption:

Proposition 2. There exists two positive rationals K and r, with r3 < 33, such
that for any large enough integer n, ℓn < Krn.

2.3 Consequences of Apéry’s recurrence

The Cauchy sequence (bn/an)n∈N tends to ζ(3), thus δn tends to zero. In this
section, we prove that it does so fast enough to compensate for ℓ3

n, while being
positive. The starting point is Apéry’s recurrence, (3) below:

Lemma 2. For n ≥ 0, the sequences (an)n∈N and (bn)n∈N satisfy the same
second-order recurrence:

(n + 2)3yn+2 − (17n2 + 51n + 39)(2n + 3)yn+1 + (n + 1)3yn = 0. (3)

4 Frédéric Chyzak, Assia Mahboubi, Thomas Sibut-Pinote, Enrico Tassi

Salvy’s worksheet [21] demonstrates in particular how to obtain this common
recurrence by Maple calculations, performed by the Algolib library [2]. Following
van der Poorten [22], we next use Lemma 2 (and initial conditions) to obtain a
closed form of the Casoratian wn = bn+1an − bnan+1. Indeed, we prove wn =

6
(n+1)3 for n ≥ 2. From this, we prove that δn, and hence σn, is positive for any

n ≥ 2. We also use the closed form to estimate the growth of δ in terms of a.
The result is that there exists a positive rational number K such that δn ≤ K

an

for large enough n. Finally, the zero limit of σn follows from Proposition 2, the
behaviour of δ, and Lemma 3 below, which quantifies that a grows fast enough.

Lemma 3. 33n ∈ O(an).

Proof. Introduce the sequence ρn = an+1/an and observe that ρ51 > 33. We
now show that ρ is increasing. Define rational functions α and β so that the
conclusion of Lemma 2 for an rewrites to an+2−α(n)an+1+β(n)an = 0 for n ≥ 0.

Now, for any n ∈ N, introduce the homography hn(x) = α(n) − β(n)
x

, so that
ρn+1 = hn(ρn). Let xn be the largest root of x2 − α(n)x + β(n). The result
follows by induction on n from the fact that h([1, xn]) ⊂ [1, xn] and from the
observation that ρ2 ∈ [1, x2]. ⊓⊔

3 Algorithms on sequences in computer algebra

Lemma 2 is the bottleneck in Apéry’s proof. Both sums an and bn in there are

instances of parametrised summation: they follow the pattern Fn =
∑β(n)

k=α(n) fn,k

in which the summand fn,k, potentially the bounds, and thus the sum, depend on
a parameter n. This makes it appealing to resort to the algorithmic paradigm of
creative telescoping, which was developed for this situation in computer algebra.

In order to operate on sequences, computer algebra substitutes implicit rep-
resentations for explicit representations in terms of named sequences (factorial,
binomial, etc). This is the topic of Section 3.1. A typical example of parametrised
summation by this approach is provided by the identity

∑n

k=0

(

n
k

)

= 2n: from

an encoding of the summand
(

n
k

)

by the recurrences

(

n + 1

k

)

=
n + 1

n + 1 − k

(

n

k

)

,

(

n

k + 1

)

=
n − k

k + 1

(

n

k

)

, (4)

deriving the relation, with finite difference with respect to k in right-hand side,
(

n + 1

k

)

− 2

(

n

k

)

=

((

n + 1

k + 1

)

−

(

n

k + 1

))

−

((

n + 1

k

)

−

(

n

k

))

(5)

is sufficient to derive the explicit form 2n, as will be explained below.

3.1 Recurrences as a data structure for sequences

The implicit representation fruitfully introduced by computer algebra to deal
with sequences are systems of linear recurrences. In this spirit, ∂-finite sequences
are algebraic objects that model mathematical sequences and enjoy nice algo-
rithmic properties. Notably, the finiteness property of their definition makes
algorithmic most operations under which the class of ∂-finite sequences is stable.

A Computer-Algebra-Based Formal Proof of the Irrationality of ζ(3) 5

A ∂-finite sequence (see [7] for a complete exposition of the subject) is
an element of a module over the non-commutative ring A of skew polynomi-
als in the indeterminates Sn and Sk, with coefficients in the rational-function
field Q(n, k), and commutation rule Si

nSj
kc(n, k) = c(n + i, k + j)Si

nSj
k. A skew

polynomial P =
∑

(i,j)∈I pi,j(n, k)Si
nSj

k ∈ A acts on a “sequence” f by (P ·

f)n,k =
∑

(i,j)∈I pi,j(n, k)fn+i,k+j , where subscripts denote evaluation. For ex-

ample for fn,k =
(

n
k

)

, the recurrences (4) once rewritten as equalities to zero can

be represented as P · f = 0 for P = Sn − n+1
n+1−k

and P = Sk − n−k
k+1 , respectively.

