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ABSTRACT
Parallel master-slave evolutionary algorithms easily lead to
linear speed-ups in the case of a small number of nodes
. . . and homogeneous computational costs of the evaluations.
However, modern computer now routinely have several hun-
dreds of nodes – and in many real-world applications in
which fitness computation involves heavy numerical simu-
lations, the computational costs of these simulations can
greatly vary from one individual to the next. A simple an-
swer to the latter problem is to use asynchronous steady-
state reproduction schemes. But the resulting algorithms
then differ from the original sequential version, with two
consequences: First, the linear speed-up does not hold any
more; Second, the convergence might be hindered by the
heterogeneity of the evaluation costs. The multi-objective
optimization of a diesel engine is first presented, a real-world
case study where evaluations require several hours of CPU,
and are very heterogeneous in terms of CPU cost. Both the
speed-up of asynchronous parallel master/slave algorithms
in case of large number of nodes, and their convergence to-
ward the Pareto Front in case of heterogeneous computa-
tion times, are then experimentally analyzed on artificial
test functions. An alternative selection scheme involving
the computational cost of the fitness evaluation is then pro-
posed, that counteracts the effects of heterogeneity on con-
vergence toward the Pareto Front.
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1. INTRODUCTION
Many real-world optimization problems involve heavy nu-

merical simulations for computing a single value of the ob-
jective function and/or the constraints. Even during Moore
years, the exponential increase of computer power could not
match the ever-increasing demand for more and more com-
plex simulations. But the hardware today seems to have
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reached the end of Moore law, and increases in computa-
tional power can only be brought now by the use of a large
number of computing units, be it on multi-core CPUs, on
GP-GPUs, on clusters of CPUs, on world-wide Computing
Grids or on the Cloud. And taking advantage of such num-
ber of separate computing entities then becomes a software
challenge.

At the same time, many (if not all) real-world problems
are multi-objective by nature, involving the optimization
of several contradictory objectives (e.g., typically, cost and
quality). These objectives are generally not regular (e.g.,
not differentiable), noisy, and multi-modal, prohibiting the
use of traditional optimization methods. Hence, heuristic
and stochastic methods like Multi-Objective Evolutionary
Algorithms (MOEAs) [8] are good candidates for tackling
such problems, thanks to their robustness and their flexi-
bility. Unfortunately, the price of this efficiency under such
weak hypotheses is a high computational cost in terms of
number of function evaluations required to reach a satisfac-
tory solution.

Fortunately, whereas most traditional algorithms need to
be almost completely rewritten to efficiently use widely dis-
tributed computational resources, Evolutionary Algorithms
can be parallelized in several efficient ways [5, 1]. The
master-slave model, in which a master node distributes fit-
ness evaluations to slave nodes, and performs all evolution-
ary operations (selection, variation operators), is by far the
simplest one to set up, and as such has been widely used in
many application domains. Furthermore, because all evolu-
tionary routines are performed in the master node, similarly
to the sequential case, such algorithm can be extended to
the multi-objective case without any additional algorithmic
effort. Other approaches include the Island models, where
each node runs a standard EA and the different nodes ex-
change “migrants” from time to time, and the totally dis-
tributed models, where each node contains one (or very few)
individuals, and the selection and crossover operations are
performed amongst neighboring nodes. From a parallel per-
spective, it is important to note that both the Island model
and the totally distributed model are based on some under-
lying topology of the graph of nodes: matching this topology
with that of the hardware allows the programmer to opti-
mize the communication costs between nodes by restricting
them to physically neighboring nodes. On the other hand,
the master-slave model is based on a star-shaped topology,
and all communications go through the master node: this
has been considered a major limitation of such approaches
on several specific highly parallel architectures. However,



when the cost of one fitness computation is of several orders
of magnitude larger than the cost of the evolutionary opera-
tors (e.g. dozens of minutes vs milliseconds), such limitation
doesn’t hold any more.

