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ABSTRACT

This paper introduces a novel constraint handling approach
for covariance matrix adaptation evolution strategies (CMA-
ES). The key idea is to approximate the directions of the
local normal vectors of the constraint boundaries by accu-
mulating steps that violate the respective constraints, and to
then reduce variances of the mutation distribution in those
directions. The resulting strategy is able to approach the
boundary of the feasible region without being impeded in
its ability to search in directions tangential to the bound-
aries. The approach is implemented in the (1 + 1)-CMA-ES
and evaluated numerically on several test problems. The re-
sults compare very favourably with data for other constraint
handling approaches applied to unimodal test problems that
can be found in the literature.

Categories and Subject Descriptors

I.2.8 [Problem Solving, Control Methods, and Search];
I.2.6 [Learning]: Parameter Learning; G.1.6 [Optimiza-
tion]: Constrained Optimization

General Terms

Algorithms

Keywords

Stochastic optimisation, constraint handling, variable metric
algorithm, evolution strategy

1. INTRODUCTION
Numerous constraint handling approaches have been pro-

posed for use in evolutionary algorithms (EAs). A list of
references1 to constraint handling techniques used with EAs
compiled by Coello Coello at the time of this writing con-
tains more than one thousand entries. Among the most com-

1http://www.cs.cinvestav.mx/˜constraint/
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monly employed approaches are algorithms that rely on im-
mediate resampling of infeasible candidate solutions, penalty
functions, or multiobjective techniques. A recent survey [15]
provides a comprehensive overview.

Despite their strong performance in black box optimisa-
tion benchmarking exercises focusing on unconstrained real-
valued problems [6], little research has been done on con-
straint handling techniques for covariance matrix adapta-
tion evolution strategies (CMA-ES). The objective of this
paper is to develop a simple and robust constraint han-
dling approach for use in CMA-ES, and to incorporate it
in the (1 + 1)-CMA-ES. We consider the problem of min-
imising f(x) subject to inequality constraints gj(x) ≤ 0 for
j = 1, . . . , m. Function f : R

n → R is referred to as the
objective function; functions gj : R

n → R are the constraint
functions. In contrast to many existing constraint handling
approaches, we do not make the assumption that it is possi-
ble to obtain meaningful objective function values for infea-
sible candidate solutions. Moreover, our strategy does not
make use of constraint function values other than for the
purpose of determining feasibility of a candidate solution.
That is, even though the constraint functions yield real val-
ues, our algorithm only makes use of the binary information
whether a constraint is violated or not. As a result, our
approach enjoys invariance properties that algorithms that
rely on quantifying the degree of constraint violation do not.
See Hansen et al. [7] for a discussion of the importance of
invariance properties in black box optimisation.

The key idea underlying our algorithm is to approximate
the directions of the normal vectors of the constraint bound-
aries in the vicinity of the current candidate solution by
accumulating steps that violate the respective constraints.
Subsequently reducing variances of the distribution of off-
spring candidate solutions in those directions enables the
strategy to closely approach the boundary of the feasible
region without inhibiting its ability to search in orthogonal
directions.

The remainder of this paper is organised as follows. Sec-
tion 2 discusses constraint handling techniques used in con-
nection with evolution strategies and then summarises the
main ideas underlying the (1+1)-CMA-ES for unconstrained
optimisation. Section 3 introduces the novel constraint han-
dling approach that is the subject of this paper and describes
its incorporation in the (1 + 1)-CMA-ES. Section 4 exper-
imentally evaluates the algorithm on several test functions
and compares its performance with that of other EAs for
constrained optimisation. Section 5 concludes with a dis-
cussion of the results and directions for future research.



2. BACKGROUND
This section first reviews constraint handling techniques

proposed in connection with evolution strategies. It then
provides a brief review of the (1+ 1)-CMA-ES, which forms
the basis of the approach introduced in Section 3.