To any ∂-finite sequence f , one associates the set of skew polynomials that
annihilate it. This set, {P ∈ A : P · f = 0} is a left ideal of A, named the
annihilating ideal of f , and denoted ann f . A non-commutative extension of the
usual Gröbner-basis theory is available, together with algorithmic analogues.
In this setting, a good representation of a ∂-finite sequence is obtained as a
Gröbner basis of ann f for a suitable ordering on the monomials in Sn and Sk. For
the example of fn,k =

(

n
k

)

, a Gröbner basis consists of both already-mentioned
skew polynomials encoding (4). In general, a Gröbner basis provides us with a
(vectorial) basis of the quotient module A/ ann f . This basis can be explicitly
written in the form B = {fn+i,k+j}(i,j)∈U , where the finite set U of indices is
given as the part under the classical stair shape of the Gröbner-basis theory.
Given a Gröbner basis GB for ann f , the normal form NF(p, GB) is unique for
any p ∈ A. Again in the binomial example, the finite set is U = {(0, 0)}, and
normal forms are rational functions.

This is the basis of algorithms for a number of operations under which the
∂-finite class is stable, which all process by looking for enough dependencies
between normal forms: application of an operator, addition, product. The case
of summing a sequence (fn,k) into a parametrised sum Fn =

∑n

k=0 fn,k is more
involved: it performs according to the method of creative telescoping [24], in two
stages. First, an algorithmic step determines pairs (P, Q) satisfying

P · f = (Sk − 1)Q · f (6)

with P ∈ A′ and Q ∈ A, where A′ is the subalgebra Q(n)〈Sn〉 of A. To continue
with our example fn,k =

(

n
k

)

, Eq. (5) can be recast into this framework by
choosing P = Sn − 2 and Q = Sn − 1. Second, a systematic but not fully
algorithmic step follows: summing (6) for k between 0 and n + degSn

P yields

(P · F)n = (Q · f)k=n+deg
Sn

P +1 − (Q · f)k=0. (7)

Continuing with our binomial example, summing (5) (or its equivalent form (6))

for k from 0 to n+1 (and taking special values into account) yields
∑n+1

k=0

(

n+1
k

)

−

2
∑n

k=0

(

n
k

)

= 0, a special form of (7) with right-hand side canceling to zero. The
formula (7) in fact assumes several hypotheses that hold not so often in practice;
this will be formalized by Eq. (8) below.

3.2 Apéry’s sequences are ∂-finite constructions

The sequences a and b in (1) are ∂-finite: they have been announced to be
solutions of (3). But more precisely, they can be viewed as constructed from

6 Frédéric Chyzak, Assia Mahboubi, Thomas Sibut-Pinote, Enrico Tassi

step explicit form GB operation input(s)

1 cn,k =
(

n

k

)2(

n+k

k

)2
C direct

2 an =
∑n

k=1
cn,k A creative telescoping C

3 dn,m = (−1)m+1

2m3(n

m
)(n+m

m
)

D direct

4 sn,k =
∑k

m=1
dn,m S creative telescoping D

5 zn =
∑n

m=1
1

m3 Z direct

6 un,k = zn + sn,k U addition Z and S

7 vn,k = cn,kun,k V product C and U

8 bn =
∑n

k=1
vn,k B creative telescoping V

Table 1: Construction of an and bn: At each step, the Gröbner basis named in
column GB, which annihilates the sequence given in explicit form, is obtained by
the corresponding operation on ideals, with input(s) given on the last column.

“atomic” sequences by operations under which the class of ∂-finite sequences is
stable. This is summarised in Table 1.

Both systems C and D are first-order systems obtained directly as easy con-
sequences of (4); they consist respectively of expressions for cn+1,k and cn,k+1

in terms of cn,k and of expressions for dn+1,k and dn,k+1 in terms of dn,k. The
case of Z is almost the same: it is not a parametrised summation but an indef-
inite summation. A (univariate, second-order) recurrence is easily obtained for
it, without referring to any creative telescoping.

For each of C, D, and V , which undergo a summation operation, we obtain
creative-telescoping pairs (P, Q): one for C for a set U = {(0, 0)}; one for V for
a set U = {(0, 0), (1, 0), (0, 1)}; four for D for the same set. In all cases, we have
had our computer-algebra program (informally) ensure that the corresponding P
cancels the sum. For C and V , the single P thus obtained is (trivially) a Gröbner
basis of the annihilating ideal of A or B, respectively. But for D, the four P have
to be recombined, leading to three operators.

It should be observed that Gröbner bases is the only data used by computer-
algebra algorithms in the program above, including when simplifying the right-
hand side in (7) and in its generalization to come, Eq. (8) below. For instance,
computer algebra computes the system V from the systems C and U alone,
without resorting to any other knowledge of particular values of c and u in
Table 1, and so does our formal proof to verify that the pointwise product xy is
annihilated by V whenever C and U respectively annihilate sequences x and y.
In other words, although a ∂-finite sequence is fully determined by a system of
recurrences and sufficiently many initial conditions (that is, values of ui,j for
small values of i and j), we do not maintain those values along our proofs.