Furthermore, the Island and the totally distributed mod-
els need to be specifically adapted to the multi-objective
context. For instance, a Parallel approach of NSGA-II has
been proposed in [11], that is based on the “guided dom-
ination approach”: each of the participating processors is
assigned the task of finding only a particular portion of the
Pareto set. A geometrical approach (the cone separation) is
proposed in [4], that subdivides the search space in several
regions. In order to have each processor focus on a specific
region, the borders of each region are treated as constraints.
In [2], a complex mechanism is designed that handles mul-
tiple populations across heterogeneous processors, based on
mobile computing agents. All these approaches, however,
require large modifications of the algorithm, and none has
been proven to significantly outperform the others on a wide
range of problems. This is probably why many practical
works using parallel MOEAs have focused on the master-
slave model for its simplicity – and so does this paper.

The simplest implementation of master-slave evolutionary
algorithm (be it single- or multi-objective) is the exact repro-
duction of the generational model, in which all individuals
are sent out to slaves for evaluation, and evolutionary oper-
ators take place only when the whole population has been
evaluated. In this model, the speed-up can be proved to be
linear w.r.t. the number of processors, up to some limit when
the communication time takes over the computing time of
one evaluation [5]. Because it is also highly sensitive to fail-
ures (a major concern when the number of precessing units
becomes very large), the generational model is only used as a
baseline for comparisons, and in practice, the asynchronous

steady-state model is used instead. The steady-state model
was proposed in the sequential context [17] in order to even-
tually speed-up evolution by inserting back in the population
each newborn offspring as soon as it has been evaluated. In
the asynchronous parallel setting, each newborn offspring is
sent to a slave for evaluation, and evaluated individuals are
inserted back in the population on a first-come first-served
basis. In case of failure of a slave (e.g., one individual never
returns), the algorithm is undisturbed. Furthermore, and as
importantly in real-world applications where different eval-
uations can take very different times, all available CPU time
is used: as soon as a slave has completed an evaluation, the
master sends it a new individual to evaluate, and thus no
computing unit ever stays idle, at least in case the evaluation
time is much larger than communication time.

The debate between steady-state and generational schemes
has been going on for long. In a general real-world frame-
work, [6] argues that steady-state performs very often bet-
ter than generational, and even more so in a multi-objective
optimization context. In [12], another comparison between
steady-state and generational NSGA-II is proposed on a real
case study. However, to the best of our knowledge, no
systematic comparison has been made between the asyn-
chronous steady-state and the generational algorithms in
terms of speed-up: this will be a first contribution of this
paper (Section 5), using standard benchmark functions.

Though efficient in terms of usage of the computational
resources in case of heterogeneous evaluation times, asyn-
chronous steady-state MOEAs can sometimes suffer from

such heterogeneity in terms of quality of the solutions: in-
deed, when some part of the search space systematically
takes longer to evaluate than all others, asynchronous steady-
state algorithms might poorly sample that part. The second
contribution of this paper is twofold: Firstly, to empirically
demonstrate on both a real-world case-study and on arti-
ficially modified benchmark functions that such poor sam-
pling indeed happens; Secondly, to propose a modified selec-
tion process for asynchronous steady-state multi-objective
algorithms that will somehow correct the problem – while
not slowing down too much the convergence when applied
in homogeneous context. This selection scheme will be ap-
plied to two well-known MOEAs, namely NSGA-II [10] and
MO-CMA-ES [14].

Next Section will present the real-world application (opti-
mization of a diesel Engine) that motivated this work, first
introducing the optimization problem itself, and analyzing
the results obtained with NSGA-II (Section 3.1) in terms of
both the computing time per fitness evaluation and the qual-
ity of the results. Section 2.2 will set the research questions
that will be addressed in this work, and give the agenda of
the rest of the paper.

2. OPTIMIZING DIESEL COMBUSTION
Environmental regulations are becoming very strict in Eu-

rope, setting hard constraints on the development of ef-
ficient automotive engines with low fuel consumption and
low pollutant emissions. More specifically, when designing
a diesel engine, three objectives are to be minimized, NOx,
Soot, and Fuel consumption, that are naturally in conflict:
this problem pertains to multi-objective optimization, and
NSGA-II [10] was chosen to tackle it because of its well-
known robust efficiency (Section 3.1).