2.1 Related Work
Two of the simplest constraint handling techniques used

in connection with evolution strategies are discussed by Oy-
man et al. [17]. One approach resamples infeasible candidate
solutions until a feasible one has been generated. The other
approach prefers feasible candidate solutions over infeasible
ones, and it prefers those candidate solutions with smaller
overall degrees of constraint violation in comparisons among
infeasible candidate solutions. Neither approach requires
computing objective function values for infeasible candidate
solutions. In the case of the (1+1)-ES, which adapts its step
size based on observed success probabilities, the difference
between the two approaches is highly significant. Fig. 1(a)
illustrates a linear problem with a linear constraint. We re-
fer to the angle between the normal vector of the constraint
boundary and the gradient vector of the objective function
as the constraint angle. If the parental candidate solution is
in close proximity to the constraint plane, then small con-
straint angles result in a small probability of generating suc-
cessful offspring. The approach that resamples infeasible
candidate solutions does not consider those in the calcula-
tion of the success probability and thus does not reduce the
step size in response to infeasible candidate solutions. In
situations where there are multiple constraints active at the
same time, this may result in generating very large num-
bers of infeasible candidate solutions before a feasible one is
found. The approach that ranks feasible candidate solutions
higher than infeasible ones does consider infeasible candidate
solutions in its calculation of the success probability and sys-
tematically reduces the step size, resulting in convergence to
a non-stationary point of the objective. This issue was first
pointed out by Schwefel [19] and has since been studied an-
alytically by Arnold and Brauer [1]. Fig. 1(b) illustrates
that small constraint angles may arise in connection with
nonlinear constrained optimisation problems.

Runarsson and Yao [18] propose stochastic ranking as an
approach for weighting differences in objective function val-
ues and constraint violations against each other. The ap-
proach requires the ability to obtain objective function val-
ues for infeasible candidate solutions.

Kramer et al. [14] propose the use of biased mutations
for solving constrained optimisation problems. They do not
evaluate their approach in an evolution strategy that is in-
variant with regard to rotations of the coordinate system.

Kramer and Schwefel [13] propose and experimentally eval-
uate several constraint handling techniques for evolution
strategies, ranging from adaptively lowering a lower bound
on the global step size of the strategy to an algorithm evolv-
ing populations of feasible and infeasible candidate solu-
tions in tandem and one that involves a nested strategy
that adapts rotation angles of the mutation ellipsoid. All
of those have in common that no objective function values
are computed for infeasible candidate solutions.

Kramer et al. [12] are the first to propose a constraint
handling approach specifically for CMA-ES. Similar to our
approach, they learn a model of the constraint function and
use that model to adapt the covariance matrix that governs
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Figure 1: (a) Linear problem with a single linear
constraint. The two-dimensional subspace spanned
by the normal vector of the constraint plane and the
gradient vector of the objective function is shown.
The feasible region is shaded. (b) Two-dimensional
quadratic problem with a linear constraint where
the optimal solution lies on the boundary of the fea-
sible region. Constraint angles decrease as the opti-
mal solution is approached.

the distribution of offspring candidate solutions. However,
both the nature of the model for the constraint functions
and the covariance matrix update differ. Our model is sim-
pler and obtained on the fly, without the need for additional
constraint function evaluations. The covariance matrix up-
date in [12] aims to rotate the covariance matrix, whereas
ours acts to reduce variances in directions where constraint
violations have been observed.

Collange et al. [3] introduce a constraint handling ap-
proach for CMA-ES that strives to ensure that within some
given number of iterations the population contains at least
one feasible candidate solution. Their approach relies on
constraint function values and a user defined constraint value
threshold. No results from an evaluation of the approach on
test functions are provided.

2.2 (1+1)-CMA-ES
The (1 + 1)-CMA-ES introduced by Igel et al. [10] is a

variant of the (1 + 1)-ES that adapts the entire covariance
matrix of its offspring distribution in addition to its global
step size. As the covariance matrix C is positive definite,
Cholesky decomposition yields n×n matrix A such that C =
AAT, and offspring candidate solutions y are generated as

y = x + σAz (1)

where x is the parental candidate solution, z ∈ R
n has stan-

dard normally distributed components, and σ is the global
step size of the strategy. The strategy maintains an expo-
nentially fading record s ∈ R

n of successful steps that is



referred to as the search path. Upon generating a successful
offspring candidate solution it performs covariance matrix
update

C← (1− c+
cov)C + c+

covss
T (2)

where c+
cov ∈ (0, 1) is a constant. Rather than working with

the covariance matrix and performing a Cholesky decompo-
sition in every iteration of the algorithm, Igel et al. [10] show
that equivalently, matrix A can be updated according to

A←
p

1− c+
covA

+

p

1− c+
cov

‖w‖2

0

@

s

1 +
c+
cov‖w‖2

1− c+
cov

− 1

1

A swT (3)

where w = A−1s. Suttorp et al. [20] provide an analogous
update of the inverse of A that removes the need for matrix
inversion and makes it possible to implement the update
with Θ(n2) cost per iteration.

