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Abstract

Social networks offer users new means of accessing information,
essentially relying on “social filtering”, i.e. propagation and filtering
of information by social contacts. The sheer amount of data flowing in
these networks, combined with the limited budget of attention of each
user, makes it difficult to ensure that social filtering brings relevant
content to interested users. Our motivation in this paper is to measure
to what extent self-organization of a social network results in efficient
social filtering.

To this end we introduce flow games, a simple abstraction that
models network formation under selfish dynamics, featuring user-specific
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interests and budget of attention. In the context of homogeneous user
interests, we show that selfish dynamics converge to a stable network
structure (namely a pure Nash equilibrium) with close-to-optimal in-
formation dissemination. We show that, in contrast, for the more
realistic case of heterogeneous interests, selfish dynamics may lead to
information dissemination that can be arbitrarily inefficient, as cap-
tured by an unbounded “price of anarchy”.

Nevertheless the situation differs when user interests exhibit a par-
ticular structure, captured by a metric space with low doubling dimen-
sion. In that case, natural autonomous dynamics converge to a stable
configuration. Moreover, users obtain all the information of interest
to them in the corresponding dissemination, provided their budget of
attention is logarithmic in the size of their interest set.

1 Introduction

Information access has been revolutionized by the advent of social networks
such as Facebook, Google+ and Twitter. These platforms have brought
about the new paradigm of “social filtering”, whereby one accesses informa-
tion by “following” social contacts.

This is especially true for twitter-like microblogging social networks. In
such networks the functions of filtering, editing and disseminating news are
totally distributed, in contrast to traditional news channels. The efficiency
of social filtering is critically affected by the network topology, as captured
by the contact-follower relationships. Today’s networks provide recommenda-
tions to users for potentially useful contacts to follow, but don’t interfere any
further with topology formation. In this sense, these networks self-organize,
under the selfish decisions of individual users.

This begs the following question: when does such autonomous and selfish
self-organizing topology lead to efficient information dissemination? The
answer will in turn indicate under what circumstances self-organization is
insufficient, and thus when additional mechanisms, such as incentive schemes,
should be introduced.

Two parameters play a key role in this problem. On the one hand each
user aims to maximize the coverage of the topics of his interest. On the other
hand, a user pays with his attention: filtering interesting information from
spam (i.e. information that does not fall in his topics of interest) incurs a
cost. Users must therefore trade-off topic coverage against attention cost.
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As pointed out by Simon [27], as information becomes abundant, another
resource becomes scarce: attention.

Furthermore, there is an interplay between participants in a social net-
work where filtering by one user may benefit another, inducing complex de-
pendencies in decisions on creating connections. To model this, we introduce
a network formation game called flow game where some users produce news
about specific topics and each user is interested in receiving all news about
a set of topics specific to him. Each user is a selfish agent that can choose
his incoming connections within a certain budget of attention in order to
maximize the coverage of his set of topics of interest.

This model is of interest on its own, as it enriches the class of existing
network formation games with a focus on flow dissemination under bounded
connections. This model could also be of interest in the context of peer-to-
peer streaming and file sharing or publish/subscribe applications.

1.1 Our results

An important feature in our model is a user’s budget of attention for the
consumption of content. In previous work [16] the budget of attention was
modelled as a limit on the rate with which a user consults a friend, with a
different objective of minimizing delay in receiving all content. In the present
work we are interested in a more fundamental question, of how efficient social
networks are formed in the first place. We consider the model where users are
interested in specific subsets of topics and their objective is to maximize the
number of flows received corresponding to these topics. As such, we model
the budget of attention as a constraint on the number of connections a user
may create (rather than a rate of consultation). Our aim is to build a simple
model capturing the complexity of the problem. This way of capturing the
budget of attention amounts to assuming that each connection consumes the
same amount of attention. We discuss in Section 6 how we can tweak our
model to more finely model attention consumption.

We capture users’ interests in topics through user-specific values for each
topic and define the utility a user receives to be the sum of values of all
received topics. Each user’s objective in a flow game is then to choose con-
nections so as to maximize his utility. We additionally assume that a user
may produce news about one topic at most even if he redistributes other
topics. This is coherent with an empirical study of twitter traces [6] where
it is shown that ordinary users (as opposed to celebrities or newspapers) can
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gain influence by concentrating on a single topic.
Our main results relate to the stability and efficiency of the formation

of information flows. We derive conditions where selfish dynamics converge
to a pure Nash equilibrium.We then give approximation ratios bounding the
quality of an equilibrium compared to an optimal solution. This is tradition-
ally measured through the price of anarchy, the ratio of the global welfare
(measured as the sum of user utilities) at an optimal solution compared to
that at the worst equilibrium.

More precisely, we first consider homogeneous games where all users are
interested in the same set of topics. We can then prove that selfish dy-
namics always converge to an equilibrium. Selfish dynamics comprise of any
sequence of moves, where in each move a user is given the opportunity to
selfishly rewire his connections to increase his utility. We show moreover that
convergence occurs within a polynomial number of rounds where a round is
a sequence of selfish moves including at least one move per user. We addi-
tionally show that the price of anarchy is bounded and approaches 1 as the
budget of attention of users increases.

In the more general case where users interests are heterogeneous, selfish
dynamics may not converge and price of anarchy may be unbounded. How-
ever, we observe that fast convergence towards efficient configurations can
occur when users’ interests are captured by a metric space with sufficient
structure. Here, the interests of a user are modeled a point in this space such
that nearby topics are of interest to the user. Sufficient structure typically
arises when the metric space is a Euclidean space with low dimension. Our
results are tailored to the more general case of metrics with low doubling
dimension. Low dimension assumptions are classically used in information
retrieval when data can be viewed as a matrix which is approximated with a
low rank matrix. For example, a ranking technique for the web is proposed
in [14] using a 16-dimensional space for representing topics of web pages.
Closer to the context of our study, modeling people’s opinions as points in
a low Euclidean space is a classical approach in social sciences. Political
spectrum for example is often modeled as a one dimensional space along a
Left-Right axis. consist in introducing more dimensions. This concept can
be formalized with single-peaked preference curves [5]. An online system for
exchanging political views could be a concrete example where the technical
conditions of our model are met. We believe that the same applies for the
various domains of interest of a user, implying that our model remains valid
more broadly if we can attribute several points of interest (one per domain)
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to each user. An extension of our model in that direction is proposed.

1.2 Related work

Information spread in networks has been studied extensively. Much of the
past work study the properties of information diffusion on given networks
with given sharing protocols. Our goal in this work is to study how networks
form when users create connections with the objective of efficient content
dissemination in a game-theoretical approach. This work thus follows the
large amount of work in network formation games. However, to the best
of our knowledge, the objective of efficient information dissemination under
edge constraints and interest sets that we consider here is novel. We now
discuss some work in those domains that are most relevant to this paper.

A lot of attention has been given to simple models of diffusion in social
networks such as “rumor spreading” or “cascading” where a piece of infor-
mation interests all users and is propagated in the network through random
interactions typically (see e.g. the related work mentioned in [12] for rumor
spreading and [18] for cascading). In this paper, we are more interested in the
selective propagation of information according to connections chosen locally
for optimizing the coverage of personal interests.

Network formation games have been considered in previous work in eco-
nomics and in the context of the formation of Internet peering relations and
peer-to-peer overlay networks. Economic models of network formation [15]
use edges to represent social relations and it is typically assumed that the
creation of an edge needs bilateral agreement since both users benefit from
an edge. Our model is oriented and unilateral agreement is more relevant
to the notion of following in social networks. A non-cooperative one-way
link connection game has been considered in previous work [3], where each
created link incurs a cost and users are interested in connecting to all other
users. Our model is richer and more realistic where we consider connections
to subsets of information flows that hold user-specific intrinsic values.

