
HAL Id: hal-00625318
https://hal.archives-ouvertes.fr/hal-00625318

Submitted on 27 Oct 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Asynchronous Evolutionary Multi-Objective Algorithms
with heterogeneous evaluation costs

Mouadh Yagoubi, Ludovic Thobois, Marc Schoenauer

To cite this version:
Mouadh Yagoubi, Ludovic Thobois, Marc Schoenauer. Asynchronous Evolutionary Multi-Objective
Algorithms with heterogeneous evaluation costs. IEEE Congress on Evolutionary Computation, CEC
2011, New Orleans, LA, USA, 5-8 June, 2011, Jun 2011, New Orleans, LA, United States. pp.21-28.
�hal-00625318�

https://hal.archives-ouvertes.fr/hal-00625318
https://hal.archives-ouvertes.fr


Asynchronous Evolutionary Multi-Objective
Algorithms with Heterogeneous Evaluation Costs

Mouadh Yagoubi∗†, Ludovic Thobois∗ and Marc Schoenauer†
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Abstract—Master-slave parallelization of Evolutionary Algo-
rithms (EAs) is straightforward, by distributing all fitness
computations to slaves. The benefits of asynchronous steady-
state approaches are well-known when facing a possible het-
erogeneity among the evaluation costs in term of runtime, be
they due to heterogeneous hardware or non-linear numerical
simulations. However, when this heterogeneity depends on some
characteristics of the individuals being evaluated, the search
might be biased, and some regions of the search space poorly
explored. Motivated by a real-world case study of multi-objective
optimization problem – the optimization of the combustion in
a Diesel Engine – the consequences of different components
of heterogeneity in the evaluation costs on the convergence of
two Evolutionary Multi-objective Optimization Algorithms are
investigated on artificially-heterogeneous benchmark problems.
In some cases, better spread of the population on the Pareto front
seem to result from the interplay between the heterogeneity at
hand and the evolutionary search.

I. INTRODUCTION

Most real-world problems are multi-criteria by nature, in-
volving several contradictory objectives (e.g., typically, cost
and quality). Furthermore, those objectives, and the many
additional constraints that characterize real-world problems,
are generally not regular (e.g., not differentiable), thus pro-
hibiting the use of traditional optimization methods. Finally,
those objectives are often noisy and multi-modal. Hence,
stochastic methods like Evolutionary Multi-Objective Opti-
mization Algorithms (EMOAs) [1], [2] are good candidates
for tackling such problems, thanks to their robustness and their
flexibility. Unfortunately, the main drawback of Evolutionary
Algorithms (EAs) in general, and EMOAs in particular, is
their high cost in terms of number of function evaluations
required to reach a satisfactory solution. And this drawback
can become prohibitive for those real-world problems where
the computation of the objectives is made through heavy
numerical simulations that can take hours or even days to
complete.

At the same time, computer hardware is experiencing what
is sometimes called “the end of Moore law”, i.e., the end of
the exponential increase of the computing power available in
one CPU. The answer to this critical issue is today brought
distributed computing, be it on multi-core CPUs, on clusters of
CPUs, on world-wide Computing Grids or on virtual Clouds
of CPUs. And this is good news as far as EAs and EMOAs
are concerned, as their coarse-grain parallelization is rather

straightforward, and does not require to re-think the algorithm
from the very beginning. Several models of parallel EAs
have been proposed (see e.g. [3]), differing in the grain of
the parallelization. In the master-slave model, a master node
distributes fitness evaluations to slave nodes, and performs
all evolutionary operations (selection, variation operators), and
is hence identical, algorithmically speaking, to the sequential
algorithm. In the Island models, each node runs a standard EA
with a generally small population size, and the different nodes
exchange individuals, called migrants, from time to time. In
the totally distributed model, each node contains one (or very
few) individuals, and the selection and crossover operations
are performed amongst neighboring nodes. Note that both the
Island model and the totally distributed model can have very
different topologies for the different nodes, while the master-
slave model requires a star-shaped topology.