A variant of the (1 + 1)-CMA-ES proposed by Arnold
and Hansen [2] incorporates the active covariance matrix
update due to Jastrebski and Arnold [11] into the strategy.
The key observation is that in situations where there are iso-
lated large eigenvalues of the Hessian matrix of the objective
function, many iterations are required before the update in
Eq. (2) yields appropriate step sizes in the directions of the
corresponding eigenvectors. Rather than letting variances in
those directions decay through repeated multiplication with
(1 − c+

cov) < 1, in situations where the offspring candidate
solution is especially unsuccessful (in the sense that it is in-
ferior to its kth order ancestor for some k > 1), the strategy
performs covariance matrix update

C← (1 + c−cov)C− c−cov(Az)(Az)T (4)

where c−cov ∈ (0, 1) is a constant. Arnold and Hansen [2]
show that the update can equivalently be accomplished by
updating matrix A according to

A←
p

1 + c−covA

+

p

1 + c−cov
‖z‖2

0

@

s

1−
c−cov‖z‖2

1 + c−cov
− 1

1

A AzzT (5)

and they also provide an update of the inverse of A that
allows performing updates with Θ(n2) cost per iteration.

3. ALGORITHM
The key idea underlying our constraint handling approach

is to reduce variances of the distribution of offspring can-
didate solutions in the directions of the normal vectors of
constraint boundaries in the vicinity of the current parental
candidate solution. For that purpose, for each of the m
constraints we maintain an exponentially fading record vj ,
j = 1, . . . , m, of steps that have violated the constraint.
Those vectors are initialised to be zero and, in those itera-
tions where the jth constraint is violated, updated according
to

vj ← (1− cc)vj + ccAz . (6)

We refer to the vj as constraint vectors. Accumulation acts
as a low-pass filter and ensures that components of Az that
are tangential to the local constraint boundary average out

(a) (c)(b)

Figure 2: Effect of reducing the variance of the off-
spring distribution in the direction of the normal
vector of the constraint boundary. The parental can-
didate solution is marked by a dot. (a) The original
distribution is indicated by the dashed circle. Dot-
ted lines are contour lines of the objective function.
(b) The variance of the distribution in the horizontal
direction is reduced. (c) Situation from (b) shown
with the variables transformed by A−1.

in the mean. Parameter cc ∈ (0, 1) determines how quickly
the information present in the constraint vectors fades.

In those iterations where the offspring candidate solution
is infeasible, the Cholesky factor of the covariance matrix is
updated according to

A← A−
β

Pm

j=1 1gj(y)>0

m
X

j=1

1gj(y)>0

vjw
T
j

wT
j wj

(7)

where wj = A−1vj and 1gj(y)>0 equals one if gj(y) > 0
and zero otherwise. The update is akin to that in Eq. (5)
with the constraint vectors vj replacing Az. Parameter β
in Eq. (7) controls the size of the updates similar to the
way that c−cov does in Eq. (5). However, while the update
in Eq. (5) is of rank one, that in Eq. (7) is a multiple-rank
update if multiple constraints are violated. In contrast to
the update in Eq. (5), there is no multiplication of matrix A
with a scalar greater than one in order to increase variances
in directions other than those implicit in the constraint vec-
tors. Also in contrast to the active covariance matrix update
described in Section 2.2, we do not have an update of the
inverse of matrix A that would allow performing a step with
cost quadratic in n. Instead, the computational cost of the
update is in O(n3 + mn2).