Network creation games in the context of the Internet have been consid-
ered [23], where distributed formation of undirected edges with a linear cost
on each edge formed is studied. In such games, each user’s objective is to
minimize total formation cost while either minimizing distance to all other
users [8], or ensuring connection to a given subset of nodes [2]. We consider
a bound on edge costs, in the form of a limit on the number of in-edges at
each node, and further, we focus on connections that allow specific flows of
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information.
Interestingly, bounded budget network formation games have already

been considered. Bounded budget connection games [19] consider a bound
on each user’s budget in creating edges, with the objective being the mini-
mization of the sum of weighted distances to other nodes. A similar model
is considered in [4] where each user’s objective is to maximize his influence,
measured using betweenness centrality. In our work however, rather than
minimizing distance to any node, we consider a formation game with the
objective of ensuring connections to a subset of flows of interest, without
regard to the particular nodes.

The notion of connecting to users that can provide a content flow of
interest is similar to peer-to-peer live streaming systems [20]. Unlike peer-
to-peer streaming, we do not aim to satisfy flow rates, rather our aim is to
connect to as many sets of relevant flows as possible. Moreover, our model
allows differing user interests. The stability of connecting users of a peer-
to-peer network according to some affinities between users was studied using
b-matching and acyclic preference systems [11]. As a generalization of the
stable marriages problem, those systems consider configurations of undirected
edges based on mutual acceptance of an edge, whereas unilateral decision is
more suitable in our model. Our model is more intricate in the sense that
connections are based not only on preferences but also on complementarity
of content obtained through various connections.

Most notably, a model similar to ours has been independently developed
in [21]. The authors propose a model for explaining how social media can pro-
vide efficient filtering of information. They model online exchange of media
information with three type of actors: official media sites that provide fresh
news every day, bloggers that relay some of these news and users that access
these news through bloggers. The model also includes a game-theoretical
part where the players are the bloggers. The strategy of a blogger is the set
of news he decides to relay and his utility is the number of users following
him. Conversely to our model, this is not a network formation game. How-
ever, it could be interesting to see if both approaches can be mixed together
for modeling multi-hop relaying where bloggers can also relay other bloggers.

In Section 5 we model the space of user interests by a metric space with
low doubling dimension. Modeling interests of users through a metric space
seems a natural approach and bounded growth metrics, or more generally
doubling metrics, have shown to be very a general model [24] that can cap-
ture general situations, while still providing an algorithmic perspective. The
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doubling dimension extends the notion of dimension from Euclidean spaces
to arbitrary metric spaces. It has proven to be useful in many application
domains such as nearest neighbor queries to databases [7], network construc-
tion [1], closest server selction [17], etc. Doubling metrics have notably been
used to model distances in networks such as Internet [10].

1.3 Organization of the paper

Section 2 introduces the model. We study the case of homogeneous interests
in Section 3. The heterogeneous case in its full generality is considered in
Section 4 which details some negative results. Section 5 is dedicated to the
specific scenario where users’ interests are captured by a doubling metric,
enabling some positive results. Section 6 presents how the costs of attention
can be better modeled with respect to the intersection of user interests. We
finally conclude in Section 7 describing potential extensions of the current
work.

2 Model

We consider a social network where users interested in some set of content
topics (or subjects) connect to (or follow in social networking parlance) other
users in order to obtain such contents, materialized by flows of news. Each
user may produce news for at most one topic (but may forward news from
other topics she is interested in). To distinguish the role of publisher from
that of follower, we technically assume that news concerning a given topic
(or subject) are produced at a given node called producer which is identified
with that topic.

A flow game is defined as a tuple (V, P, S,∆) where V is a set of users,
P a set of producers (or subjects or topics) and S : V → P is a function
associating to each user u its interest set Su ⊆ P , and ∆ : V → N is a function
associating to each user u its budget of attention ∆u. We let n = |V | and
p = |P | denote the number of users and producers respectively. A flow game
is homogeneous if all users have the same interest set: Su = P for all u ∈ V .
If this is not the case, the game is said to be heterogeneous.

A strategy for user u is a subset Fu of {(v, u) : v ∈ V ∪ P} such that
|Fu| ≤ ∆u (∆u is an upper bound on the in-degree of u that we call the
budget of u). For all (v, u) ∈ Fu, we say that u follows v or equivalently
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that u is connected to v (such a link (v, u) created by u is oriented according
to the data flow, that is from v to u). The collection F = {Fu : u ∈ V }
forms a network defined by the directed graph G(F ) = (V ∪ P,E(F )) where
E(F ) = ∪u∈V Fu. A user u is interested in a subject s if s ∈ Su. A user u
receives a subject s ∈ P if there exists a directed path from s to u in G(F )
such that all intermediate nodes are interested in s. We allow for a natural
filtering mechanism, where a user retransmits only subjects she is interested
in. For a given configuration, we let R(u) denote the set of subjects received
by u. The utility Uu(F ) for user u is the number of subjects in Su she receives,
that is Uu(F ) = |R(u) ∩ Su|. The utility of u is maximized if Uu(F ) = |Su|.

We denote by move, a shift from a collection F of strategies to a collection
F ′ where a single user u changes her strategy from a set Fu to another F

′
u. (We

say that u rewires her connections.) The move is selfish if Uu(F
′) > Uu(F ).

Selfish dynamics (or dynamics for short) are the sequences of selfish moves.
We say that dynamics converge if any sequence of selfish moves is necessarily
finite. The network is at equilibrium (or stable) if no selfish move is possible.
In standard game-theoretic terminology, this corresponds to a pure Nash
equilibrium. The global welfare of the system is defined as the overall system
utility: U =

∑

u∈V Uu. The efficiency of selfish, self-organization of a game is
classically captured by the notion of price of anarchy defined as the ratio of
the optimal global welfare over the global welfare of the worst equilibrium:

PoA =
maxF∈F

∑
u∈V Uu(F )

minF∈E

∑
u∈V Uu(F )

, where F denotes the set of possible collection of

strategies and E ⊆ F denotes the set of equilibria.
In some of our proofs we make use of the notion of potential functions.

An ordinal (or general [9]) potential function [22] is a function f : F → R

such that sign(f(F ′) − f(F )) = sign(Uu(F
′) − Uu(F )) for any move from

F to F ′ where user u changes her strategy. If f(F ′) − f(F ) = Uu(F
′) −

Uu(F ), f is called an exact potential function. This notion was introduced by
Monderer and Shapley [22] who show that it is tightly related to the notion of
a congestion game [25]. The use of potential functions is a standard technique
to show convergence of dynamics and to bound price of anarchy [9, 26].

3 Homogeneous interests

We first consider the case where identical sets of interests, Su = P , for all
u ∈ V (G). In this context, we first analyze how to achieve optimal global
welfare before establishing an upper bound on the price of anarchy. We
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will then show convergence of dynamics and provide a polynomial bound on
convergence time.

3.1 Optimal Utility and Optimal Global Welfare

We first analyze what is the optimal utility, i.e. the maximum utility a user
can get, and compare it to the optimal global welfare, i.e. the sum of user
utilities obtained under an optimal centrally designed configuration.

First consider the maximum utility a given user u can get. Clearly, u
cannot achieve utility larger than p, which corresponds to obtaining all the
subjects in P . Moreover, he cannot obtain more subjects than the aggregate
budget of attention of all users, that is

∑

u∈V (G) ∆u = n∆, where ∆ is the
average in-degree per node. More precisely, when a user v receives subjects
obtained by a user w, some link must connect w to v or to a user v is connected
to by some path. Overall, at least one link per user w 6= u must be consumed
with a user-to-user connection and cannot be used to retrieve a subject from a
producer. In a configuration where u receives a maximum number of subjects,
his utility is thus at most (

∑

u∈V (G) ∆u) − (n − 1) = 1 +
∑

u∈V (G)(∆u − 1).
Note that this bound is achieved in a singly linked chain configuration where
users are placed along a chain (u being the last node) and where each user
follows the previous user in the chain and use remaining connections to follow
producers. We thus get the following claim.