Our formal proof as well models each sequence by a system of recurrences
obtained solely from the operators of the Gröbner basis. We hence bet that
the computer-algebra implementation of the algorithmic operations of addition,
product, and summation, as well as the parts of our Maple script relying on less
algorithmic operations do not take decisions based on private knowledge they

A Computer-Algebra-Based Formal Proof of the Irrationality of ζ(3) 7

could have on their input, viewed as a specific solution to the recurrence system
used to encode it. Would the implementation do so without letting us know,
then our a posteriori verification would have required guessing an appropriate
description of this additional knowledge, like operators for specializations of the
sequences. Fortunately, the Mgfun package we used has the wanted property.

3.3 Provisos and sound creative telescoping

Observe the denominators in (4): they prevent the rules to be used, respectively
when k = n + 1 and k = −1. For example, one can “almost prove” Pascal’s
triangle rule by
(

n + 1

k + 1

)

−

(

n

k + 1

)

−

(

n

k

)

=

(

n + 1

n − k

n − k

k + 1
−

n − k

k + 1
− 1

) (

n

k

)

= 0 ×

(

n

k

)

= 0,

but this requires k 6= −1 and k 6= n. Therefore, this does not prove Pascal’s rule
for all n and k. The phenomenon is general: computer algebra is unable to take
denominators into account. This incomplete modelling of sequences by algebraic
objects may cast doubt on these computer-algebra proofs, in particular when it
comes to the output of creative-telescoping algorithms.

By contrast, in our formal proofs, we augmented the recurrences with provisos
that restrict their applicability. In this setting, we validate a candidate identity
like the Pascal triangle rule by a normalization modulo the elements of a Gröbner
basis plus a verification that this normalization only involves legal instances of
the recurrences. In the case of creative telescoping, Eq. (6) takes the form:

(n, k) /∈ ∆ ⇒ (P · f ,k)n = (Q · f)n,k+1 − (Q · f)n,k, (8)

where ∆ ⊂ Z2 guards the relation and where f ,j denotes the univariate sequence
obtained by specializing the second argument of f to j. Thus our formal analogue
of Eq. (7) takes this restriction into account and has the shape

(P · F)n =
(

(Q · f)n,n+β+1 − (Q · f)n,α

)

+

r
∑

i=1

i
∑

j=1

pi(n) fn+i,n+β+j

+
∑

α≤k≤n+β ∧ (n,k)∈∆

(P · f ,k)n − (Q · f)n,k+1 + (Q · f)n,k,

(9)

for F the sequence with general term Fn =
∑n+β

k=α fn,k. The proof of identity (9)
is a straightforward reordering of the terms of the left-hand side, (P · F)n =
∑r

i=0 p(n) Fn+i, after unfolding the definition of F and applying relation (8)
everywhere allowed in the interval α ≤ k ≤ n + β. The first part of the right-
hand side is the usual difference of border terms, already present in Eq. (7). The
middle part is a collection of terms that arise from the fact that the upper bound
of the sum defining Fn depends linearly on n and that we do not assume any
nullity of the summand outside the summation domain. The last part, which
we will call the singular part, witnesses the possible partial domain of validity
of relation (8). The operator P is a valid recurrence for the sequence F if the
right-hand side of Eq. (9) normalizes to zero, at least outside of an algebraic
locus that will guard the recurrence.

8 Frédéric Chyzak, Assia Mahboubi, Thomas Sibut-Pinote, Enrico Tassi

4 Formal proof of the common recurrence

This section describes the computer-algebra-aided formal proof of Lemma 2,
based on a Maple session implementing the program described in Table 1.

4.1 Generated operators, hand-written provisos, and formal proofs

For each step in Table 1, we make use of the data computed by the Maple
session in a systematic way. Figure 1 illustrates this pattern on the example of
step 7. As mentioned in Section 3.3, we annotate each operator produced by the
computer-algebra program with provisos (see below) and turn it this way into a
conditional recurrence predicate on sequences. To each sequence in the program
corresponds a file defining the corresponding conditional recurrences, for instance
annotated_recs_c, annotated_recs_u, and annotated_recs_v for c, u, and v,
respectively. More precisely these files contain all the operators obtained by the
Maple script for a given sequence, not only the Gröbner basis. We use rounded
boxes to depict the files that store the definitions of these predicates. These
are generated by the Maple script which pretty-prints its output in Coq syntax,
with the exception of the definition of provisos. Throughout this section, a maple
leaf tags the files that are generated by our Maple script. Yet automating these
annotations is currently out of reach.