Fig. 2 illustrates the effect of reducing the variance of the
distribution of offspring candidate solutions in the direction
of the normal vector of the constraint plane for a linear prob-
lem. Fig. 2(a) shows a parental candidate solution in the
vicinity of the constraint boundary. The dashed circle indi-
cates a contour line of the offspring density. Fig. 2(b) depicts
the same situation with the variance of the offspring distri-
bution reduced in the direction of the normal vector of the
constraint plane as a result of the transformation implicit
in matrix A. Fig. 2(c) considers the same situation as in
(b), but uses a coordinate system transformed by A−1. See
Hansen [5] for a discussion of coordinate transformations and
adaptive encodings. Notice that the change in offspring dis-
tribution results in an increase in the constraint angle in the
transformed space in Fig. 2(c) compared to Fig. 2(a). If ca-
pable of learning an appropriate coordinate transformation,
the algorithm will be able to avoid the pitfalls associated
with small constraint angles discussed in Section 2.1.



1. Generate offspring candidate solution y according to
Eq. (1).

2. For j = 1, . . . , m, determine whether gj(y) > 0 and
update vj according to Eq. (6) if it is.

3. If y is infeasible, then compute wj = A−1vj for all
j = 1, . . . , m and update the transformation matrix A
according to Eq. (7). The iteration is complete.

4. Otherwise, evaluate f(y), update the success proba-
bility estimate according to

Psucc ← (1− cP )Psucc + cP1f(y)≤f(x)

and update the global step size according to

σ ← σ exp

„

1

d

Psucc − Ptarget

1− Ptarget

«

.

5. If f(y) ≤ f(x), then replace x with y, update the
search path according to

s← (1− c)s +
p

c(2− c)Az

and update matrix A according to Eq. (3). The itera-
tion is complete.

6. Otherwise, if f(y) is inferior to its fifth order ancestor,
update matrix A according to Eq. (5).

Figure 3: Single iteration of the (1 + 1)-CMA-ES
with constraint handling through active covariance
matrix adaptation.

Incorporating the idea of constraint handling through ac-
tive covariance matrix adaptation in the (1 + 1)-CMA-ES
yields an algorithm the state of which is described by pa-
rental candidate solution x along with its objective function
value f(x) and those of its five most recent ancestors, global
step size σ, success probability estimate Psucc, transforma-
tion matrix A, search path s, and constraint vectors vj for
j = 1, . . . , m. Each iteration of the algorithm updates those
quantities as described in Fig. 3. For β = 0, the algorithm
is identical to the (1 + 1)-CMA-ES as described in [2], with
constraints handled using the simple resampling scheme de-
scribed by Oyman et al. [17]. All parameter settings are
summarised in Table 1. Values for parameters cc and β have
been obtained by optimising the performance of the strategy
applied to linearly constrained sphere functions and then re-
ducing β by a factor of about six in order to achieve robust
performance on other test problems. All other parameter
settings are identical to those given in [2].

4. EXPERIMENTAL EVALUATION
This section experimentally evaluates the performance of

the algorithm proposed in Section 3 using several constrained
test problems. Section 4.1 considers constrained sphere func-
tions that serve to examine basic scaling properties. Sec-
tion 4.2 considers several test problems frequently used to
evaluate the performance of algorithms for constrained op-
timisation, and it compares results observed for the (1 + 1)-
CMA-ES with constraint handling through active covariance
matrix adaptation with published work.

Table 1: Parameter settings.

d = 1 +
n

2
c =

2

n + 2
cP =

1

12
Ptarget =

2

11

c+
cov =

2

n2 + 6
c−cov = min

„

0.4

n1.6 + 1
,

1

2‖z‖2 − 1

«

cc =
1

n + 2
β =

0.1

n + 2

4.1 Constrained Sphere Functions
Consider the problem of minimising function

f(x) =

n
X

i=1

x2
i

subject to constraints xi ≥ 1 for i = 1, . . . , m ≤ n. The
optimal solution has components xi = 1i≤m and objective
function value m. Fig. 4 shows the number of objective and
constraint function evaluations required to locate a solution
with an objective function value that differs from the opti-
mal one by no more than 10−8 plotted against the dimension
of the search space. In the counting of constraint function
evaluations it is assumed that one function call yields infor-
mation for all constraints. The upper graph shows results
for m = 1, the lower one for m = n/2.