Claim 1 In an homogeneous flow game with p producers and n users with
average budget ∆, the optimal utility a given user can get among all config-
urations is U∗ = min

(

p, 1 + n(∆− 1)
)

.

On the other hand, all users can receive the same set of min
(

p, n(∆− 1)
)

≥
U∗ − 1 subjects in a ring configuration which consists in forming an oriented
ring between users and connecting all remaining connections to pairwise dis-
tinct producers as depicted by Figure 1. This shows that the average utility
a user gets at optimal global welfare equals the optimal utility U∗ up to one.

We will prove that optimal global welfare is generally obtained with a
ring configuration. However, the singly linked chain can be optimal in some
special cases. For example, in a flow game with n = 2 users having budget
2, a singly linked chain achieves a global welfare of 5 compared to 4 for the
ring. With three users, both configurations achieve a global welfare of 9.
More generally, we prove the following.
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Figure 1: An optimal configuration in the homogeneous case (circles and squares
represent users and producers respectively and edges point in the direction of
content transfer, as in all figures throughout the paper). It is called a ring config-
uration as users form an oriented ring.
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Claim 2 Consider an homogeneous flow game with n ≥ 3 users where each
user has budget 2 or more and where the average budget ∆ is less than p

n
+1

(equivalently p ≥ 1 + n(∆− 1)). The optimal global welfare is that of a ring
configuration that is n2(∆− 1) = n(U∗ − 1).

Proof. The condition on average budget can be written p > n(∆−1). We first
assume p > n∆ as this implies that there always exists some producer not
received by a user as n∆ is a clear upper-bound of the number of subjects that
can be globally retrieved by the users. Consider a configuration providing
maximum global welfare.

The graph of user-to-user connections must be connected. If there were
two different connected components a and b, we could find a user v in b
following some producer x. We could then rewire the producer-to-user con-
nections in a so that some node u in a receives x plus some subject y not
received by v while preserving the utility of each user (as nodes in a have
budget at least 2, they receive at least two subjects). Rewiring (x, v) into
(u, v) would then increase the global welfare of 1 at least.

Now consider the strongly connected components of this graph resulting
from user-to-user connections: we call component a maximal set W of users
such that there is a path from s to t for all s, t ∈ W . Each component must
be a singleton or a ring. This is because any strongly connected graph with a
minimum number of links must be a ring (one link per user is necessary if the
graph has two nodes or more, and it is sufficient only when these links form
an oriented ring). If a non-singleton component was not a ring, we could
rewire its internal connections to form a ring and use the saved connections
to follow more producers and increase the global welfare.

We first show that if one component is a ring, then it is the only compo-
nent. We show this by proving that there cannot exist a connection between
a ring component and any other component. If a ring b is connected to a
ring a, then the two rings can be merged, allowing nodes in a to receive
subjects received in b and not in a previously. If a singleton component {v}
is connected to a ring a, then integrating v in the ring allows all users in a to
receive the other subjects received by v. Finally, suppose a ring component b
is connected to a singleton component {u} through a connection (u, v) where
v is a node in b. As u has budget at least 2 and connects to at most one
component, it has at least one connection to a producer x. This connection
can be used to integrate u in the ring of b while saving the previous ring
connection of v. (If the node preceding v in the ring is w, we replace (x, u)
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by (w, u) and release connection (w, v).) We can thus connect v to x and get
a configuration with higher welfare since u now receives more subjects.

We now consider the special case where all components are singletons.
If a user a was followed by b and c, we could increase the global welfare by
letting c follow b instead of a. In such an optimal configuration, each user is
followed by at most one user. The graph of user-to-user connections is thus
a tree. Highest utility is obtained when the users follow pairwise disjoint
sets of producers. If a node a follows b and c, it then more profitable to let
a leaf of the sub-tree rooted at b follow c instead of some producer x and
let a follow x instead of c. The tree must thus be a singly linked chain.
Such a configuration cannot achieve global welfare higher than that of a ring
configuration for n ≥ 3 and nodes of budget at least 2.

Finally consider the case where p > n(∆− 1) and p ≤ n∆. Consider the
modified flow game with the same set of users (with the same budgets) and
with p′ = p+n > n∆ producers (n more producers are added). Any optimal
configuration for the modified game can be transformed into a configuration
for the original game since n(∆ − 1) < p producers at most get connected.
The optimal configuration we consider in the original flow game must thus
achieve a global welfare as high as what can achieved in the modified game.
It is thus optimal in the modified game also. We can thus again conclude that
the optimal global welfare is that of a ring, that is n2(∆−1) = n(U∗−1). 2

Interestingly, we have indeed shown that for n ≥ 4, the ring is the only
optimal configuration when users have budget at least 2. When some users
have budget 1 and yet 4 or more nodes have budget at least 2, any optimal
configuration still has a ring structure. As a connection to a budget 1 user
is equivalent to a connection to the node he follows, we can virtually erase
budget 1 users as transparent forwarding nodes along connections between
users with budget at least 2 and producers. The virtual configuration must
be optimal also and must be a ring. However, there are several ways budget
1 users can be connected to other users. They can be connected to any node
of the ring, or form trees connected to some nodes of the ring, or form chains
that replace some links of the ring. (A singly linked ring is one possible
optimal configuration.)
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3.2 Price of Anarchy

We now consider a distributed setting where each user selfishly rewires his
incoming connections if he can improve his utility, i.e., if this allows him to
receive more subjects. The following proposition shows that with homoge-
neous user interests and budget of attention at least 3, self organization is
efficient if dynamics converge, achieving a price of anarchy close to 1.

Proposition 1 Assume that 3 ≤ ∆u < p for every user u ∈ V of a homo-
geneous flow game with n ≥ 3 users. Then under any equilibrium the utility
of a user is at least ∆−2

∆−1
(U∗ − 1) where U∗ is his optimal utility. The price

of anarchy is 1 + 1/(∆− 2) at most, approaching 1 for large ∆.

Before proving Proposition 1, we establish two lemmas. The first one
allows to show the existence of strongly connected components at equilibrium
showing that under some technical assumption, if a forwarding path exists
at equilibrium, then a reverse path should also exists. .

Lemma 1 If an equilibrium is reached such that there exists a path x, u1, . . . , uk

where x is a producer, uk has in-degree bound ∆uk
≥ 3 and a producer y is

not received by uk, then there is a path from uk to u1.

Proof. The existence of the path x, u1, . . . , uk first implies that R(u1) ⊂
R(uk). Since ∆uk

≥ 3, uk must be connected to two nodes v and w distinct
from uk−1. We first claim that v must bring at least one unique subject
z1 (not in R(u1) and thus different from x), otherwise, uk could unfollow v
and follow y instead. Similarly, w must bring at least one unique subject z2
(different from z1 and not in R(u1)). Then if there is no path from uk to u1,
u1 would unfollow x and follow uk instead, so that he only loses one subject
x but gains at least two subjects z1 and z2. 2

The second Lemma will be used to bound the number of links between
users in a strongly connected component at equilibrium. We call transitivity
arc a link (s, t) such that there exists a path from s to t. Such a link is useless
as any subjects it brings is also provided by the path, and node t would be
better off following a non-received producer instead of s. Such links cannot
thus exist at equilibrium.
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Lemma 2 Consider a strongly connected graph G with n nodes and m arcs
(multiple arcs are allowed). If m ≥ 2n − 1, then G contains a transitivity
arc.