In our formal proof, each step in Table 1 consists in proving that some condi-
tional recurrences on a composed sequence can be proved from some conditional
recurrences known for the arguments of the operation. We use square boxes to
depict the files that store these formal proofs. The statement of the theorems
proved in these files are composed from the predicates defined in the round boxes:
a dashed line points to (predicates used to state) conclusions and a labelled solid
line points to (predicates used to state) hypotheses.

Fig. 1: Proving that V is C × U

4.2 Definitions of conditional recurrence predicates

All files defining the conditional recurrence predicates obtained from the opera-
tors annihilating sequences of the program share the same structure. An excerpt
of the generated part of the file annotated_recs_c is displayed on Listing 1.1.
The constants Sn, Sk, and CT_premise are recurrences predicates, defined in
terms of a bound variable c. Constants Sn and Sk are elements of the Gröbner
basis. The definition of these recurrences is named to reflect the term it rewrites,
e.g., the left-hand sides in (4): these names are the result of pretty-printing the
(skew) monomial that encodes these left-hand sides, the prefix S standing for

A Computer-Algebra-Based Formal Proof of the Irrationality of ζ(3) 9

“shift”. For example Sn is the name of a recurrence defining cn+1,k, while SnSk

would be for cn+1,k+1. Rewriting a given term with such an equation makes the
term decrease for the order associated with the Gröbner basis. Another part of
the file defines the recurrences obtained from a creative-telescoping pair (P, Q)
generated for the purpose of the summation defining the sequence a.

(* Coefficients of every recurrence, P, and Q. *)

Definition Sn00 n k := (n + 1 + k)2 / (-n - 1 + k)2.

Definition Sk00 n k := (-n + k)2 * (n + 1 + k)2 / (k + 1)4.

Definition P0 n := (n + 1)3.

...

(* Conditional recurrences. *)

Definition Sn c := ∀ n k, precond.Sn n k → c (n + 1) k = Sn00 n k * c n k

Definition Sk c := ∀ n k, precond.Sk n k → c n (k + 1) = Sk00 n k * c n k

(* Operators P and Q. *)

Definition P c n := P0 n * c n + P1 n * c (n + 1) + P2 n * c (n + 2).

...

(* Statement P = ∆k Q. *)

Definition CT_premise c := ∀ n k, precond.CT_premise n k →

P (c k) n = Q c n (k + 1) - Q c n k.

Listing 1.1: Generated part of annotated rec c

Observe that these generated definitions feature named provisos that are in
fact placeholders. In the preamble of the file, displayed on Listing 1.2, we provide
by a manual annotation a concrete definition for the proviso of each recurrence
defined in the generated part. Observe however that part of these definitions can
be inferred from the coefficients of the recurrences. For example the k 6= n + 1
condition in precond.Sn, the proviso of recurrence Sn, is due to the denominator
(−n − 1 + k)2 of the coefficient (Sn00n k).

Module precond.

Definition Sn n k := (k 6= n + 1) ∧ (n 6= -1).

Definition Sk n k := (k + 1 6= 0) ∧ (n 6= 0).

Definition CT_premise n k := (n ≥ 0) ∧ (k ≥ 0) ∧ (k < n).

End precond.

Listing 1.2: Hand-written provisos in annotated rec c

In the last part of the file, see Listing 1.3, a record collects the elements of the
Gröbner basis C. Maple indeed often produces a larger set of annihilators for
a given sequence, for instance CT_premise in Listing 1.1 is related to a creative
telescoping pair but not to the Gröbner basis. Also, the Gröbner basis can be
obtained by refining a first set of annihilators, which happens at step 4 of Table 1.

(* Choice of recurrences forming a Groebner basis. *)

Record Annihilators c := { Sn : Sn c; Sk : Sk c }.

Listing 1.3: Selection of a Gröbner basis

10 Frédéric Chyzak, Assia Mahboubi, Thomas Sibut-Pinote, Enrico Tassi

4.3 Formal proofs of a conditional recurrence

We take as a running example the file ops_for_a, which models step 2 in Table 1.
This file proves theorems about an arbitrary sequence c satisfying the recurrences
in the Gröbner basis displayed on Listing 1.3, and about the sequence a by
definite summation over c.

Require Import annotated_recs_c.

Variables (c : int → int → rat) (ann_c : Annihilators c).

Theorem P_eq_Delta_k_Q : CT_premise c. Proof. ... Qed.

Let a n := \sum_(0 ≤ k < n + 1) c n k.

The formal proof of lemma P_eq_Delta_k_Q is an instance of Eq. 8. Using this
property, we prove that the sequence a verifies a conditional recurrence asso-
ciated to the operator P . As suggested in Section 3.1, this proof consists in
applying the lemma punk.sound_telescoping, which formalizes a sound creative
telescoping and in normalizing to zero the resulting right-hand side of Eq. 9. List-
ing 1.4 displays the first lines of the corresponding proof script, which select and
name the three components of the right-hand side of Eq. 9, with self-explanatory
names. The resulting proof context is displayed on Listing 1.5.