Two variants of the (1 + 1)-CMA-ES are considered: one
that employs constraint handling through active covariance
matrix adaptation as described in Section 3, and one that re-
lies on the simple resampling approach described by Oyman
et al. [17] (which is recovered from the former for β = 0). In
every run the initial candidate solution is sampled uniformly
from the feasible subregion of [−100, 100]n. The global step
size σ and Cholesky factor A are initialised to 0.1 and the
n × n identity matrix, respectively. Runs are terminated
when either the optimal solution has been found to within
the desired accuracy, or when 106 iterations have failed to
locate it. We have conducted 99 runs of either strategy in
each case and ordered the runs by the number of objective
function evaluations and constraint function calls. The bars
in the figure indicate the 10th, 50th, and 90th smallest values
observed. The thin dotted lines have slopes corresponding
to linear and quadratic growth, respectively.

In the case of a single constraint, the strategy variant
that employs active covariance matrix adaptation for con-
straint handling locates the optimal solution to within the
desired accuracy in every run and for every value of n con-
sidered. Both the number of objective function evaluations
and the number of of constraint function calls appear to
grow linearly with the dimension n. The number of ob-
jective function evaluations is less than twice that required
on unconstrained sphere functions of the same dimension.
The strategy variant that simply resamples infeasible can-
didate solutions locates the optimal solution to within the
desired accuracy in every run up to n = 40. However, it
requires more function evaluations, with the gap between
the two variants widening as n increases. For n = 100, the
resampling approach regularly fails to reach the termination
condition within 106 iterations.
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Figure 4: Comparison of the number of objective
and constraint function evaluations required to op-
timise constrained sphere functions with m = 1 (top)
and m = n/2 (bottom). The curves show results for
the (1+1)-CMA-ES with and without constraint han-
dling through active covariance matrix adaptation.

In the case of m = n/2 constraints, the strategy variant
that employs active covariance matrix adaptation for con-
straint handling again locates the optimal solution to within
the desired accuracy in every run and for every value of n
considered. The growth of the number of objective function
evaluations again appears linear in n, with overall numbers
very similar to those observed for m = 1 . The growth of the
number of constraint function calls appears to be quadratic
in the dimension of the problem. Results for the strategy
variant that resamples infeasible candidate solutions are in-
complete as for n ≥ 10 the strategy regularly fails to locate
the optimal solution to within the desired accuracy.

4.2 Other Test Functions
In order to perform a comparison of our algorithm with

published results, we have evaluated its performance on sev-
eral test functions that are commonly used to evaluate EAs
for constrained optimisation. Specifically, we have consid-
ered the test functions collected by Michalewicz and Schoe-
nauer [16] as well as those employed by Kramer and Schwe-
fel [13]. However, a comparison is difficult for several rea-
sons:

• Many test problems have multiple local minima. The
(1 + 1)-ES is a poor global optimiser and not use-

fully applied to multimodal problems. We have re-
stricted ourselves to test functions g06, g07, g09, and
g10 from the test suite in [16] as all others are multi-
modal. When comparing our results with those found
in the literature, it is important to keep in mind that
other EAs may sacrifice speed of convergence for im-
proved global search performance, and that our choice
of test functions is biased in favour of fast local opti-
misers. We expect that this caveat will be addressed
as we incorporate the approach of handling constraints
through active covariance matrix adaptation in the
(µ/µ, λ)-CMA-ES.

• Many algorithms for which results are reported in the
literature compute objective function values for infea-
sible candidate solutions. While this is possible for
commonly used artificial test problems, relying on the
ability to obtain meaningful objective function values
for infeasible candidate solutions limits the applicabil-
ity of the algorithms for some practical problems. Pre-
sumably, being able to compute objective function val-
ues for infeasible candidate solutions can simplify the
task of locating near optimal solutions. At the same
time, those algorithms that evaluate infeasible candi-
date solutions incur computational costs that those
that evaluate only feasible candidate solutions do not.

• Our algorithm requires a feasible candidate solution
as starting point. Some test problems include recom-
mended starting points, and we have used those. For
those test problems where no starting point is given,
we uniformly sample candidate solutions from the vol-
ume defined by the bound constraints until the first
feasible candidate solution is encountered. Notice that
no objective function evaluations are required for this
process. The number of constraint function calls re-
quired to generate starting points is highly dependent
on the choice of bound constraints and is not included
in the figures given below. Algorithms that evaluate
infeasible candidate solutions may have a bias in the
first feasible candidate solutions that they encounter
as the objective function landscape in the infeasible
region may act as a funnel.