The master-slave model is by far the simplest one to set up,
and as such has been widely used in all application domains.
Furthermore, because all evolutionary routines are performed
in the master node, identically to the sequential case, it can
be extended to the multi-objective case without any additional
algorithmic effort. On the opposite, because EMOAs require
some global synchronization at the selection step (see Section
II), the island model and the totally distributed model need
to be specifically adapted to the multi-objective context. For
instance, a Parallel approach of NSGA-II has been proposed in
[4], that is based on the “guided domination approach”: each of
the participating processors is assigned the task of finding only
a particular portion of the Pareto set. A geometrical approach
(the cone separation) is proposed in [5], that subdivides the
search space in several regions. In order to have each processor
focus on a specific region, the borders of each region are
treated as constraints. In [6], a complex mechanism is de-
signed that handles multiple populations across heterogeneous
processors, based on mobile computing agents. However, most
works in parallel MOEAs have focused on the master-slave
model for its simplicity – and so does this paper.

The simplest implementation of the master-slave model uses
the standard generational algorithm, in which the selection-
variation steps only take place after all individuals of a given
generation have been evaluated by the slaves. In the case where
all evaluation require the same CPU time on all available
processors, the population is uniformly distributed among the



slaves, and the speedup is exactly the number of processor,
aka the homogeneous case, at least if the transmission time
of the data over the network is small compared to the CPU
cost of one evaluation [3]. However, in real-world problems
in particular, the CPU costs of fitness evaluations is rarely
homogeneous, be it because of the non-linearity of the sim-
ulation, or of the heterogeneity of the available computing
resources. When using the generational model, many CPUs
will remain idle while waiting for the longest evaluations.
A well-known solution is to use the steady-state algorithm:
in the sequential case, the steady-state algorithm generates
one offspring, evaluates it, and replaces it in the population
by removing on of the parents, generally based on some
reverse tournament [7]. In the parallel heterogeneous case, one
offspring is sent to a slave as soon as it is available, and the
offspring are inserted in the population on a ’first-come first-
served’ basis (see Section II for more precise descriptions).
Due to the heterogeneity of the fitness evaluation run times,
individuals are inserted in the population in an asynchronous

way, i.e. in a different order than when they have been
generated. Contrary to the generational case, the asynchronous
steady-state parallel algorithm is hence quite different than its
sequential version.

The debate between steady-state and generational survival
selections has been going on for long. In a general real-world
framework, [8] argues that steady-state performs very often
better than generational, and even more so in a multi-objective
optimization context. In [9], another comparison between
steady-state and generational NSGA-II is proposed on a real
case study. However, to the best of our knowledge, no sys-
tematic comparison has been made between the asynchronous
steady-state and the generational algorithms to analyze the
consequence of heterogeneous evaluation computational costs.

This paper is motivated by a case study of MOEA applied
to the (real-world) problem of the optimization of a Diesel
engine (from the shape of the combustion chamber itself
to the injection conditions) in order to decrease polluting
emissions while preserving the power [10]. The computation
of the different objectives relies on a time-consuming simu-
lation of combustion, for which even a very simplified model
requires on average 3 hours of CPU. Furthermore, this is
a typical case where the actual cost of a fitness evaluation
depends on the data. But after running both generational
and asynchronous steady-state MOEAs, and confirming the
benefits of the latter in the heterogeneous context, it turned
out that the asynchronous algorithm was not only faster, never
leaving a processor idle, but also identified more points on
the Pareto front than its generational counterpart. The goal
of this paper is to experimentally study the influence of
heterogeneity of fitness evaluation costs on the performance of
some asynchronous EMOAs (namely NSGA-II [11] and MO-
CMA-ES [12]). Artificial benchmarks are proposed, where the
localization of the heterogeneity of the evaluation costs in the
search space can be controlled.

The remainder of this paper is structured as follows. Section
II discusses the different master-slave ways of parallelizing

MOEAs, and rapidly introduces NSGA-II and MO-CMA-ES
that have been used in this work. Section III is devoted to a
quick introduction of the case study that motivated this work,
the optimization of Diesel combustion using an asynchronous
NSGA-II algorithm. Section IV describes the experimental
test-bench that was set up to emulate heterogeneous fitness
computational costs on standard (and non-costly) test func-
tions. The comparative results are discussed in Section V, and
as usual Section VI summarizes the contribution of this work
and suggests directions for future research.