Theorem recApery_a n (nge2 : n ≥ 2) : P a n = 0.

Proof.

rewrite (punk.sound_telescoping P_eq_Delta_k_Q).

set boundary_part := (X in X + _ + _).

set singular_part := (X in _ + X + _).

set overhead_part := (X in _ + _ + X).

Listing 1.4: Begining of a proof of sound creative telescoping

boundary_part := Q c n (n + 1) - Q c n 0

singular_part := \sum_(0 ≤ i < n + 1 | precond.CT_premise n i)

P (c i) n - (Q c n (i + 1) - Q c n i)

overhead_part := \sum_(0 ≤ i < degree P)

\sum_(0 ≤ j < i) Pi n * c (n + i) (n + j + 1)

============================

boundary_part + singular_part + overhead_part = 0

Listing 1.5: Corresponding goal

In Listing 1.5, (c i) denotes the expression (fun x => c x i), P
i
denotes the

i-th coefficient of the polynomial P, and degree P the degree of P (two in this
specific case). Note that we have access to degree P because in addition to the
definition displayed on Listing 1.1, we also have at our disposal a list represen-
tation [:: P0; P1] of the same operator.

The proof of the goal of Listing 1.5, proceeds in three steps. The first step
is to inspect the terms in singular_part and to chase ill-formed denominators,
like n − n. These can arise from the specialisations, like k = n, induced when
unrolling the definition of (the negation of) precond.CT_premise. In our formal-
ization, a division by zero is represented by a conventional value: we check that
these terms vanish by natural compensations, independently of the convention,

A Computer-Algebra-Based Formal Proof of the Irrationality of ζ(3) 11

and we keep only the terms in singular_part that represent genuine rational
numbers. The second step consists in using the annihilator ann_c of the sum-
mand to reduce the resulting expression under the stairs of the Gröbner basis.
In fact, this latter expression features several collections of terms, that will be
reduced to as many independent copies of the stairs. In the present example, we
observe two such collections: (i) terms that are around the lower bound (n, 0) of
the sum, of the form cn,0, . . . cn,s; (ii) terms that are around the upper bound
(n, n) of the summation, of the form cn,n, . . . , cn,n+s for a constant s. The
border terms induce two such collections but there might be more, depending
in particular on the shape of the precond.CT_premise proviso. For example, the
sum

∑n

k=0(−1)k
(

n
k

)(

3k
n

)

= (−3)n leads to a proviso involving n = 3k + 1 and
similar terms: an additional category of terms around (n, n/3) drifts away from
both (n, 0) and (n, n) when n grows.

============================

P2 n * c (n + 2) n + P1 n * c (n + 1) n +

P0 n * c n n + Q00 n n * c n n + P1 n * c (n + 1) (n + 1) +

P2 n * c (n + 2) (n + 1) + P2 n * c (n + 2) (n + 2) = 0

Listing 1.6: Terms around the upper bound

The collection of terms around the upper bound in our running example is dis-
played on Listing 1.6. The script of Listing 1.7 reduces this collection under the
stairs of ann_c, producing the expression displayed on Listing 1.8. The premise
of each rule in this basis being an integer linear arithmetic expression, we check
its satisfiability using our front-end intlia to the lia proof command [4], which
automates the formal proof of first-order formulae of linear arithmetics.

rewrite (ann_c.Sk (n + 2) (n + 1)); last by intlia.

rewrite (ann_c.Sk (n + 2) n); last by intlia.

rewrite (ann_c.Sk (n + 1) n); last by intlia.

rewrite (ann_c.Sn (n + 1) n); last by intlia.

rewrite (ann_c.Sn n n); last by intlia.

set cnn := c n n.

Fail set no_more_c := c _ _.

Listing 1.7: Reduction modulo the Gröbner basis of c

============================

P2 n * Sn00 (n + 1) n * Sn00 n n * cnn + P1 n * Sn00 n n * cnn +

P0 n * cnn + Q00 n n * cnn + P1 n * Sk00 (n + 1) n * Sn00 n n * cnn +

P2 n * Sk00 (n + 2) n * Sn00 (n + 1) n * Sn00 n n * cnn +

P2 n * Sk00 (n + 2) (n + 1) * Sk00 (n + 2) n *

Sn00 (n + 1) n * Sn00 n n * cnn = 0

Listing 1.8: Rational function with folded coefficients

The third and last step consists in checking that the rational-function co-
efficient of every remaining evaluation of c is zero. For this purpose, we start
by unfolding the definitions of the coefficients P2, Sn0. Previous steps kept them
carefully folded as these values play no role in the previous normalizations but
can lead to pretty large expressions if expanded, significantly slowing down any
other proof command. The resulting rational function is proved to be zero by a

12 Frédéric Chyzak, Assia Mahboubi, Thomas Sibut-Pinote, Enrico Tassi

combination of the field [11] and lia [4] proof commands. The former reduces
the rational equation into a polynomial one between the cross product of two
rational functions. This equation is then solved by the ring proof command [18].
The algebraic manipulations performed by field produce a set of non-nullity
conditions for the denominators. These are solved by the lia proof command.
To this end, our Maple script generates rational fractions with factored denom-
inators, that happen to feature only linear factors in these examples.