Proof. We prove the result by induction on n. The hypothesis is true for
n = 1 (a self-loop on vertex s is a transitivity arc for the empty directed
path from s to s). We denote by n(G) the number of nodes in the graph G
and by m(G) the number of edges in the graph G. Now consider n > 1 and
assume that the property is true for any graph G′ with n(G′) < n. Consider
a strongly connected graph G with n nodes containing no transitivity arc.
Since n ≥ 2, G must contain a circuit, i.e. an oriented cycle, with k ≥ 2
nodes. The only arcs connecting two nodes of the circuit are the circuit arcs
(otherwise, we would encounter a transitivity arc). Consider the graph G′

obtained by contracting the circuit to one node. We have m(G′) = m(G)−k
and n(G′) = n(G)− k + 1 < n. Note that G′ does not contain a transitivity
arc either. Our induction hypothesis thus implies that m(G′) < 2n(G′)− 1.
That ism(G)−k < 2(n−k+1)−1 or equivalently m(G) < 2n−k+1 ≤ 2n−1
as k ≥ 2. The property is thus satisfied for n. 2

We are now ready to prove Proposition 1.
Proof.[of Proposition 1] Consider any equilibrium. If all users receive at least
p subjects, then the equilibrium is optimal. We thus consider the case where
there is a user u who receives less than p subjects. Then u must be connected
to some producer x by a path x, u1, . . . , uk = u. Consider the graph G′

induced by users reachable from u1 that receive less than p subjects. By
Lemma 1, G′ is strongly connected and all its users receive the same number
p′ < p of subjects.

We claim that two users u and v of G′ cannot follow the same producer
y. As there exists a path from u to v, the link (y, v) would be redundant and
v would be better off following some unreceived subject instead. Moreover,
the fact that users in G′ do not receive all subjects implies that they have
spent all their budget of attention. We thus conclude that the number of
edges in G′ is m(G′) =

∑

u∈V (G′)∆u − p′. As the network is stable, there

is no transitivity arc in G′. (Otherwise, a transitivity arc (s, t) would be
redundant with some path from s to t, and t would be unstable as he could
increase his utility by rewiring this link to a new producer.) Lemma 2 thus
implies m(G′) ≤ 2n(G′) − 2 ≤ 2n(G′), where n(G′) is the number of nodes
in G′. We thus get p′ ≥

∑

u∈V (G′)∆u − 2n(G′) =
∑

u∈V (G′)(∆u − 2).
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First consider the case p′ ≤ p−2. Suppose there exists a user w /∈ V (G′).
As ∆w ≥ 3, w has utility at least p′ + 2 since he can gather the p′ subjects
received in G′ plus two others by connecting to one node in G′ plus the two
corresponding producers. He thus receives two subjects not received inG′ but
this contradicts the stability as u1 would better unfollow x and connect to w.
We thus conclude that G′ indeed contains all users, implying p′ ≥ n(∆− 2).

Using Claim 1, the utility of each user is at least p′ ≥ ∆−2
∆−1

(U∗ − 1). The

global welfare at equilibrium is thus at least n2(∆−2). As the optimal global
welfare is at most n2(∆− 1) according to Claim 2, the price of anarchy is at

most ∆−1
∆−2

.

Finally, in the remaining case where p′ = p−1, some users may be outside
V (G′). However such users must also receive p − 1 subjects at equilibrium
(if a user was receiving less, he could increase his utility by following a node

in V (G′)). The utility of each user is thus at least p−1
p
U∗ ≥ ∆−2

∆−1
(U∗ − 1) as

p ≥ ∆ − 1 and U∗ ≥ (U∗ − 1).As the optimal global welfare is bounded by

nU∗, the price of anarchy is at most p

p−1
≤ ∆−1

∆−2
.

In both cases, each user gets utility ∆−2
∆−1

(U∗ − 1) at least at equilibrium

and the price of anarchy is at most ∆−1
∆−2

= 1 + 1
∆−2

. 2

Note that the above proposition is tight in the sense that high price of
anarchy can arise when most of the users have budget only 2. Figure 2
presents the extreme configuration where all nodes have budget 2. In this
particular example, a doubly linked chain forms a pure Nash equilibrium
gathering only two subjects in total while a ring configuration gathers n
subjects. The price of anarchy is thus n/2. Indeed the doubly linked chain
is still stable when some nodes have budget more than 2 and use their spare
connections to gather fresh subjects. In that case, the price of anarchy is
n(∆−1)

n(∆−2)+2
. It thus remains unbounded as long as ∆ = 2 + o(1).

3.3 Convergence of Dynamics

We have thus shown that stable configurations of self-organizing networks
with homogeneous user interests are efficient. However, do network dynamics
converge to an equilibrium ? The following proposition answers this question
in the affirmative.
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(a) Optimal configuration

(b) A pure Nash equilibrium configuration

Figure 2: Two stable configurations in a homogeneous game where all users have
degree ∆ = 2 showing that price of anarchy can be n/2.

Proposition 2 Any homogeneous flow game has an ordinal potential func-
tion, implying that selfish dynamics always converge to an equilibrium in
finite time.

Proof. Let ni denote the number of users that receive i subjects and consider
the sequence (n0, n1, . . . , np). We show that this sequence always decreases
according to lexicographic ordering when users make selfish moves. The
function −

∑

0≤i≤p ni n
p−i (obtained by reading n0n1 · · ·np as a number) is

thus a potential function that will always increase until a local maximum is
reached, proving convergence to an equilibrium.

Consider a user u that is receiving i subjects and that will make a selfish
move to receive j > i subjects instead. Note that there is no path from u
to any other user receiving k < i subjects. Therefore any change by u will
not affect these users. Now consider any user v with k ≥ i subjects. If there
is no path from u to v then u’s selfish move does not affect v. If there is
such a path, then v will now receive at least j > i subjects. We thus now
have ni − 1 users receiving i subjects, and the sequence (n0, n1, . . . , np) has
decreased according to lexicographic ordering. 2

Combining Proposition 1 and Proposition 2, we obtain:

Theorem 1 In a homogeneous flow game where n ≥ 3 users have budget of
attention at least 3, less than p, and ∆ in average, selfish dynamics converge
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to an equilibrium such that the utility of a user is at least ∆−2
∆−1

(U∗− 1) where

U∗ is the optimal utility he can get. The price of anarchy is 1 + 1/(∆ − 2)
at most.

Our proof of Proposition 2 yields a very loose bound of np+1 on con-
vergence time. We leave as an open question whether exponential time of
convergence can really arise. However, in the following proposition we show
that a homogeneous flow game with at least 4 subjects, a user with budget
of attention at least 2 and a user with budget of attention at least 3, is not
equivalent to a congestion game. This rules out the possibility of using tech-
niques similar to [9] to find equilibria in polynomial time, and more generally
to easily bound convergence time.

Proposition 3 Any homogeneous flow game with at least 4 subjects, a user
with budget of attention at least 2 and a user with budget of attention at least
3, does not admit an exact potential function.

Note that a game is equivalent to a congestion game if and only if it
admits an exact potential function [22].
Proof. This is proven by considering cycles in the strategy space where each
point corresponds to a set of strategies chosen by all the users and an arc
corresponds to a selfish move by a user. A potential function assigns a value
to each point. Its variation along an arc is the difference between the values
assigned to the destination and the source. We define its variation along a
path as the sum of the variations of the arcs of the path. Obviously, the
variation along a cycle must be zero.

Additionally, an exact potential function should ensure that the variation
during a move by a user u equals the variation of the utility of u. We define
similarly the variation of utility along a path with selfish moves from users
u1, . . . , uk respectively as the sum of utility variations for node u1 in the first
move, node u2 in the second move, and so on. If ever, we can exhibit a cycle
with non-zero utility variation in our flow game, it is clearly impossible to
design an exact potential function for that game satisfying both requirements.
(For more details about congestion games and exact potential functions, see
for example [22].)