All objectives can be computed using a multidisciplinary
simulation of the combustion. However, the complexity of
the phenomena that occur in the combustion chamber re-
quires a very fine discretization in the numerical model: sim-
ulating the complete 3D model requires around 3 days on a
recent single-core computer. Hence a simplified model was
used here, that does not take into account the exact geom-
etry of the combustion chamber, and thus only involves the
10 decisions variables that control the combustion process
itself, i.e., the injection parameters, and the air/fuel mixing
parameters (more details can be found in [20]). The simu-
lation time is reduced to . . . a few hours. However, highly
non-linear phenomena are involved in combustion models,
and the actual simulation run-times vary a lot depending
on the values of the variables, from 1.5 to 24 hours, as can
be seen on Figure 1-right for 40 random instances of the
parameters.

In order to cope with this complexity, it was decided to
use a 40-CPUs cluster, and hence to use parallel versions
of NSGA-II. Furthermore, in order to keep all experiments
within a reasonable range of CPU costs, all single fitness
evaluations were eventually stopped after 8 hours, based on
a human decision: the simulation is an iterative procedure,
and unpromising fitness computations with respect to con-
vergence of this iterative procedure (based on the expert’s
estimation) were stopped, while more promising runs were
continued up to a maximum of 12 hours.

2.1 Experimental Results
Two variants of parallel NSGA-II were experimented with:
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Figure 1: Left: Comparison of total run times
of both generational and asynchronous steady-state
variants. Right: Run-time of individual fitness com-
putations for 40 random individuals.
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Figure 2: Two 2D projections of the Pareto Front.
Soot (Left) and NOx (Right) vs Fuel Consumption.

the standard parallel generational algorithm, and the asyn-
chronous steady-state version (Section 3.3), both with pop-
ulation size 40. Both algorithms were run for 1600 evalua-
tions, regardless of their actual durations (i.e. 40 generations
for the generational variant). The results of a single run are
reported here, as an illustration of the effects of heterogene-
ity on multi-objective CPU costs . . . and results.

Figure 1-left shows the run time required along evolution,
at different numbers of function evaluations, for both genera-
tional and asynchronous algorithms. The total optimization
cost for the generational NSGA-II is above 17 days, while
that of the asynchronous NSGA-II is less than 10 days. As
expected, the usage of CPU is much more efficient with the
asynchronous steady-state algorithm than for the genera-
tional one.

More interestingly, Figure 2 displays some 2D projections
of the Pareto fronts in the space ”Soot-Fuel consumption”
vs ”NOx-Fuel consumption”. Both optimizations are com-
parable in terms of quality of convergence. However, some
very efficient solutions in terms of NOx values (with of course
poor Soot values) have been discovered by the asynchronous
optimization, and not in the generational case. A closer look
revealed that these solutions represent individuals with large
evaluation time, close or over the 8 hours threshold, that
were likely to be killed in the generational approach.

2.2 Discussion
These experiments, beside having provided interesting so-

lutions in terms of Engine Optimization [20], also give very
strong arguments in favor of using asynchronous steady-
state algorithms in case of heterogeneous fitness computa-
tional costs (if at all necessary), in spite of the guaranteed
linear parallel speed-up of the generational model in the ho-
mogeneous case: beside the obvious more efficient use of
computational resources, and though not visible in the above
results, the fault-tolerance property of the asynchronous ap-

proaches makes the case clear. However, the results ob-
tained by both algorithms differ. It is the case here because
the artificially-set 8-hours threshold, but it also clearly indi-
cates that indeed some parts of the search space (and hence
of the Pareto set) might exhibit very long computing times
– and this can certainly have some consequences on the con-
vergence of any MOEA.

Based on these considerations, the rest of this paper will
try to address the following issues: i- what speedups can
be expected from the asynchronous steady-state algorithms
compared to their sequential version, even in the homoge-
neous case (Section 5); ii- how bad can be the consequences
of highly heterogeneous evaluation times (Section 6.1); iii-
can we circumvent this difficulty. This will lead to propos-
ing the Duration-Based Selection in Section 6.2, that will be
validated on artificial test functions.