4.4 Composing closures and reducing the order of B

Figure 2 describes the global dependencies of the files proving all the steps in
Table 1. In order to complete the formal proof of Lemma 2, we verify formally in

Fig. 2: Formal proofs of Table 1 Fig. 3: Formal proof of Lemma 2

file algo_closures that each sequence involved in the construction of an and bn is
a solution of the corresponding Gröbner system of annotated recurrence, starting
from cn, dn, and zn and applying the lemmas proved in the ops_for_* files all
the way to the the final conclusions of ops_for_a and ops_for_b. This proves that
an is a solution of the recurrence (3) but provides only a recurrence of order four
for bn. In file reduce_order, we prove that b as well satisfies the recurrence (3)
using four evaluations b0, b1, b2, b3 that we compute in file initial_conds.

5 Conclusion

5.1 Formally proving the consequences of Apéry’s recurrence

The present paper focuses on the computer-algebra-aided part of our formal-
ization. Another significant part of it addresses the asymptotic study of some
sequences of rational numbers. Formalizing this part of the proof requires in-
troducing a type with more inhabitants than just rational numbers, for it deals
with the properties of limits of sequences, notably the constant ζ(3) itself: we
hence need to include at least computable real numbers. The construction of
Cauchy reals proposed by Cohen in his PhD [9] turned out to perfectly suit our
needs, although we had to enrich the existing library with a few basic properties.
Indeed, we use the type of Cauchy real numbers mostly to state our theorems,
like Theorem 1, but the proofs only involve reasoning with rational values of the

A Computer-Algebra-Based Formal Proof of the Irrationality of ζ(3) 13

sequences. We also benefited from the proof commands provided by Cohen [9]
to postpone the definition of “large enough” bounds or moduli of convergence.

The proof of Lemma 3 however involves non-rational real numbers that are
not defined as converging sequences but as roots of polynomials. We resort in
this case to Cohen’s construction of real algebraic numbers [8] and benefit con-
structively from the decidability of comparison relations. Navigating between
the different natures of numbers this irrationality proof features, integer, ratio-
nal numbers, real algebraic numbers, and Cauchy reals was made possible by the
genericity of the core Mathematical Component libraries [1].

The proof of the same Lemma 3 involves two computational steps, namely
the observations that ρ51 > 33 and that ρ2 ∈ [1, x2]. These numbers are rather
large: for instance the normalized fraction ρ51 features integers with more than 70
digits. The issue here is to obtain a formal proof of these facts that both fits with
the rest of the proof of Lemma 3 and does not take ages to compute. We used
the CoqEAL [10] library and the framework it provides for writing parametric
code which can be executed either symbolically, in abstract parts of a proof,
or with appropriate data structures for efficient computations. The programs
that implement the computation of ρn and xn are very short and boil down to
evaluating a (rather small) rational fraction defined recursively. At this place and
when computing evaluations of the sequence (see Section 4.4), computations use
(interpreted) binary integer arithmetics and are almost instantaneous.

5.2 Asymptotic behavior of lcm(1, . . . , n)

We plan to complete our irrationality proof by providing a formal proof of Propo-
sition 2 following the proof of Hanson [14]. This involves considerations of ele-
mentary number theory as well as asymptotic-analysis studies that are rather
similar to the ones we dealt with in the present work. The Prime Number The-
orem has been machine-checked by Harrison [15] in HOL-Light. We considered
importing this result into Coq by using the automated translation tool devel-
oped by Keller and Werner [17]. Unfortunately, according to Keller, the import
of such an involved proof is currently beyond reach because of its size.

5.3 Formal proofs on objects of size typical of computer algebra

The size of the mathematical objects in our formalization makes the interactive
writing of proof scripts quite unusual and challenging. For example, the recur-
rence P · y = 0 of order four satisfied by the sequence b spans over 8,000 lines
when pretty-printed. Both proofs of the fact P · b = 0, named recApery_b in our
formalization, and of its premise P · v = (Sk − 1)Q · v, named P_eq_Delta_k_Q,
end by normalizing rational functions to 0. Figure 4 reports on the size of the
polynomials that occur in these proofs, together with the amount of time needed
by Coq’s field proof command to check that the rational functions are zero.