To show the proposition, we exhibit a 4-cycle in the strategy space with
non-zero utility variation along the cycle. Without loss of generality, the
game contains four producers {a, b, c, d} and two users u, v with ∆u ≥ 2
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and ∆v ≥ 3 as depicted in Figure 3. User u can adopt in particular strat-
egy A = {(a, u)} or B = {(b, u), (c, u)}. User v can adopt in particular
strategy C = {(u, v), (b, v), (c, v)} or D = {(u, v), (d, v)}. Consider the cy-
cle (A,C) → (B,C) → (B,D) → (A,D) → (A,C) where user u moves
from strategy A to B increasing his utility by 1, then v moves from C to D
and increases his utility by 1, then u moves back to A with a utility vari-
ation of -1, and finally v moves back to C increasing its utility by 1 again
(the strategies for other users remain fixed). The overall sum is thus 2 6= 0. 2

Instead of trying to obtain tight bounds on the convergence time of arbi-
trary sequences of moves, we will now prove that convergence time is poly-
nomial under some natural assumption concerning the dynamics. The idea
is to assume some fairness among users in the sense that they regularly have
the opportunity to make a move. To measure this, we call round a sequence
of moves where each user can be associated to a point in the sequence where
he either performs a selfish move or cannot make any selfish move (if he is
given the possibility to make a move at that point, he can either perform
the move indicated in the sequence or no move can increase his utility in
the configuration obtained by the moves up to that point). Interestingly, we
could consider a sequence of moves as fair when starting at any moment t in
the sequence, the moves from t to t+O(n) constitute a round. If convergence
is polynomial in number of rounds, it is then polynomial in number of moves
also. More generally, we consider as fair any sequence of moves without any
infinite round. Such sequences will be called fair dynamics and can always
be decomposed as a sequence of finite rounds.

Proposition 4 Any homogeneous flow game with p producers and n users
having average budget of attention ∆ converges in O(np+n2∆) rounds under
fair dynamics.

Proof. We claim that the number of users with minimum utility Um (those
getting the least number Um of subjects) decreases every three rounds as
long as equilibrium is not reached and the value of Um has not increased.
The proposition clearly follows from that fact since 3n rounds at most then
suffice to increase the minimum utility by one at least and the maximum
utility a user can get is bounded by min(p, n∆). To show this, assume that
during one round, no user with minimum utility can make a selfish move.
A first trivial case occurs when all users have the same utility Um. This

18



u v

{a} {b} {c} {d}

u v

{a} {b} {c} {d}

u v

{a} {b} {c} {d}

u v

{a} {b} {c} {d}

v, +1

u, -1

v, +1

u, +1

(A, C)
(B, C)

(B, D)(A, D)

Figure 3: A 4-cycle (A,C) → (B,C) → (B,D) → (A,D) → (A,C) in the strategy
space with non-zero utility variation. The cycle is represented with blue double
arrows. Each double arrow corresponds to a move where a user changes his con-
nection strategy. This brings the network from one configuration to another. Each
double arrow is labeled with the name of the user making the move and his utility
variation.
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means that no user could make a move which implies that equilibrium has
been reached. Otherwise, consider what occurs in the next round. Either no
node can move and we reach equilibrium, or a node with minimum utility
Um can move, or a node u receiving more than Um subjects can move and
then receives at least Um + 2 subjects. In the latter case, consider the first
time the opportunity of moving is given to a node v receiving Um subjects
and following directly at least one producer x. (Such a node must exist: as
any user followed by a user having minimum utility has also minimum utility,
if all users with minimum utility are only connected together, their utility
is zero and they can obviously move.) Then rewiring (x, v) into (u, v) is a
move for v. This is due to the fact that u still receives Um + 2 subjects at
least until the turn of v comes (any move by a user u′ with utility Um + 1
or more increases his utility to U ′ ≥ Um + 2 and if u is affected, his utility
cannot drop bellow U ′). As u receives at least two subjects not received by
v, the utility of v increases by one at least with this move. As the move of u
occurs within the second round after a round without any progress for nodes
with minimum utility, the move of v occurs within the third round at most. 2

The interested reader can easily build sequences of moves with length
Ω(n2). We will thus not try to improve beyond polynomial time convergence
in this section. However, we will see in the heterogeneous case how conver-
gence within a logarithmic number of rounds can arise when interests of users
have some geometrical structure (see Section 5).

4 Heterogeneous interests

We now consider the more realistic case where users have differing sets of
interests. To make the model even more general, we assume here that users
weight independently topics. Let Wu(s) denote the weight (or value) of topic
s to user u. The objective of a user is now to maximize the sum of the values of
subjects he receives. We will consider user-interest sets Su ⊆ P that include
topics of non-zero value, that is Su = {s : Wu(s) > 0}. Such user-specific
weights for topics represent a natural expertise or focussed interest users
may have on a subset of topics. (Note that the model presented previously
corresponds to Wu(s) = 1 for s ∈ Su, Wu(s) = 0 for s /∈ Su.)
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4.1 Price of Anarchy

We now show that the price of anarchy of such a system may be unbounded.

Proposition 5 In a heterogeneous flow game with n users having budget of
attention ∆ each, the price of anarchy can be Ω

(

n
∆

)

.

Proof. We show the result through an example, illustrated in Figure 4.
For positive integer k, consider a system with n = 2k users having budget
of attention ∆ ≥ 2 each, and p = 2(∆ − 1)k producers. We distinguish
two set of users {a1, . . . , ak} and {b1, . . . , bk}. Similarly, the producers are
partitionned into groups {A1, . . . , Ak} and {B1, . . . , Bk} where each Ai (resp.
Bi) contains ∆− 1 producers.

As illustrated in Figure 4(a), each user ai has a value of 1 for each topic
in Ai ∪ Bi and additionally the first element of each Aj for j 6= i. In the
figure, this is represented by the solid red line. Similarly, each user bi has a
value of 1 for each topic in Ai ∪Bi and additionally the first element of each
Bj for j 6= i. This is represented by the dashed blue line in the figure. Users
have a value of zero for all other topics.

Figure 4(b) shows a benchmark configuration, with solid red edges for
nodes of type a and dashed blue edges for nodes of type b. In this configu-
ration, users ai, i = 1, . . . , k construct an oriented ring, and similarly users
bi, i = 1, . . . , k construct a separate oriented ring. They use their remaining
links to connect to producers. User ai is then connected to ai−1 (with a0 cor-
responding to ak) and also to all producers in Ai using the remaining ∆− 1
links. Similarly, user bi is connected to bi−1 (with b0 corresponding to bk) and
also to all producers in Bi. The corresponding utility is n(n/2 + ∆− 2), so
that the optimal global welfare U∗ satisfies U∗ ≥ n2/2.

Figure 4(c) shows an equilibrium configuration, where each user ai (resp.
bi) connects to producers in Ai (resp. Bi) using ∆− 1 links and to bi (resp.
ai) using one link. Note that neither user can gain by making a unilateral
move since each of the other users (of indices j 6= i) can only provide one
additional subject as opposed to the ∆ − 1 subjects they now receive from
each other. The global utility here is U = n(2∆ − 2) ≤ 2n∆, and the price
of anarchy is thus at least n

4∆
. 2
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(c) A pure Nash equilibrium configuration.

Figure 4: A heterogeneous flow game where all users have same budget of attention
∆ = 4 and two configurations showing that price of anarchy can reach n

4∆ .
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4.2 Convergence of dynamics

We have shown that the price of anarchy can be unbounded with respect to
the number of users in some cases.

We now show that selfish dynamics do not even guarantee convergence
to an equilibrium.

Proposition 6 Selfish dynamics of a flow game with heterogeneous utilities
may not converge.