3. PARALLEL MASTER-SLAVE MOEAS
This Section briefly describes the two MOEAs that will

be concerned in this work, namely NSGA-II and MO-CMA-
ES. Many different MOEAs have been proposed since the
mid 80s, and the most popular today use the idea of Pareto
dominance: a solution x Pareto-dominates a solution y if x
is better than y on all objectives, and strictly better on at
least one objective. The algorithm then proceeds almost like
a single-objective EA, except for the selection procedures
(both parental and survival), that are replaced by Pareto-
based selections using two hierarchical criteria: the first one
is based on Pareto dominance, and the secondary criterion
enforces the dispersion of the solutions over the Pareto front
(see [8, 7] for details).

Among the many MOEAs that have been proposed in
the literature, only two have been considered in this work:
NSGA-II (Non-dominated Sorting Genetic Algorithm), pro-
posed in the early 90s [10], still considered today as one of
the state-of-the-art MOEA for its robustness across a variety
of application domains, and the more recent MO-CMA-ES
(Multi-Objective Covariance Matrix Adaptation Evolution
Strategy) [14], that transposes to the multi-objective context
the qualities (and in particular the invariance properties) of
the single-objective CMA-ES [13]. Both will be very briefly
described in turn, in their original sequential versions. Their
parallelization will then be discussed.

3.1 NSGA-II
The original (generational) NSGA-II algorithm uses Non-

Dominated Sorting as a first selection criterion, and Crowd-
ing Distance as secondary diversity-preserving criterion (though
some recent work suggests that the hypervolume might be
a better choice as diversity-preserving criterion [3]).

Non-Dominated Sorting is based on the “Pareto rank” of
individuals in a given population: the non-dominated indi-
viduals are given rank 1 and removed from the population.
The non-dominated individuals of the remaining of the pop-
ulation are given rank 2, and the process continues until all
individuals have a Pareto rank. Crowding Distance consid-
ers the objectives sequentially. The individuals are sorted
according to objective i, and the partial crowding distance
of the individual that has rank r with respect to objective
i is the difference between the values of objective i of indi-
viduals with ranks r− 1 and r+ 1. The Crowding Distance
of an individual is then the sum over all objectives of its
partial crowding distances. The comparison between two



individuals goes as follows: if their Pareto ranks are differ-
ent, the smallest one is preferred, favoring progress toward
the Pareto front; If they are equal, the one with largest
Crowding Distance is preferred, favoring diversity.

Using this comparison procedure, both generational and
steady-state [17] versions of NSGA-II can be easily described.
Both use a population of size P , and deterministic tour-
nament of user-defined size T as parental selection. The
generational NSGA-II uses a standard P + P scheme: P

offspring are generated, and the best of the P parents + P

offspring, according to the comparison described above be-
come the parents of next generation. The steady-state ver-
sion of NSGA-II uses a standard P +1 steady-state scheme:
1 offspring is generated, and replaces in the population the
worst individual (according to the comparison procedure at
hand).

3.2 MO-CMA-ES
MO-CMA-ES, proposed by Igel et al [14], extends the

single-objective CMA-ES [13] to the multi-objective context.
Like NSGA-II, it uses the Non-Dominated Sorting as main
comparison criterion between solutions. The hypervolume-
indicator [22] is used as secondary comparison criterion.

All versions of the algorithm consider µ parents, and each
individual is as (1+1)-CMA-ES algorithm. The generational
version is a (µ+µ) algorithm without parental selection and
using only Gaussian mutation: each of the µ parents gener-
ates one offspring, and the µ best (according to the hierar-
chical sorting criterion described above) of the 2 ∗µ parents
plus offspring become the parents of the next generation.
The mutation parameters of the selected offspring are up-
dated following standard rank-one update for the covariance
matrix, and a specific update rule close to the well-known
1-fifth rule for the step-size.

A steady-state version of MO-CMA-ES can be easily ob-
tained by generating only one offspring, and inserting it
in the population immediately after evaluation, i.e., as for
NSGA-II, using a µ + 1 steady-state scheme. Two possible
variants were proposed in [15]: in the (µ + 1) algorithm,
the parent is selected uniformly in the whole population,
while in the (µ≺ + 1) version, the parent is selected only
amongst non-dominated individuals in the population. Fur-
ther improvement were recently obtained by considering a
tournament for parental selection rather than uniform selec-
tion [16]. But only the (µ≺ + 1) will be considered here.