II. PARALLEL MASTER-SLAVE MOEAS

This Section briefly describes the two MOEAs that will
be concerned in this work, namely NSGA-II and MO-CMA-
ES. Both the generational and steady-state versions will be
surveyed. Note that many different MOEAs have been pro-
posed since the very first one in the mid 80s [13]. All
recent proposals are based on the idea of Pareto dominance: a
solution x Pareto-dominates a solution y if x is better than y
on all objectives, and strictly better on at least one objective.
The algorithm then proceeds like a single-objective EA, except
for the selection procedures (both parental and survival), that
are replaced by a Pareto-based selection that consists of two
hierarchical criteria: the first one uses Pareto dominance;
however, because Pareto dominance does not induce a total
order on the search space, a secondary criterion is necessary,
that enforces the dispersion of the solutions over the Pareto
front.

Among the many MOEAs that have been proposed in the
literature, only two have been considered in this work, namely
NSGA-II (Non-dominated Sorting Genetic Algorithm), pro-
posed in the early 90s [11], still considered today as one of the
state-of-the-art MOEA for its robustness across a variety of ap-
plication domains, and the more recent MO-CMA-ES (Multi-
Objective Covariance Matrix Adaptation Evolution Strategy)
[12], that transposes to the multi-objective context the qualities
of the single-objective CMA-ES [14]. Both will be briefly
described in turn, in their original sequential versions. Their
parallelization will then be discussed.

A. NSGA-II

The original (generational) NSGA-II algorithm is a Pareto-
based MOEA that uses Non-Dominated Sorting as a first selec-
tion criterion, and Crowding Distance as secondary diversity-
preserving criterion.

Non-Dominated Sorting is based on the “Pareto rank” of
individuals in a given population: the non-dominated individ-
uals are given rank 1 and removed from the population. The
non-dominated individuals of the remaining of the population
are given rank 2, and the process continues until all individuals
have a Pareto rank. Crowding Distance considers the objective
sequentially. The individuals are sorted according to objective
i, and the partial crowding distance of the individual that has
rank r with respect to objective i is the difference between the
values of objective i of individuals with ranks r−1 and r+1.
The Crowding Distance of an individual is then the sum over



all objectives of its partial crowding distances. The comparison
between two individuals is as follows: if their Pareto ranks
are different, the smallest one is preferred, favoring progress
toward the Pareto front; If they are equal, the one with largest
Crowding Distance is preferred, favoring diversity.

Using this comparison criterion, both generational and
steady-state [7] versions of NSGA-II can be easily described.
Both use a population of size P , and deterministic tournament
of user-defined size T as parental selection. The generational
NSGA-II uses a standard P +P evolution engine: P offspring
are generated, and the best of the P parents + P offspring,
according to the comparison described above become the
parents of next generation. The steady-state version of NSGA-
II uses a standard P + 1 steady-state evolution engine: 1
offspring is generated, and replaces in the population the
“winner” of a reverse deterministic tournament of user-defined
size T ′.

B. MO-CMA-ES

The MO-CMA-ES algorithm proposed by Igel et al [12]
extends the single-objective CMA-ES [14]. Like NSGA-II, it
uses the Non-Dominated Sorting as main comparison criterion
between solutions. The hypervolume-indicator [15] is uses as
secondary comparison criterion.

All versions of the algorithm consider µ parents, each one
being viewed as (1+1)-CMA-ES algorithm. The generational
version is then a (µ+µ) algorithm without parental selection
and using only Gaussian mutation: each of the µ parents
generates one offspring, and the µ best (according to the
sorting criterion described above) of the 2 ∗ µ parents plus
offspring become the parents of the next generation. The
mutation parameters of the selected offspring are updated
following standard rank-one update for the covariance matrix,
and a specific update rule for the step-size (see [12] for all
details).

A steady-state version of MO-CMA-ES can be easily
obtained by considering generating a single offspring and
inserting it in the population immediately after evaluation,
i.e., as for NSGA-II, using a µ + 1 steady-state evolution
engine. Two possible variants were proposed in [16]: in the
(µ+1) algorithm, the parent is selected uniformly in the whole
population, while in the (µ≺+1) version, the parent is selected
only amongst non-dominated individuals in the population.
Further improvement were recently obtained by considering a
tournament for parental selection rather than uniform selection
[17]. However, only the (µ≺ + 1) will be considered in this
work.