Proof. Consider the following scenario with six retransmitting users pi, qi, ri,
i = 1, 2, and two users u1, u2 each with degree ∆i = 3. The retransmitting
users publish sets of topics as follows: p1 : {a, b}, p2 : {c, d}, q1 : {x, y},
r1 : {k, l}, q2 : {x, k}, r2 : {y, l} . The user-specific values are given in
Table 1, where ǫ < 1/2. As depicted in Figure 5, each agent ui uses one
connection to follow user pi through whom he receives a total value of 4. He
also connect to the other user u3−i to receive another topic of value 2 from
p3−i. Now each user ui must select between q1, q2, r1 and r2 for his third
connection. We start with users u1 and u2 choosing q1 and q2 respectively.
They thus receive 8 + ǫ and 7 + 2ǫ in total respectively. User u2 then selects
r2 for receiving l instead of k and getting 8+ ǫ. This changes user u1’s utility
to 7 + 2ǫ. Then user u1 can increase his utility by 1 − ǫ, and does so by
switching to r1 for receiving k instead of x. Now this decreases u2’s utility by
1− ǫ. This can indeed continue again and again as follows. Denote the state
of the system by (S(u1),S(u2)) where S(ui) is user ui’s strategy in selecting
between qi and ri. Under selfish moves, the system may cycle as follows:
(q1, q2) → (q1, r2) → (r1, r2) → (r1, q2) → (q1, q2) → (q1, r2) → · · · . 2

User\Topic a b c d x y k l

u1 2 2 2 0 ǫ 1 1 ǫ

u2 2 0 2 2 1 ǫ ǫ 1

Table 1: User-specific values for topics used in the proof of Proposition 6.

With an arbitrary structure of user interest sets, we have thus shown that
the price of anarchy may be unbounded, and dynamics may not converge.
The question of determining if pure Nash equilibria exist is left open.

23



u1 u2p1

q1 r1 q2 r2

p2

{a,b} {c,d}

{k,l}{x,y} {x,k} {y,l}

u1 u2p1

q1 r1 q2 r2

p2

{a,b} {c,d}

{k,l}{x,y} {x,k} {y,l}

u1 u2p1

q1 r1 q2 r2

p2

{a,b} {c,d}

{k,l}{x,y} {x,k} {y,l}

u1 u2p1

q1 r1 q2 r2

p2

{a,b} {c,d}

{k,l}{x,y} {x,k} {y,l}
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Figure 5: Illustration of the proof of Proposition 6. Instability with heterogeneous
interest sets can arise with this 4-cycle of selfish moves (q1, q2) → (q1, r2) → (r1, r2)
→ (r1, q2) where users u1 and u2 change only one connection. The strategy of other
users remains fixed. The set of subjects they receive is indicated. User-specific
values for topics are those listed in Table 1. Each double arrow corresponds to
a selfish move bringing from one configuration to another. It is labeled with the
name of the user making the move and his utility variation.
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5 Structured interest sets

We now revisit the efficiency of social filtering in an heterogeneous scenario,
where interest sets are no longer arbitrary but instead are organized according
to a well behaved geometry. Specifically we assume the following model. A
metric d is given on a set P ′ ⊇ P of subjects. The interest set Su of each
user u then coincides with a ball B(su, Ru) in this metric, specified by a
central subject su and a radius of interest Ru. We assume that the value of
a subject to a user is non-increasing in its distance from su. Specifically, we
assume Wu(s) = f(d(su, s)) for d(su, s) ≤ Ru, where f(·) is a non-increasing
positive function, and Wu(s) = 0 otherwise. Without loss of generality, we
can assume P ′ = {su : u ∈ V } ∪ P and Su = B(su, Ru) ∩ P . We shall first
give conditions on the metric d and the sets Su under which an efficient
configuration exists. We will then introduce modified dynamics and filtering
rules which guarantee stability, i.e. convergence to an equilibrium. A flow
game where interest sets can be defined in this way is called a metric flow
game.

The model can easily be generalized to more eclectic user interests where
topics a user is interested in correspond to the union of a constant number of
balls. We leave out the details of such generalizations so as to keep the focus
of the paper. However, we include a brief discussion later in the section, in
the context of Proposition 7.

5.1 Sufficient conditions for optimal utility

Consider the following properties of the interest set geometry.

1. γ-doubling: d is γ-doubling, i.e. for any subject s and radius R, the
ball B(s, R) can be covered by γ balls of radius R/2: there exists I ⊂ S
such that |I| ≤ γ and B(s, R) ⊂ ∪t∈IB(t, R/2).

2. r-covering: r is a covering radius, i.e. for each subject s ∈ P there is a
user u such that d(su, s) ≤ r and Ru ≥ r.

3. (r, δ)-sparsity: there are at most δ subjects within distance r: |B(s, r)| ≤
δ, ∀s.

4. r-interest-radius smoothness: for any users u, v with d(su, sv) < 3Ru/2+
r, we have Rv ≥ Ru/2 + r and Ru ≥ Rv/2 + r (users with similar in-
terests have comparable interest radii).
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Property (1) is a classical generalization of dimension from Euclidean ge-
ometry to abstract metric spaces (an Euclidean space with dimension k is
2Θ(k)-doubling). This is a natural assumption if user interests can be modeled
by proximity in a hidden low-dimensional space. Property (2) states that all
subjects are within distance r from some user’s center of interest and can
thus be seen as an assumption of minimum density of users’ interests over
the whole set P of available subjects. Property (3) puts an upper bound
on the density of subjects. In other words, we assume a level of granularity
under which we do not distinguish subjects. Property (4) is another form of
smoothness assumption, requiring that the radii of interest of nearby users
do not differ too much. This property is obviously satisfied if we assume that
all users have same radius of interest. In general, it may seems debatable
if we think of an expert next to an amateur. However, if we assume that a
topic is split into several subjects according to the level of expertise required
to understand the corresponding news, the assumption becomes more nat-
ural as an expert is still interested in related subjects (with lower level of
understanding) and an amateur still has some focus if the correct number of
levels is considered.

We now show that an optimal solution exists, i.e. one in which each user
receives all subjects in his interest set, as each user u has budget of attention
at least γδ + γ2 log Ru

r
.

Proposition 7 Consider a metric flow game satisfying the γ-doubling, r-
covering, (r, δ)-sparsity and r-interest-radius smoothness assumptions. If in
addition each user u has a budget of attention at least γδ + γ2 log Ru

r
, then

there exists a collection of user strategies allowing each user u to receive all
subjects in Su.

This result can easily be extended to the case where each user interest
set is given by a union of balls (the number of balls being at most a constant
b). It suffices to repeat the construction of the proof for each ball, resulting
in a factor b in the resulting required budget of attention. The assumptions
have to be slightly modified so that any subject is covered by some ball of a
user (in the covering assumption) and that two nearby balls have comparable
radii (in the smoothness assumption).

Proof. We define the ball Bu,i := B(su,min(Ru, 2
ir)) for each user u and

each integer i ≥ 0. The construction to follow will ensure that u collects all
subjects in Bu,i through a set Nu,i of contacts such that Bu,i ⊂ ∪v∈Nu,i

Bv,i−1.
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We first define Nu,1 = {ps : s ∈ Bu,1}. According to the γ-doubling as-
sumption, Bu,1 can be covered by γ balls of radius r. As the (r, δ)-sparsity
implies that each of these balls contains δ subjects at most, the size of Nu,1

is upper bounded by γδ.
Now, for 2 ≤ i ≤

⌈

log Ru

r

⌉

, the γ-doubling assumption implies that Bu,i

can be covered by at most γ2 balls of radius 2i−2r: there exists a set Lu,i of
at most γ2 subjects such that Bu,i ⊂ ∪s∈Lu,i

B(s, 2i−2r). From the r-covering
assumption, we can then define a set Nu,i of at most γ2 users such that
each s ∈ Lu,i is at distance at most r from some sv with v ∈ Nu,i. We
then have Bu,i ⊂ ∪v∈Nu,i

B(sv, 2
i−2r + r). Without loss of generality, we can

assume that for each s ∈ Lu,i, B(s, 2i−2r) intersects Bu,i (otherwise s can
safely be removed from Lu,i as it does not cover anything useful). We thus
have d(su, s) ≤ Ru + 2i−2r < 3Ru/2 (note that 2i−1r < Ru as i ≤

⌈

log Ru

r

⌉

).
For v ∈ Nu,i such that d(s, sv) ≤ r, we then have d(su, sv) < 3Ru/2 + r.
From the r-interest-radius smoothness, we then deduce Rv ≥ Ru/2 + r >
2i−2r+ r, implying min(Rv, 2

i−1r) ≥ 2i−2r+ r. The ball Bv,i−1 thus contains
B(sv, 2

i−2r + r) ⊃ B(s, 2i−2r). Together with the definition of Lu,i, this
proves Bu,i ⊂ ∪v∈Nu,i

Bv,i−1.
The connection graphG results from connecting each user u to all contacts

in the set ∪1≤i≤⌈log Ru
r ⌉

Nu,i.