3.3 Asynchronous Steady-State MOEAs
The asynchronous parallel master-slave versions of the

steady-state versions described above for both NSGA-II and
MO-CMA-ES are straightforward to derive from the sequen-
tial versions: offspring are sent out to slaves for evaluation,
and inserted back in the population on a first-come first-
served basis [19]. The resulting algorithms are termed AS-

NSGA-II and AS-MO-CMA-ES respectively.
Note that steady-state selection scheme has been applied

in several MOEAs in the literature: the ǫMOEA [9] is based
on the ǫ-dominance concept and uses steady-state selection
scheme and archive update strategy. SMS-EMOA proposed
by Beume et al. [3] is a steady-state MOEA that uses the
hypervolume criterion as the secondary selection criteria –
but these works address only the sequential context. The
parallel versions of these algorithms have been studied in
detail in [12], on a real-world application, and indeed the

asynchronous versions were demonstrated to perform better.
However, the main concern in this work was that of the
total elapsed time for large hardware platform (e.g., peer-to-
peer networks). And heterogeneity in fitness computations,
when addressed, mostly came from the hardware, and did
not depend on the individual being evaluated.

4. EXPERIMENTAL SETTINGS
All experiments presented in the rest of the paper use

well known analytical test functions, more precisely, ZDT
[21] and IHR [14] test suites, that will not be detailed any
more here. The evaluations of these functions are very fast,
and homogeneous in terms of computing time. However, in
order to simulate asynchronicity, the algorithms maintain
an additional queue that contains the evaluated offspring in
the order they will be inserted back in the population at the
end of the steady-state loop. This allows us to simulate any
given kind of heterogeneity when adding newcomers in the
queue, and selecting which one will then be inserted in the
population (using the survival selection at hand).

For instance, offspring can be appened at the end of the
queue, and either retrieved from the beginning of the queue
(to simulate a strictly synchronous context), or uniformly
(to simulate some heterogeneity uniformly distributed in the
search space, or caused by the use of different types of hard-
ware). The latter case applied to test function FOO will be
refered to as Rand-VC-FOO (VC stands for Variable Cost).

Another possibility is to compute some “duration” based
on the values of the objectives, and to insert the offspring
in the queue based on such duration (ties are randomly bro-
ken), thus simulating the heterogeneous context in which
some region of the search space are more costly to evalu-
ate than others, as seen for instance in Section 2. The off-
spring that is sitting at the beginning of the queue is then
inserted in the population. This case, applied to function
FOO, will be refered to as Region-VC-FOO. However, in
the experiements presented in Sections 6.1 and 6.2, a simple
cost model is used: the durations can take only 2 values, the
small one in most of the search space, and the large one in
the region of interest.

Another important remark is that the size of the queue
corresponds to the number of available processing units.
Varying this parameter will allow us to simulate systems
of different sizes (see next Section 5).

All results reported in the following are averages overs 30
independent runs. However, only averages or medians will
be presented, as the standard deviations were very small in-
deed, and error bars would have made all plots unreadable.
Unless otherwise stated, all runs were stopped after 50000
evaluation. The size of the population was set to 100 for
both NSGA-II and MO-CMA-ES, and tournament size for
NSGA-II was set to 2. The performance measurement con-
sidered in this experiments is the hypervolume indicator [22]
which assesses both convergence and diversity.

5. ASYNCHRONOUS SPEED-UPS
Before addressing the issue of heterogeneous costs of fit-

ness evaluation, we will first take an empirical look at the
speed-ups that can be obtained by both asynchronous al-
gorithms presented in Section 3.3 in some loosely homo-
geneous context, i.e., where heterogeneity is uniformly dis-
tributed (e.g. when it is due to hardware). These experi-



ments involve the artficial test functions Rand-VC-ZDT and
Rand-VC-IHR defined in Section 4. Different sizes of the
waiting queue will be used, and compared to the baseline,
the single-processor asynchronous steady-state algorithm,
i.e. the same algorithm with a queue-size 1.