These objects can be easily manipulated by a computer-algebra system:
Maple normalizes P · b to zero in less than 2 seconds. Coq, in its latest stable
version (8.4pl3), takes roughly 4 minutes, but of course it produces and checks
a formal proof of such normalization. To achieve this reasonable timing, we con-
tributed to version 8.4pl3 a patch to substantially improve the performances of

14 Frédéric Chyzak, Assia Mahboubi, Thomas Sibut-Pinote, Enrico Tassi

lemma lines terms # of digits time
avg max (seconds)

P_eq_Delta_k_Q 1006 1714 6 13 247
recApery_b 7811 18602 2 13 179

Fig. 4: Statistics about the polynomials in ops_for_b and their normalization

rational-function normalization: in Coq 8.4pl2 the very same recurrence requires
a bit less than one hour to be normalized to zero.

Navigating expressions of size typical of computer algebra Under the circum-
stances described above, where the goal to be proved cannot even be displayed,
the need for uncommon proof commands arises. The pattern matching facilities
offered by the set command [13] can be used to probe the goal for a subterm of
the shape u (n + _) (k + _), or to identify all the occurrences of a closed terms.

Unfortunately not all uncommon needs are easily satisfiable with standard
proof commands. A typical one is to invoke a computer-algebra system to re-
arrange an expression in order decide how to proceed with the proof. This was
performed by hand, massaging text files to accommodate the small syntactic
differences between the syntax of Coq and Maple. This task has been automated
in the past in the Coq-Maple bridge developed by Delahaye and Mayero [11],
for the purpose of enhancing proof automation in Coq. We foresee to generalise
this work by allowing arbitrary Maple commands to let one explore algebraic
expressions, and not necessarily prove the correctness of the results.

Proof-language implementation The size of the mathematical expressions poses
additional efficiency challenges when combined with the ability of the Coq logic
to identify terms up to computation. For example a pattern like (3 * _) is
matched by searching for the head symbol * verbatim, but its non-wildcard
argument, 3 here, is compared taking computation into account. Given the size
of the expressions, the fast filtering performed on the head symbol is not sufficient
to discard enough false positives. Comparing two terms up to computation often
triggers a full normalization before failing and this is an expensive operation.

The definitions of integer and rational numbers that are part of the Math-
ematical Components library are designed for the purpose of a comprehensive
library of theorems, and not for fast computations: this makes the aforemen-
tioned pattern-matching operation often intractable. The commonly accepted
idea of having two representations of the same concept, one good for reasoning
and one good for computing, linked by a morphism does not work for expressions
of this size, as switching from one representation to the other one relies again
on pattern matching to push the morphism through the huge expression. For
instance, we had to craft boilerplate code, which carefully controls computations
and use locked casts for large constant numbers, in order to make the field and
lia tactic work on these data-structures.

One possible work-around would be to have available, in the proof language,
two distinct pattern-matching facilities: one that eases reasoning steps by identi-

A Computer-Algebra-Based Formal Proof of the Irrationality of ζ(3) 15

fying terms up to computation, and another one that performs a dumb syntactic
comparison and is efficient even when applied to large, homogeneous expressions.

5.4 Theoretical and practical limitations of data structures

Algebraic rewriting with provisos An obstruction to turning our approach into a
complete protocol is that we do not know how to determine the provisos other
than by trial and error. This is connected to the fact that recurrences that have
well understood rewriting properties when forming a Gröbner basis (a priori) lose
all this nice structure when decorated with provisos. We do not understand what
the new critical pairs have to be and how to ensure we give ourselves complete
information with our selection of rules-with-provisos that simply lift a Gröbner
basis. To the best of our knowledge, there is no literature on the topic yet.

We have been lucky with the few cases in the present formalization, in that
we could just guide our reduction by the usual strategy of division by a Gröbner
basis: all implied integer premises could be solved, without us understanding
why they would.

Polynomial data structures Manipulating polynomials in computer algebra is
made natural by the ease to keep them in collected form, whether automatically
or by easy-to-call procedures. On the other hand, our treatment of recurrences
amounts mostly to collecting polynomials and skew polynomials, through the
encoding suggested in Section 3.1. A (skew) polynomial data structure, with
computational product and division, and the corresponding theory, would help
keeping goals tidy and more manageable, especially during the rewriting steps.
In particular, the current strategy of reserving the call to field to the end is
certainly a cause of blow-up of the goals and inefficiency of the computations.

In addition, making it generic with respect to the nature of skew-polynomial
commutation would provide similar functionality for both recurrence and differ-
ential equations, paving the way to the formalization of integral identities by a
known differential counterpart to creative telescoping.

5.5 Building on top of state-of-the-art libraries

It was a help to have at our disposal the broad scope of the Mathematical
Components library. It was a cause for trouble, too. This research started as an
interdisciplinary activity: half of the authors were newcomers to formal proofs.
As a matter of fact understanding the sophisticated design of the library turned
out to be a very arduous task for them.