C. Parallel MOEAs

The algorithms described so far are sequential algorithms.
In particular, a single CPU computes in turn all evaluations.
In the steady-state versions of the algorithms, this means that
offspring are inserted back in the population in the same
order than they have been generated. When parallelizing these
algorithms in a master-slave context, the master node takes
care of all evolutionary operations (initialization, selection

and variation), but sends out to its slaves all evaluations. In
the homogeneous case, i.e., when all evaluations have the
same run time, all algorithms behave the same than their
sequential versions. However, the situation changes in the
heterogeneous case, when some evaluations require a lot more
computation time than others. The generational algorithms
have to wait for all individuals to be evaluated before going
on to next generation, and some nodes might stay idle for a
long time, waiting for the slowest evaluations to complete.
But the outcome of the parallel algorithm will be the same
than that of the sequential one, only taking longer time to
complete. In order to make better use of the available nodes,
the steady-state algorithms can be slightly modified and made
asynchronous, i.e. offspring are sent out for evaluation, and
inserted back in the population on a first-come first-served
basis. Thus no node stays idle for a long time, which was the
primary motivation of asynchronous parallel algorithm.

Steady-state selection scheme has been applied in several
MOEAs in the literature: the εMOEA [18] is based on the ε-
dominance concept and uses steady-state selection scheme and
archive update strategy. SMS-EMOEA proposed by Beume et
al. [19] is a steady-state MOEA that uses the hypervolume
criterion as the secondary selection criteria – but these works
address only the sequential context. The parallel versions of
these algorithms have been studied in detail in [9], on a real-
world application, and indeed the asynchronous version was
demonstrated to perform better, but the main concern in this
work was that of the total elapsed time for large hardware
platform (e.g., peer-to-peer networks). And heterogeneity in
fitness computations came mostly from the hardware, and in
particular did not depend on the individual being evaluated.

Because indeed, the behavior of the parallel algorithm might
be different than that of the sequential one, depending on the
distribution of the evaluation cost over the search space: a
uniform distribution (i.e. the evaluation cost does not depend
on the individual being evaluated) will most probably result
in a behavior of the parallel algorithm similar to that of the
sequential one: offspring are inserted back in the population in
random order, and differences, averaged over the whole run,
are likely to cancel out. However, if the evaluation costs do
depend on the characteristics of the individuals, some region
of the search space might be less explored than others, and
some parts of the Pareto Front discovered later . . . or never
discovered at all.

Such phenomenon does take place in real world problems,
as illustrated by the case-study in Section III, and this is the
motivation for this work.

III. OPTIMIZATION OF DIESEL COMBUSTION

This section presents the real world problem on which a
master-slave approach based on NSGA-II has been applied,
first describing the optimization problem itself, and analyzing
the obtained results in terms of computing time per fitness
evaluation.



A. The problem

Due to environmental regulations, that are becoming very
strict in Europe, the development of efficient automotive en-
gines with low fuel consumption and low pollutant emissions
becomes a hard task for engine designers. More specifically,
three objectives are to be minimized, namely: NOx, HCCO,
and Fuel consumption, and they are naturally in conflict: this
problem pertains to multi-objective optimization, and it was
decided to use NSGA-II [11] to solve this problem because of
its well-known robust efficiency.