• Performance measures employed in different papers
vary. Many authors only report objective function val-
ues after a number of objective function evaluations
that far exceeds the computational budget required by
our algorithm to locate near optimal solutions.

We have performed 99 runs of the (1 + 1)-CMA-ES with
constraint handling through active covariance matrix adap-
tation on each of the eight test problems described in Ap-
pendix A. For test problems g06, g07, g09, g10, and HB, runs
were terminated when a solution was obtained that, when
rounded to the accuracy with which the optimal values are
given in Appendix A, was identical to the optimal value.
For the remaining problems, runs were terminated when op-
timal objective function values were attained to within a
factor of 10−8. Table 2 lists the problems’ dimensions n,
the number mact of constraints active at the location of the
optimal solution, and the 10th, 50th, and 90th smallest num-
bers of objective and constraint function evaluations in each
case. All runs have located the respective optimal solutions



Table 2: Function evaluations required to solve test problems.

problem n mact
objective function constraint function
10th 50th 90th 10th 50th 90th

g06 2 2 272 308 364 827 1060 1223
g07 10 6 1939 2211 2703 10435 11283 12704
g09 7 2 1430 1674 2074 3626 4106 5075
g10 8 6 2794 3976 5369 15621 18781 23088
TR2 2 1 376 443 510 616 708 839
2.40 5 5 1326 1990 3326 4551 6994 11114
2.41 5 5 1483 2271 3581 5235 8108 12056
HB 5 4 623 768 1150 2338 2912 3970

to within the desired accuracy. We have conducted analo-
gous experiments with the strategy that employs the simple
resampling scheme and observed failure to converge to the
optimal solutions in many cases for all test problems but
g06 and TR2. In those cases where optimal solutions were
attained, the number of constraint function calls was very
significantly higher than for the strategy that employs active
covariance matrix adaptation for constraint handling.

While a comparison with published work is difficult for the
reasons outlined above and the figures need to be interpreted
with care, some results from the literature are as follows:

• Runarsson and Yao [18] use stochastic ranking in a
relatively basic evolution strategy that evaluates in-
feasible candidate solutions. They report the median
number of function evaluations required to attain the
best values encountered in each run. Those values are
in some cases less accurate than those used as termi-
nation conditions here. For test problems g06, g07,
g09, and g10 they report figures of 108,000, 143,000,
124,000, and 128,000 objective and as many constraint
function calls, respectively. These values exceed the
median values reported in Table 2 by factors of 350.6,
64.7, 74.1, and 32.2 for objective function calls and
by factors of 101.9, 12.7, 30.2, and 6.8 for constraint
function calls.

• In a paper that was ranked first in the 2006 IEEE Con-
gress on Evolutionary Computation Special Session on
Constrained Real-Parameter Optimization, Takahama
and Sakai [21] report the number of function calls re-
quired by ǫ constrained differential evolution with gra-
dient-based mutation and feasible elites to obtain so-
lutions within 10−4 of optimal solutions for g06, g07,
g09, and g10 to be 7,381, 74,303, 23,121, and 105,234
in the mean, respectively. These values exceed the
median values reported in Table 2 by factors of 24.0,
33.6, 13.8, and 26.5 for objective function calls and by
factors of 7.0, 6.6, 5.6, and 5.6 for constraint function
calls.

• Takahama and Sakai [22] report to have reached op-
timal solutions for problems g06, g07, g09, and g10

using ǫ constrained adaptive differential evolution af-
ter 15,846, 38,402, 25,400, and 24,815 objective func-
tion calls on average, respectively. These values exceed
the median values reported in Table 2 by factors of
51.4, 17.4, 15.2, and 6.2. The corresponding numbers
of constraint function calls are 36,112, 99,896, 50,766,

and 99,866 and exceed the median values reported in
Table 2 by factors of 34.1, 8.9, 12.4, and 5.3.

• Kramer and Schwefel [13] apply evolution strategies
with several constraint handling mechanisms to prob-
lems TR2, 2.40, 2.41, and HB. The best figures they
report for any of the evolution strategies are 796,201,
79,566, 51,660, and 54,344 objective function calls and
1,100,872, 770,334, 379,268, and 211,499 constraint
function calls, respectively. These values exceed the
median values reported in Table 2 by factors of 1,797.3,
40.0, 22.7, and 70.8 for objective function calls and by
factors of 1,554.9, 110.1, 46.8, and 72.6 for constraint
function calls.