Figures 3 and 4 show the evolution of the median hy-
pervolume indicator for different values of queue-size, for
AS-NSGA-II and AS-MOCMA-ES algorithms, with Rand-
VC-ZDT3 test function: The left plots display this evolution
in terms of total number of evaluations (regardless of par-
allelization), whereas the right plots show this evolution in
terms of elapsed time. For the latter plot, the x-axis has been
arbitrarily scaled by considering that the 50 000 evaluations
performed for the 1-CPU algorithm (the black up-triangle
curve on top) correspond to 1000 units (the 1-CPU line is
only partially displayed to make the other lines readable).
Table 1 summarizes the results obtained on functions Rand-
VC-ZDT1:3 and Rand-VC-IHR1:3 using different queue-sizes.
For each column (hypervolume value given in lines labeled
“Level”), the figure on the nProc line is the ratio between
the median elapsed times of the asynchronous algorithms
using nProc and 1 processing units respectively.
From these results, it appears that the speed-ups in terms of
elapsed time are, for these test functions, clearly sub-linear.
Furthermore, comparing the queue-sizes 50 and 100, a gain
of a factor near to 2 is globally observed on the speed-up.
However, this factor does not exceed 1.5 comparing high val-
ues of queue-size (500 and 1000).
But another observation can be made from Figures 3 and
4: the total number of evaluations (regardless of paralleliza-
tion) that is needed to reach a given value of hypervolume
decreases as the number of processors increases. In particu-
lar, if one has to pay for the total CPU time used (in case
of commercial clusters for instance), then the best setting
might still be the sequential one (at least if a large elapsed
time is not a problem). This phenomenon can be explained
as follows: Because of the steady-state selection scheme, one
offspring is created and inserted into the waiting queue at
each generation. Assuming that newborn individuals are
better than their parents with a given probability, the qual-
ity of the offspring sitting in the waiting queue is on average
proportional to their genetic age : young individuals are bet-
ter than old ones. In such context, the larger the queue-size,
the lower its average quality.
Furthermore, we also see a difference in the behaviors of
MO-CMA-ES and NSGA-II, especially on ZDT functions:
For AS-MO-CMA-ES, the ”delay” in convergence discussed
in the previous paragraph is recovered relatively faster than
with AS-NSGA-II (Figure 3-left and 4-left). This phenomenon
is also illustrated in table 1 where the speed-up to reach
small levels of hypervolume indicator is higher for AS-MO-
CMA-ES than for AS-NSGA-II. This can be explained by
the higher selection pressure of NSGA-II algorithms, that
select both parents for crossover by tournament selection,
whereas MO-CMA-ES algorithms randomly choose the par-
ent before applying mutation: the resulting offspring in the
queue are on average of better quality for NSGA-II than for
CMA-ES, and thus the latter algorithms suffer less if the
inserted individuals are of lower quality.
Two other series of experiments were performed: In the first
one, the population size was set to 500. In the second one, a
sequential algorithm was used instead of the asynchronous
steady-state version: offspring are ranked in the waiting

Table 1: Speed-ups for the convergence to given
hyper-volume levels (ratio of elapsed times of asyn-
chronous algorithms with nProc and 1 processor).

Algo. AS-NSGAII AS-MOCMA-ES
Level 0.1 0.01 0.001 0.1 0.01 0.001

Rand-VC-ZDT1
50 41.91 43.08 45 45.65 44.27 45.98
100 74.50 77.94 81.61 82.89 84.15 90.35
200 120 132.91 137.6 168 177.08 183.92
500 276.92 244.23 263.86 318.18 345.52 360.13
1000 343.37 378.57 410.6 414.47 461.95 507.39

Rand-VC-ZDT2
50 48.58 42.75 45.63 52.4 44.03 44.3
100 82.69 75.84 81.13 98.86 84.95 87.2
200 141.56 129.16 143.33 187.09 162.7 161.48
500 259.81 240.77 263.62 365.54 335.66 340.62
1000 391.79 366.32 411.7 514.79 480 500

Rand-VC-ZDT3
50 42.15 43.07 44.3 44.56 48.13 47.93
100 74.13 76.71 78.8 89.13 94.51 93.93
200 126.47 129.85 136.8 169.65 184.52 190.76
500 228.72 247.24 262.26 339.77 363.84 356.32
1000 353.42 379.01 404.73 518.98 567.76 613.86