All the objectives can be computed through a multidisci-
plinary simulation of the combustion. Simulating the complete
3D model requires a huge amount of time – around 3 days on
a recent single-core computer. Furthermore, the complexity of
the phenomena that occur in the combustion chamber requires
a very fine discretization in the numerical model, which in
turn increases considerably the cost of the simulations. Hence
a simplified model is used here, that does not take into account
the exact geometry of the combustion chamber, and thus only
involves the 10 decisions variables that control the combustion
process, i.e., the injection parameters, and the air/fuel mixing
parameters (more details can be found in [10]). The simulation
time is reduced to . . . a few hours. However, depending on
the parameters, and because highly non-linear phenomena are
involved in combustion models, the actual simulation run times
vary a lot depending on the parameters, from 1.5 to 24 hours,
as can be seen on Figure 1 for 40 random instances of the
parameters. In order to cope with this complexity, it was
decided to use a 40-CPUs cluster, and hence to use parallel
versions of NSGA-II with population size 40. Furthermore,
in order to keep all experiments within a reasonable range of
CPU costs, all single fitness evaluations were stopped after
roughly 8 hours, based on a human decision: the simulation
is an iterative procedure; looking at the results after 8 hours,
the runs that look unpromising with respect to convergence
of the iterative procedures were immediately stopped, while
more promising runs were continued up to a maximum of 12
hours.
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Fig. 1. Run time (in minutes) of fitness computations for 40 random individ-
uals. All runs are stopped after 8 hours, to avoid overly long computations.

B. Experimental Results

Two variants of parallel NSGA-II were experimented with:
the standard parallel generational algorithm, and the asyn-
chronous steady-state version, both with population size 40.
Both algorithms were run for 1600 evaluations, regardless
of their durations (i.e. 40 generations for the generational
variant). For obvious reasons, the results of a single run are
reported here, as an illustration of the effects of heterogeneity
on multi-objective costs . . . and results.

Table I shows the run time required along evolution, at
different numbers of function evaluation, for both generational
and asynchronous algorithms. The total optimization cost for
the generational NSGA-II is above 17 days, while that of the
asynchronous NSGA-II is less than 10 days. As expected, the
usage of CPU is much more efficient with the asynchronous
steady-state algorithm than for the generational one.

TABLE I
COMPARISON OF RUN TIMES FOR DIFFERENT NUMBERS OF EVALUATIONS

# evaluations Run time (hours)
Generational Parallel Asynchronous Steady-State

200 39,5 26.52
400 81.23 52.69
600 130.35 82.54
800 182.6 110.98
1000 253.32 138.13
1200 304.16 164.2
1400 351.1 200.2
1600 410.3 236.2

More interestingly, Figure 2 and 3 display some 2D projec-
tions of the Pareto fronts in the space ”HCCO-Fuel consump-
tion” vs ”NOx-Fuel consumption”. Both optimizations are
comparable in terms of quality of convergence. However, some
very efficient solutions in terms of NOx values (with of course
poor HCCO values, as both objectives are contradictory) have
been discovered by the asynchronous optimization, and not
in the generational case. A closer look revealed that these
solutions represent individuals with large evaluation time,
close or over the 8 hours threshold. As explained above, these
individuals are likely to be killed in the generational approach.
Thus, they do not appear in the Pareto front of the generational
optimization although they belong there.

These experiments, beside having provided interesting solu-
tions in terms of Engine Optimization [10], also demonstrated
that the heterogeneity of fitness computational costs was a
clear argument for using asynchronous parallel algorithms
rather than generational ones, in order not to waste any
computational power. Furthermore, these results raise the issue
of possible benefits of asynchronous steady-state algorithms
compared to the standard generational approach. It is however
not clear whether the “missing” solutions in the generational
Pareto front would have been discovered by the generational
approach without the 8-hours threshold. The experiments
presented in the rest of this work aim at answering such ques-
tions within an artificial framework to avoid the intractable
computation run times of the Engine Optimization problem.



Fig. 2. 2D Pareto Front: HCCO vs Fuel Consumption

Fig. 3. 2D Pareto Front: NOx vs Fuel Consumption

IV. ARTIFICIAL HETEROGENEOUS TESTBENCH

The baseline for the proposed experiments will be analytic
test functions that have been widely used in the EMO commu-
nity, namely the ZDT [20] and IHR [12] test suites. Those test
problems are very easy and fast to compute, and the “cost”
of the evaluation will hence be introduced artificially . . . and it
will hence be possible to carefully tune model of the evaluation
cost.