• Kramer et al. [12] employ a CMA-ES that learns con-
straint function models and rotates mutation distri-
butions accordingly. They report figures of 3,249 and
11,216 objective function calls and 3,650 and 30,068
constraint function calls for problems TR2 and 2.40,
respectively. These figures exceed the median num-
bers of objective function calls reported in Table 2 by
factors of 7.3 and 5.6. The corresponding numbers of
constraint function calls differ by factors of 5.2 and 4.3.

Keeping the caveats mentioned above in mind, these re-
sults suggest the (1 + 1)-CMA-ES with constraint handling
through active covariance matrix adaptation as a relatively
capable EA for solving unimodal constrained optimisation
problems.

5. DISCUSSION AND FUTUREWORK
We have proposed a novel approach for handling con-

straints in covariance matrix adaptation evolution strate-
gies. Our algorithm does not assume that meaningful objec-
tive function values can be obtained for infeasible candidate
solutions. It does not make use of constraint function values
other than for determining feasibility of candidate solutions
and thus has desirable invariance properties. The key idea
of the approach is to obtain approximations to the directions
of normal vectors of constraint boundaries in the vicinity of
the location of current candidate solutions by low-pass fil-
tering steps that violate the respective constraints, and to
then reduce variances of the offspring distribution in those
directions. The scaling implicit in the transformation that is
learned in the process has the effect of increasing local con-
straint angles. We have presented experimental evidence
that if incorporated in the (1 + 1)-CMA-ES, the proposed
constraint handling approach outperforms a simple resam-
pling scheme. Further experiments on several unimodal test



problems suggest that the approach may be significantly
more efficient than other approaches for constrained evo-
lutionary optimisation.

In future work we will conduct comparisons of the perfor-
mance of the evolution strategy introduced here with fur-
ther algorithms for constrained optimisation, such as mesh
adaptive direct search algorithms and generating set search
methods. Furthermore, we will incorporate the idea of con-
straint handling through active covariance matrix adapta-
tion in the (µ/µ, λ)-CMA-ES and evaluate its potential for
solving constrained multimodal optimisation problems.
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APPENDIX

A. TEST PROBLEMS

Problem g06: (Floudas and Pardalos [4]) Minimise

f(x) = (x1 − 10)3 + (x2 − 20)3

subject to

g1(x) = −(x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0

g2(x) = (x1 − 6)2 + (x2 − 5)2 − 82.81 ≤ 0

and bound constraints 13 ≤ x1 ≤ 100 and 0 ≤ x2 ≤
100. Both constraints other than the bound constraints



are active at the optimum, which has an objective func-
tion value of −6961.81381.

Problem g07: (Hock and Schittkowski [9]) Minimise

f(x) = x2
1 + x2

2 + x1x2 − 14x1 − 16x2 + (x3 − 10)2

+ 4(x4 − 5)2 + (x5 − 3)2 + 2(x6 − 1)2 + 5x2
7

+ 7(x8 − 11)2 + 2(x9 − 10)2 + (x10 − 7)2 + 45

subject to

g1(x) = 4x1 + 5x2 − 3x7 + 9x8 − 105 ≤ 0

g2(x) = 10x1 − 8x2 − 17x7 + 2x8 ≤ 0

g3(x) = −8x1 + 2x2 + 5x9 − 2x10 − 12 ≤ 0

g4(x) = −3x1 + 6x2 + 12(x9 − 8)2 − 7x10 ≤ 0

g5(x) = 3(x1 − 2)2 + 4(x2 − 3)2 + 2x2
3 − 7x4 − 120 ≤ 0

g6(x) = x2
1 + 2(x2 − 2)2 − 2x1x2 + 14x5 − 6x6 ≤ 0

g7(x) = 5x2
1 + 8x2 + (x3 − 6)2 − 2x4 − 40 ≤ 0

g8(x) = (x1 − 8)2 + 4(x2 − 4)2 + 6x2
5 − 2x6 − 60 ≤ 0

and bound constraints −10 ≤ xi ≤ 10 for i = 1, . . . , 10.
Six of the eight constraints other than the bound con-
straints are active at the optimum, which has an objec-
tive function value of 24.3062091.