Level 10 5 1 10 5 1
Rand-VC-IHR1

50 40 36.36 - 35.71 36.76 24.06
100 66.66 61.53 - 78.12 85.22 52.95
200 100 94.11 - 172.41 178.57 83.73
500 250 190.47 - 409.83 407.6 206
1000 307.69 258.06 - 735.29 728.15 254.32

Rand-VC-IHR2
50 54.97 - -
100 242.01 61.53 - - - -
200 361.94 229 - - - -
500 1294 1178 - - - -
1000 3029 2692 - - - -

Level 10 5 min 10 5 min
Rand-VC-IHR3

50 22.72 25.86 25 27.17 29.27 29.62
100 41.66 42.85 35.89 60.24 63.57 60.37
200 62.5 69.76 71.79 104.16 124.47 118.51
500 131.57 144.23 155.55 268.81 313.38 283.68
1000 185.18 283.01 224 520.83 589.4 544.21

queue in the same order than they were created. However,
the analysis of these experiments gives similar results than
the ones above. Those results are not given here due to
space limitations, but can be found in [18] .

6. HETEROGENEOUS CONTEXT

6.1 Deleterious Asynchronicity
The second part of the experimental work presented in

this paper deals with the heterogeneity of evaluation costs.
First, this Section presents experimental evidence that in-
deed asynchronous algorithms can be hindered by hetero-
geneity and completely miss a complete region of the Pareto
Front (and hence of the Pareto Set) when this region re-
quires higher computational cost than other parts of the
search space.



 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

hy
pe

rv
olu

m
e 

ind
ica

to
r

number of evaluations

gs=1(Steady-State)
gs=50

gs=100
gs=200
gs=500

gs=1000

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

1 2 5 10 20

hy
pe

rv
olu

m
e 

ind
ica

to
r

Elapsed Time

gs=1 (Steady-State)
gs=50

gs=100
gs=200
gs=500

gs=1000

Figure 3: Evolution of average hypervolume indicator for AS-NSGA-II on Rand-VC-ZDT3 for different
queue-sizes. Left: in terms of # evaluations. Right: in terms of elapsed time.
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Figure 4: Evolution of average hypervolume indicator for AS-MO-CMA-ES on Rand-VC-ZDT3 for different
queue-sizes. Left: in terms of # evaluations. Right: in terms of elapsed time.

To this aim, the test function Region-VC-ZDT3 is used: it
has a discontinuous Pareto Front (clearly visible on Figure
5-right), and the costly part of the Pareto Front (defined
by f1 ∈ [0.3, 0.5] – a rectangle in objective space) contains
one connected component of the true Pareto front. Using
AS-NSGA-II, the costly region is not discovered after 50000
evaluations while other sub-parts of the Pareto front are
reached (Figure 5-left). A similar though less deleterious ef-
fect is visible for AS-MO-CMA-ES ((Figure 5-right): signif-
icantly less points are visited in the costly region. However,
the algorithm ultimately succeeds in identifying the costly
component of the Pareto Front.

6.2 Duration-Based Selection
As seen in previous Section, heterogeneous evaluation costs

might have dramatic consequences on the identification of
the Pareto Front – and such situations do happen in real
applications, as seen in Section 2. In such context, a natu-
ral idea to try to counterbalance the slow evaluations is to
modify the selection procedure and augment it with some
component that takes into account the duration of an eval-
uation (that the master node can easily monitor).
The basic idea of the Duration-Based Selection (DBS) is to
use a user-defined probability Ps ∈ [0, 1] within the (parental)
selection to choose between the standard Pareto-based se-
lection of the algorithm at hand, and a tournament selec-
tion solely based on the computational cost (the duration
in terms of elapsed time) of the last evaluation of the indi-
vidual. A critical issue will of course be to adjust Ps such
that the costly individuals are not favored too much, i.e.,
that Ps is not too small. It is expected, however, that the
individuals that are very costly to evaluate will nevertheless

undergo Pareto-based selection at some point, and be elim-
inated at some point if they represent poor solutions of the
multi-objective problem at hand.
Note that only the parental selection is modified. For AS-
NSGA-II, parental selection is a tournament (of size 2 in all
experiments presented here), and it is replaced with proba.
1 − Ps by a tournament of same size but based on evalu-
ation duration. For AS-MO-CMA-ES, there is no parental
selection per se. So with probabiliy Ps, the parent is ran-
domly chosen, otherwise, a tournament (of size 2 here, too),
is performed based on evaluation durations.