Flow correctness: We show by induction on i that each user u receives
all subjects in Bu,i. The direct connection to producers for subjects in Bu,1

ensures this for i = 1. For i > 1, the induction hypothesis implies that each
user v ∈ Nu,i receives all subjects in Bv,i−1. From Bu,i ⊂ ∪v∈Nu,i

Bv,i−1, we
conclude that u will receive news about subjects in Bu,i from its contacts in
Nu,i. As Su = B

u,⌈log Ru
r ⌉, we finally know that u receives all subjects in Su.

In-degree bound: First, we have |Nu,1| ≤ γδ. This comes from the fact
that Bu,1 is included in at most γ balls of radius r from the γ-doubling
assumption, and each of these balls contains at most δ subjects from the
(r, δ)-sparsity assumption. Second, we have already seen that |Nu,i| ≤ γ2

for 2 ≤ i ≤
⌈

log Ru

r

⌉

. We thus obtain the bound γδ + γ2
(⌈

log Ru

r

⌉

− 1
)

<
γδ + γ2 log Ru

r
. 2

The core of the construction consists in covering a given ball radius of
2ir with a set of γ balls of radius 2i−1r. As a covering set of γ2 balls can
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be computed through a simple greedy covering algorithm [13], a solution
where the required budget of attention is within a factor γ from the bound
of Proposition 7 can thus be computed in polynomial time.

Note that a logarithmic number of connections allows to gather a poly-
nomial number of subjects. As previously mentioned, a budget of attention
of ∆ = γδ+ γ2 log Ru

r
for each user u is enough for maximum utility. On the

other hand, the number of subjects in B(su, Ru) can be polynomial in Ru.
For example, if the subjects are placed regularly in a d dimensional lattice,
it would be in the order of Rd

u (the doubling assumption ensures that it is
at most polynomial). A logarithmic number of connections is thus sufficient
for gathering the subjects interesting a user. Thus this configuration gives
substantial savings in comparison to one where users would connect directly
to all their subjects.

Clearly the configuration graph identified in this theorem is an equilib-
rium: as maximum utility is reached, no user can increase its utility by
reconnecting. We now study conditions that guarantee convergence of dy-
namics.

5.2 Sufficient conditions for stability

We first define two rules regarding republication of subjects received and
reconnections.

1. Expertise-filtering rule: when a user u is connected to a user v, u only
receives subjects s such that d(sv, s) ≤ d(su, s).

2. Nearest-subject rule for re-connection: when reconnecting, each user
u gives priority to subjects that are closer to su: a new subject s is
gained by u so that no subject t with d(su, t) ≤ d(su, s) is lost. (On
the other hand, any subject t with d(su, t) > d(su, s) can be lost.)

Rule 1 can be interpreted as follows. The center of expertise of a user is
the same as its center of interest, and the distance d also captures expertise
of users about subjects, in that u is more expert than v on subject s if and
only if d(su, s) ≤ d(sv, s). The rule then amounts to a sanity check where
u discards news from sources that have less expertise than himself on the
subject. We capture this with the following slight variation of the model. A
flow game with expertise-filtering is a flow game where reception of a subject
s by user u occurs only when there exists a directed path s = u0, . . . , uk = u
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from s to u such that for each 1 ≤ i < k, s ∈ Sui
(i.e. d(sui

, s) ≤ Rui
) and

d(sui
, s) ≤ d(sui+1

, s).
Rule 2 states that a user u prefers to receive a subject he is more interested

in (i.e. closer to su) rather than any number of subjects that are less inter-
esting. A flow game is denoted to be with nearest-subject priority if the utility
function of each user u is defined by Uu(F ) = max {R : u receives all s ∈ B(su, R)}.

Proposition 8 Any metric flow game with expertise-filtering and nearest-
subject priority has an ordinal potential function, implying that selfish dy-
namics always converge to an equilibrium in finite time.

The proof shows the existence of an ordinal potential function.
Proof. Consider the set D = {d(su, s) : u ∈ V, s ∈ P} of all possible distances
from the central subject of any user to any subject. Let r1, . . . , rm denote
all elements of D sorted in non-decreasing order (i.e. r1 ≤ · · · ≤ rm) with
ties broken arbitrarily. Let ni denote the number of pairs (u, s) such that
d(su, s) = ri and u receives s. Consider the tuple (n1, . . . , nm). When a user
u makes a selfish move, he increases his utility by receiving a new subject s.
Let i denote the index such that d(su, s) = ri. Any lost subject t must satisfy
d(su, t) > d(su, s) by the nearest-subject rule. If a lost subject t was received
by some user v through a path from u to v, we have d(sv, t) ≥ d(su, t) by the
expertise-filtering rule. We thus deduce d(sv, t) > d(su, s), implying that nj

can decrease only for j > i. The tuple (n1, . . . , nm) thus increases according
to the lexicographical order after any selfish move. As the size of D is at
most np, the product np is also a trivial upper bound on each ni. The tuple
(n1, . . . , nm) can thus be read as a number in base np. This number always
increases under selfish moves, implying that

∑

0≤i≤m ni (np)
m−i is a potential

function. This potential function always increases until a local maximum is
reached, proving convergence to an equilibrium. 2

We can additionally prove fast convergence under sufficient conditions for
optimal utility and fair dynamics under best response. We call best response
a move where a user u gets the best possible utility (with nearest-subject
priority) given the current connections of other users. In other words, u
receives all subjects within distance R from su after the move and no move
could provide all subjects within distance R′ from su with R′ > R. Recall
that a sequence is fair if it can be decomposed in a sequence of rounds where
each user has the opportunity to make a move during each round as defined
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in Section 3.3. If in addition users only perform best response moves, we say
that the system is under fair dynamics with best response.

We are now ready to prove the following:

Theorem 2 Consider a metric flow game with expertise-filtering and nearest-
subject priority that satisfies the γ-doubling, r-covering, (r, δ)-sparsity and r-
interest-radius smoothness assumptions. If in addition each user u has budget
of attention at least γδ + γ2 log Ru

r
, selfish dynamics converge to an equilib-

rium where each user u receives all subjects in Su, implying that the price
of anarchy is then 1. Moreover, the system converges in at most

⌈

log Rm

r

⌉

rounds under fair dynamics with best response where Rm is the maximum
radius of interest over all users.

Proof. Consider a configuration where some user u does not receive some
subject s in his interest ball. Such a pair (u, s) is called an unsatisfied pair.
Without loss of generality we consider an unsatisfied pair (u, s) with smallest
d(su, s) among all unsastisfied pairs. Let j be the smallest integer such that
d(su, s) ≤ 2jr holds. As in the construction of the proof of Proposition 7,
user u can then receive all subjects in Bu,i = B(su,min(Ru, 2

ir)) through
connections to the nodes in some set Nu,i as follows. The set Nu,1 contains
at most γδ producers: those within distance 2r from su. For 2 ≤ i ≤ j, the
set Nu,i contains at most γ2 users such that Bu,i is included in ∪v∈Nu,i

Bv,i−1.
Following these users allows u to receive all subjects in the ring Bu,i \Bu,i−1.
The reason is twofold. First, the choice of (u, s) ensures that every user v
receives all subjects in Bv,i−1 as this ball has radius 2

i−1r at most and 2i−1r ≤
2j−1r < d(su, s) by the choice of j. Second, any subject s ∈ Bv,i−1 \ Bu,i−1

where v is a user in Nu,i is received by u according to expertise-filtering since
d(sv, s) ≤ 2i−1r and d(su, s) > 2i−1r. Overall, u can receive all subjects
within distance min(Ru, 2

jr) including s. Nearest-subject priority implies
that the configuration is unstable as long as ∆u ≥ γδ+γ2(j−1) which is the
case for ∆u ≥ γδ + γ2 log Ru

r
since Ru ≥ d(su, s) > 2j−1r. Since the system

must stabilize to some equilibrium according to Proposition 8, every user u
must receive all news about subjects in Su in that stable configuration.