Problem g09: (Hock and Schittkowski [9]) Minimise

f(x) = (x1 − 10)2 + 5(x2 − 12)2 + x4
3 + 3(x4 − 11)2

+ 10x6
5 + 7x2

6 + x4
7 − 4x6x7 − 10x6 − 8x7

subject to

g1(x) = −127 + 2x2
1 + 3x4

2 + x3 + 4x2
4 + 5x5 ≤ 0

g2(x) = −196 + 23x1 + x2
2 + 6x2

6 − 8x7 ≤ 0

g3(x) = −282 + 7x1 + 3x2 + 10x2
3 + x4 − x5 ≤ 0

g4(x) = 4x2
1 + x2

2 − 3x1x2 + 2x2
3 + 5x6 − 11x7 ≤ 0

and bound constraints −10 ≤ xi ≤ 10 for i = 1, . . . , 7.
Two of the constraints other than the bound constraints
are active at the optimum, which has an objective func-
tion value of 680.630057.

Problem g10: (Hock and Schittkowski [9]) Minimise

f(x) = x1 + x2 + x3

subject to

g1(x) = 0.0025(x4 + x6)− 1 ≤ 0

g2(x) = 0.0025(x5 + x7 − x4)− 1 ≤ 0

g3(x) = 0.01(x8 − x5)− 1 ≤ 0

g4(x) = −x1x6 + 833.33252x4 + 100x1 − 83333.333 ≤ 0

g5(x) = −x2x7 + 1250x5 + x2x4 − 1250x4 ≤ 0

g6(x) = −x3x8 + 1250000 + x3x5 − 2500x5 ≤ 0

and bound constraints 100 ≤ x1 ≤ 10000, 1000 ≤ xi ≤
10000 for i = 2.3, and 10 ≤ xi ≤ 1000 for i = 4, . . . , 8.
All six constraints other than the bound constraints are
active at the optimum, which has an objective function
value of 7049.2480.

Problem TR2: (Kramer and Schwefel [13]) Minimise

f(x) = x2
1 + x2

2

subject to

g1(x) = 2− x1 − x2 ≤ 0.

The constraint is active at the optimum, which has an
objective function value of 2. Point (50, 50)T serves as
the starting point.

Problem 2.40: (Schwefel [19]) Minimise

f(x) = −
5

X

i=1

xi

subject to

g1(x) =
5

X

i=1

(9 + i)xi − 50000 ≤ 0

and bound constraints 0 ≤ xi for i = 1, . . . , 5. Con-
straint g1 as well as four of the bound constraints are
active at the optimum, which has an objective function
value of −5000. Point x = (250, 250, 250, 250, 250)T

serves as the starting point.

Problem 2.41: (Schwefel [19]) Minimise

f(x) = −
5

X

i=1

ixi

subject to

g1(x) =

5
X

i=1

(9 + i)xi − 50000 ≤ 0

and bound constraints 0 ≤ xi for i = 1, . . . , 5. Con-
straint g1 as well as four of the bound constraints are
active at the optimum, which has an objective function
value of−125000/7. Point x = (250, 250, 250, 250, 250)T

serves as the starting point.

Problem HB: (Himmelblau [8]) Minimise

f(x) = 5.3578547x2
3 + 0.8356891x1x5

+ 37.293239x1 − 40792.141

subject to

g1(x) = −h1(x) ≤ 0

g2(x) = h1(x)− 92 ≤ 0

g3(x) = 90− h2(x) ≤ 0

g4(x) = h2(x)− 110 ≤ 0

g5(x) = 20− h3(x) ≤ 0

g6(x) = h3(x)− 25 ≤ 0

where

h1(x) = 85.334407 + 0.0056858x2x5

+ 0.00026x1x4 − 0.0022053x3x5

h2(x) = 80.51249 + 0.0071317x2x5

+ 0.0029955x1x2 + 0.0021813x2
3

h3(x) = 9.300961 + 0.0047026x3x5

+ 0.0012547x1x3 + 0.0019085x3x4

and bound constraints 78 ≤ x1 ≤ 102, 33 ≤ x2 ≤ 45,
and 27 ≤ xi ≤ 45 for i = 3, 4, 5. One of the constraints
other than the bound constraints as well as three of the
bound constraints are active at the optimum, which has
an objective function value of −30665.539.