6.3 Experiments with DBS
The first experiment is concerned with the validation of

DBS as a repair mechanism for the loss of some parts of the
Pareto Front that lie in the costly regions, that was demon-
strated in Section 5. Indeed, Figure 6-left illustrates that the
use of the DBS-AS-NSGA-II with Ps = 0.5 (but similar re-
sults have been obtained with other values of Ps) allows the
algorithm to find a few points in the costly part of the Pareto
Front after 25000 evaluations (the small circles) and to fur-
ther complete the front of optimal solutions (the crosses fill
the Pareto Front after 50000 evaluations). This observation
is generalized in figure 6-right which displays the evolution
of average hypervolume indicator using 3 different values of
Ps: increasing the value of Ps is equivalent to use more the
classical dominance based selection, and this clearly delays
the discovery of the costly region.
Further experiments were conducted with DBS, in particu-
lar in order to check that it does not harm too much the
convergence toward the Pareto Front in case there is no het-
erogeneity in the evaluation costs. The results show that the
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price to pay for the use of duration based selection is rather
small, as depicted on Figure 7, comparing different variants
of DBS-NSGA-II on Rand-VC-ZDT3. Indeed, the DBS vari-
ants are slightly outperformed by the standard AS-NSGA-II,
but they are still clearly outperform the generational version
in terms of quality.

A surprising result has been obtained on function Region-

VC-ZDT6 with costly region defined by f1 ∈ [0.8, 1] (see
Figure 8-left). In this case, the use of the duration based se-
lection operator delays the convergence instead of accelerat-
ing it. The snapshots after different numbers of evaluations
(Figure 8-right) confirm that the AS-NSGA-II (equivalent
to DBS-AS-NSGA-II with Ps = 1) goes faster than DBS-
AS-NSGA-II variants, because the DBS selection delays the
convergence trying to explore the costly region. The final
results, however, are of the same quality for all algorithms
in terms of hypervolumes and Pareto Front covering, even
for small values of Ps.

7. CONCLUSION
Motivated by a real-world case study tackling the opti-

mization of the combustion in a Diesel engine, this paper
has empirically investigated the behavior of some parallel
master-slave asynchronous steady-state MOEAs on artificial
test functions. Investigations have been conducted for two
well-known state-of-the-art algorithms, NSGA-II and MO-
CMA-ES, using the classical test functions ZDT and IHR
that were artificially made heterogeneous, simulating differ-
ent models of heterogeneity.

Sub-linear speed-ups in term of elapsed time have been as-
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Figure 7: Evolution of average hypervolume indica-
tor for DBS-AS-NSGA-II with different values of Ps

on (plain) function ZDT3.

sessed by considering different numbers of computing units
(e.g., grid or cluster sizes). Furthermore, experiments with
artificial heterogeneity have first demonstrated the possi-
ble negative impact heterogeneity can have on such asyn-
chronous steady-state algorithms: some costly regions of the
Pareto Front might be completely missed by the algorithm
due to the high computational cost of evaluations – a sit-
uation that does take place in real application. In order
to tackle this issue, DBS, a specific selection operator, has
been proposed, that uses, with a user-defined probability,
the evaluation duration instead of Pareto dominance as main
comparison criterion. The first results in this direction have
demonstrated the ability of MOEAs using DBS to discover
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the whole Pareto Front, including the parts in the costly re-
gions. Furthermore, even in cases where DBS slightly slows
down the convergence of the underlying MOEA, the quality
of the discovered Pareto Front is unchanged.
On-going and future work is to allow a self-adaptation of
convergence and coverage by the algorithm. Another per-
spective is to apply DBS on more realistic models of eval-
uation costs, for instance on the real-world application of
Diesel Combustion that motivated it.
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