A. Implementation

The implementation of an evaluation cost model is straight-
forward: the algorithm maintains an additional queue that con-
tains the evaluated offspring in the order they will be inserted
back in the population at the end of the steady-state loop. First,
and for simplicity reasons, the initial population is evaluated at
once, and even in the steady-state variants, the heterogeneity
of the evaluation costs is not taken into account there. Note
that preliminary experiments showed no significant difference
whatsoever when the initial population was gradually filled
with individuals as they returned from evaluation. The main

loop of the heterogeneous steady-state algorithms start by
selecting a parent (with the parental selection at hand), and
“sends” it for evaluation (i.e., evaluates it). Depending on the
values of the objectives, the “run time” of this evaluation is
computed from the evaluation cost model. The expected return
time of the offspring is the current time + the evaluation run
time. The offspring is then inserted back into the waiting queue
depending on this return time (the waiting queue contains all
evaluated offspring, sorted by return time). The offspring that
is sitting on top of the waiting queue is then inserted in the
population, using the survival selection at hand.

B. The cost models

The baseline model assumes that there is no correlation
whatsoever between the evaluation cost and the individual
being evaluated, and covers the case where the only source of
heterogeneity comes from the available resources. Practically
speaking, using the baseline model amounts to inserting the
new offspring randomly in the waiting queue.

Two other models for this additional cost will be used here.
The first model assumes that the evaluation cost increases
inversely proportionally to the distance to the Pareto front.
This is the case for instance when some increased accuracy
of results is needed as search nears the true Pareto front (e.g.,
requiring more iterations, or finer mesh, or . . . ). The second
model is loosely inspired by the real-world application of
Engine Optimization described in Section III, and assumes
that all solutions in some rectangle of the objective space take
longer to compute than elsewhere.

For the first model, the ε-indicator is used to estimate the
’distance’ to the Pareto front, that is known analytically for
all test functions ZDT and IHR. The ε-indicator [21] gives
the factor by which a set A is worse than another set B with
respect to all objectives. The additive version that is considered
here is defined, for 2 sets A and B from the search space,
by inf

{

ε; (∀zb ∈ B)(∃za ∈ A)(zai ≤ zbi + ε)i=1,...,N

}

. The
evaluation cost of a newborn offspring is set to the inverse
of the square of ε-indicator, between the offspring in search
space and the true Pareto front for the problem at hand.

For the second model, all individuals have the same evalua-
tion cost, except those in a predefined area of the objective
space, defined by bounds on the values of the different
objectives, that are penalized proportionally to their objectives
values. This allows us to set a higher evaluation cost around
any part of the Pareto Front, inspired by what happened for
the real-world problem described in Section III.

V. EXPERIMENTS

A. Setting and Plots

As already mentioned, experiments were conducted on
the ZDT [20] and IHR [12] test suites, more precisely on
their 1-3;6 instances. All reported results are averages (or
aggregations) over 30 independent runs. All runs were stopped
after 50000 function evaluations. The sizes of the population
and the waiting queue for evaluated offspring (see Section



IV-A) were set to 100, thus simulating the parallelization on
a 100-nodes cluster or grid.

In a first series of experiments, 4 variants of each al-
gorithm are compared: for algorithm X (NSGA-II or MO-
CMA-ES), the base generational version is termed Xgen, the
synchronous steady-state version Xsteady−state, and results
of the asynchronous steady-state variant are indexed by the
evaluation cost model that is being used (see Section IV): the
heterogeneous case with random model is termed Xrandom and
the heterogeneous case where evaluation cost increases close
to the Pareto front, also called in the following ε-penalized, is
denoted Xepsilon.

The performance measurement considered for this series of
experiments is the Hypervolume indicator [15], known to be
consistent with Pareto dominance. For real-world problems,
with costly evaluation, the most important limiting factor
computation-wise is the total elapsed time. It can be computed
here based on the evaluation cost model for the generational
and ε-penalized methods (for the generational method, after
all offspring from one generation have been generated, the
one with the longest run time determines the run time of
the generation). But for the purpose of comparison, the total
computational effort, classically measured here in terms of
number of function evaluation, allows us to compare different
algorithmic settings.