We can identify in the combined use of implicit coercions, notations, and
structure inference the major source of complexity. Their formalization activity
was additionally hindered by the fact that various features of the Coq system
do not interact well with the design patterns employed in the Mathematical
Components library. The most notable example being search, that is almost
ineffective in the context of the algebraic hierarchy.

We believe such problems could be alleviated by: introductory material spe-
cific to the Mathematical Components library and written with newcomers in
mind; a “teaching/debug” mode in which type inference explicates steps at the
desired level of detail; finally a proper searching facility.

16 Frédéric Chyzak, Assia Mahboubi, Thomas Sibut-Pinote, Enrico Tassi

References

[1] Mathematical Components Libraries. http://www.msr-inria.fr/projects/

mathematical-components, 2013. Version 1.4. For Coq 8.4pl3.
[2] Algolib. http://algo.inria.fr/libraries/, 2013. Version 17.0. For Maple 17.
[3] R. Apéry. Irrationalité de ζ(2) et ζ(3). Astérisque, 61, 1979. Société Mathématique

de France.
[4] F. Besson. Fast reflexive arithmetic tactics the linear case and beyond. In

TYPES’06, LNCS, pages 48–62, Berlin, Heidelberg, 2007. Springer-Verlag.
[5] F. Beukers. A note on the irrationality of ζ(2) and ζ(3). Bull. London Math. Soc.,

11(3):268–272, 1979.
[6] F. Chyzak, A. Mahboubi, and T. Sibut-Pinote. Do creative-telescoping algorithms

provide complete proofs? a formal study of Apéry’s theorem. Submitted, 2014.
[7] F. Chyzak and B. Salvy. Non-commutative elimination in Ore algebras proves

multivariate identities. J. Symbolic Comput., 26(2):187–227, 1998.
[8] C. Cohen. Construction of real algebraic numbers in Coq. In ITP, volume 7406

of LNCS. Springer, Aug. 2012.
[9] C. Cohen. Formalized algebraic numbers: construction and first-order theory. PhD

thesis, École polytechnique, Nov 2012.
[10] C. Cohen, M. Dénès, and A. Mörtberg. Refinements for free! In CPP, volume

8307 of LNCS, pages 147–162. Springer International Publishing, 2013.
[11] D. Delahaye and M. Mayero. Dealing with algebraic expressions over a field in

Coq using Maple. J. Symb. Comput., 39(5):569–592, May 2005.
[12] B.-y. Feng. A simple elementary proof for the inequality dn < 3n. Acta Math.

Appl. Sin. Engl. Ser., 21(3):455–458, 2005.
[13] G. Gonthier, A. Mahboubi, and E. Tassi. A small scale reflection extension for

the Coq system, 2013. RR-6455. Version 12.
[14] D. Hanson. On the product of the primes. Canad. Math. Bull., 15:33–37, 1972.
[15] J. Harrison. Formalizing an analytic proof of the Prime Number Theorem. Journal

of Automated Reasoning, 43:243–261, 2009.
[16] J. Harrison and L. Théry. A skeptic’s approach to combining HOL and Maple. J.

Automat. Reason., 21(3):279–294, 1998.
[17] C. Keller and B. Werner. Importing HOL Light into Coq. In ITP, volume 6172

of LNCS, pages 307–322. Springer, 2010.
[18] A. Mahboubi and B. Gregoire. Proving equalities in a commutative ring done

right in Coq. In TPHOLs 2005, volume 3603 of LNCS, pages 98–113, Oxford,
United Kingdom, Aug. 2005. Springer.

[19] R. H. Risch. The solution of the problem of integration in finite terms. Bull.

Amer. Math. Soc., 76:605–608, 1970.
[20] T. Rivoal. Propriétés diophantiennes de la fonction zêta de Riemann aux entiers

impairs. PhD thesis, Université de Caen, 2001.
[21] B. Salvy. An Algolib-aided version of Apéry’s proof of the irrationality of ζ(3).

http://algo.inria.fr/libraries/autocomb/Apery2-html/apery.html, 2003.
[22] A. van der Poorten. A proof that Euler missed: Apéry’s proof of the irrationality

of ζ(3). Math. Intelligencer, 1(4):195–203, 1979. An informal report.
[23] D. Zeilberger. A holonomic systems approach to special functions identities. J.

Comput. Appl. Math., 32(3):321–368, 1990.
[24] D. Zeilberger. The method of creative telescoping. J. Symbolic Comput.,

11(3):195–204, 1991.
[25] V. V. Zudilin. One of the numbers ζ(5), ζ(7), ζ(9), ζ(11) is irrational. Uspekhi

Mat. Nauk, 56(4(340)):149–150, 2001.

http://www.msr-inria.fr/projects/mathematical-components
http://www.msr-inria.fr/projects/mathematical-components
http://algo.inria.fr/libraries/
http://algo.inria.fr/libraries/autocomb/Apery2-html/apery.html

	A Computer-Algebra-Based Formal Proof of the Irrationality of (3)