Convergence speed: Let Pj denote the property that every user u re-
ceives all subjects in his ball of radius min(Ru, 2

jr). We show by induction
on j that Pj is satisfied after the first sequence of best response moves con-
stituting j rounds. Consider the first moves. The nearest-subject priority
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rule ensures that each user u receives all subjects in Bu,1 after his first move.
The reason is simply that his budget is sufficient to connect directly to all
producers in Bu,1 (recall that this ball has size at most γδ as shown in the
proof of Proposition 7). A move later on by a user v cannot alterate the
reception of a subject s with d(su, s) ≤ 2r. This is an effect of the expertise
filtering rule: u can be affected only when he receives s by a path from v
to u with d(sv, s) ≤ d(su, s) ≤ 2r according to expertise filtering and we
know that a best response move of v ensures that v will receive all subjects
in B(sv, 2r) after the move. Property P1 is thus satisfied as soon as every
user has made a move under best response, that is after the first round. Now
assume that Pj−1 is satisfied. A move by user u cannot incur the loss of a
subject s for a user w whose central subject sw is at distance at most 2jr from
s. The reason is that if w receives this subject through a path from u, the
expertise-filtering rule implies that su is at distance at most 2jr from s also.
On the other hand, Pj−1 implies the necessary conditions to apply the same
argument as in the first part of the proof. We can thus show that some move
by user u will allow him to receive all subjects within distance min(Ru, 2

jr).
As u forwards this subject before the move, we have d(su, s) ≤ min(Ru, 2

jr)
and u still forwards the subject after a best response move. We can thus con-
clude that if a user w receives all subject within distance 2jr, he will continue
to receive all of them along the jth round. This implies in particular that
property Pj−1 thus remains satisfied along the round. Additionally, a user
u receives all subjects in his ball of radius min(Ru, 2

jr) after his first move
in the jth round and this is preserved during the sequel of the round. We
can thus conclude that Pj is satisfied as soon as the jth round is completed
and remains satisfied afterwards. This completes the proof by induction. For
j =

⌈

log Rm

r

⌉

, Pj imply that every user receives all subjects in his interest
ball. The convergence time is thus at most

⌈

log Rm

r

⌉

rounds. 2

6 Budget of attention and cost of connections

As a simplifying assumption, we have considered up to now that filtering
each connection had the same cost. We now discuss how our work can be
extended to reflect the fact that the connection (v, u) from a user u to a
user v depend on how the interests of u and v differ. A simple idea would
be to let the cost be an increasing function of the number of uninteresting
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messages v sends to u. However, this would make the model much more
complex as costs would then depend on the dynamics. Moreover this would
not reflect the reality where a link is usually established on a long term basis.
We thus propose to better model the cost of attention of a connection as an
increasing function of the number of uninteresting subjects v may potentially
bring to u, that is |Sv \ Su|. If we normalize the cost of connecting directly
to a producer to 1, a simple cost function for establishing link (v, u) could
be c(v, u) = 1 + αu|Sv \ Su| where αu > 0 is some parameter comparing the
cost of filtering an uninteresting subject for user u to the cost of initiating a
connection.

The model remains the same in the homogeneous case. In the heteroge-
neous case, the negative results of Section 4 remain valid in this more complex
model as we could expect. The example with high price of anarchy given in
Figure 4(a) can be modified so that the cost of connecting to any user is
the same and the bad equilibrium configuration remains stable (it suffices to
add (n/2 − 1) − (2∆ − 3) subjects for each pair ai, bi of users that interest
both of them and no one else). In the non-convergence example of Figure 5,
the two users that oscillate between two strategies are basically interested in
the same subjects and they oscillate between users bringing only interesting
subjects. The possibility of non-convergence thus remains valid also.

Pushing forward the idea, we can assume that a user tends to accept
a certain fraction of uninteresting content compared to interesting content.
This could be modelled by setting αu = β

|Su|
for some constant β > 0. Addi-

tionally, there is no reason for counting several times a subject that is brought
by several connections (micro-blogging systems can automatically eliminate
duplicates). We can thus estimate globally the cost of the set of connections
Fu made by user u as:

c(Fu) = |Fu|+ β

∣

∣∪(v,u)∈Fu
Sv \ Su

∣

∣

|Su|

Our model with structured interest sets naturally fits with this kind of
cost if we make a slightly stricter assumption on the metric, namely that
it has bounded growth. Given a constant γ′ > 1, a metric is γ′-growth-
bounded if for any point s and radius R, the ball B(s, 2R) is larger than
B(s, R) by a multiplicative factor of γ′ at most. This is indeed a special case
of doubling metric and still generalizes Euclidean metrics. The expertise-
filtering rule implies that a user u follows users at distance at most 2Ru.
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We can adapt the interest-radius smoothness assumption by requiring that
for any users u, v with d(su, sv) ≤ 4max(Ru, Rv), we have Rv ≥ Ru/2 and
Ru ≥ Rv/2. This setting thus implies ∪(v,u)∈Fu

Sv ⊆ B(u, 4Ru), and the size
of this ball is at most γ′2 times larger than B(u,Ru) = |Su| by the γ′-growth-
bounded hypothesis. We thus get c(Fu) ≤ |Fu| + βγ′2. Expertise-filtering
and smoothness assumptions on the metric modeling the interests thus imply
that the cost term for the filtering of uninteresting content is upper-bounded
by a constant. The results presented in Section 5 thus still apply up to the
corresponding additive term in the budget of attention bounds. We thus see
that this finer model gives another justification to expertise-filtering. This
may indeed reveal that the cost of filtering may naturally induce an incentive
for applying expertise-filtering.

7 Concluding remarks

We have shown that a flow game can have complex dynamics that may
not converge. However, we can prove convergence to efficient equilibrium for
both homogeneous flow games (with very weak assumptions) and metric flow
games (with more technical assumptions). While our proofs give exponential
bounds on convergence time in general, we get linear convergence time up
to a logarithmic factor (in number of moves) for structured interest set with
expertise-filtering and nearest-subject priority, showing that understanding
the structure of interests and its relation to forwarding mechanisms is a
key aspect of information flow in social networks. Direct follow up of this
work concerns the study of the speed of convergence in general and the
characterization of flow games having pure Nash equilibria.

A dual variant of our model could be to consider that every user gathers
all the subjects he is interested in while he tries to minimize the required
cost of attention. We could also mix both models, using utility functions
combining coverage of interest set and cost of attention (the function being
increasing in the number of interesting subjects received and decreasing in
the costs of attention of the formed links). Another interesting variant resides
in considering the size of flows or equivalently their rate of news. The budget
of attention required to follow a flow should then increase accordingly to its
size. This variant is complementary to weighting flows as a flow with more
news might be weighted higher by users wishing to follow it.

In that context, we believe the two following directions are promising for
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efficient social dissemination. First, incentive mechanisms, e.g. reputation
counters maintained by users, or payments between users, may be a comple-
mentary approach to augment the performance of self-organizing social flows.
Second, more elaborate content filtering between contact-follower pairs may
also lead to substantial improvements. We have already introduced expertise
filtering, which could translate into implementable mechanisms in existing so-
cial networking platforms. More generally there appears to be a rich design
space of filtering rules based on combinations of interests and expertise.
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