A second series of experiments dealt with the second
evaluation cost model, that penalizes a precise region of the
objective space. As expected, this penalization hinders the
search in the corresponding region of the search space, and
the penalized region of the Pareto front is discovered very
late - if discovered at all. In such context, global indicators
like the hypervolume are not useful to analyze and compare
the different algorithms. Only several snapshots of the current
Pareto Front could possibly illustrate the different behaviors
of the algorithms - and these cannot be shown due to the
space limitations. A further technical report will detail these
results, but they will not be reported on here. Note that the
global picture (hypervolume plots similar to Figures 4 and 7)
are very similar to the ones obtained using the ε-cost model.

B. Results

Tables II and III summarize the final results obtained on
the 8 instances by the variants of NSGA-II and MO-CMA-ES
respectively, reporting the average hypervolume indicator, as
well as the statistical significance of the observed differences.

Some clear results appear for NSGA-II on ZDT func-
tions. First, NSGA-IIsteady−state outperforms all other vari-
ants on ZDT1 and ZDT2. On ZDT3, NSGA-IIsteady−state

and the asynchronous versions on either evaluation cost model
(NSGA-IIrandom and NSGA-IIepsilon) are equivalent, and
significantly outperform the generational version. However,
NSGA-IIepsilon algorithm is also the slowest in terms of
convergence speed, due to the fact that the good individuals are
expensive to evaluate. However, the asynchronous algorithm
finally catches up with the generational one after some number
of evaluations (30000 or ZDT1 and ZDT3, 45000 for ZDT2).

This confirms the results from [8], [9] demonstrating that
steady-state algorithms performed often better than genera-
tional ones in several contexts, and in particular in a multi-
objective setting. The situation is typically visible on Figure
4: the right plot shows the delay for NSGA-IIepsilon, whereas
the left plot illustrates the well-known benefit of asynchronous
steady-state selection, in terms of elapsed time.

Results obtained on IHR problems with NSGA-II show
that NSGA-IIepsilon outperforms other algorithms on IHR1,
IHR2, and is equivalent on IHR3 and IHR6. Our interpretation
of this phenomena is the following. On IHR problems, a
premature convergence toward a small part of the Pareto front
in observed with NSGA-IIgen (Figure 5-left). With NSGA-
IIepsilon algorithm, the best individuals are penalized, and
paradoxically, this prevents such premature convergence, and
the algorithm succeeds in finding more points on the Pareto
front (Figure 5-center). Note that NSGA-IIrandom does also
discover a larger part of the Pareto front (Figure 5-right).
However, this can be said from only a few runs, whereas the
plots of Figure 5 are aggregations of 30 runs. Table II shows
that indeed, NSGA-IIgen is significantly better than NSGA-
IIrandom. The difference can even be more critical when the
Pareto front is discontinuous, as for IHR3: Figure 6 shows
that indeed, complete components of the Pareto front can be
missed by one algorithm or the other.

Regarding MO-CMA-ES, all steady-state variants
outperform the generational one on all functions except ZDT6.
Again, this confirms previous results [16]. Furthermore, the
synchronous and the asynchronous (with both cost models)
variants perform quite similarly in terms of convergence
speed. For most test instances, MO-CMA-ESepsilon is the
slowest, similarly, and for the same reasons, that what can
be seen or NSGA-II on Figure 4. A sligthly different picture
emerges on IHR1 problem, where, unexpectedly, the random
model penalizes the asynchronous algorithm, as can be seen
on Table III, and on Figure 7-left. Nevertheless, hypervolume
versus elapsed-time plots (such as Figure 7-right) show
that the asynchronous steady-state algorithm requires much
less computational time than the generational version, while
providing a better solution quality (except for ZDT6).

VI. DISCUSSION AND CONCLUSION

This paper has investigated the influence of the distribution
of heterogeneity of evaluation computational cost on the
results of parallel EMOAs in a master-slave asynchronous
setting, motivated by a real-world case study dealing with
the optimization of the combustion in a Diesel engine. Inves-
tigations have been conducted for two well-known state-of-
the-art algorithms, NSGA-II and MO-CMA-ES, for which we
proposed a test-bench based on a classical set of test functions
(ZDT and IHR) but using any user-defined model for the cost
of evaluations. Experiments have been made with two cost
models to simulate heterogeneity on some distributed system
(e.g. grid or cluster).



Experiments using the first cost model ( run time increases
as solutions near the Pareto front) have demonstrated that
the asynchronous algorithm outperforms the generational one
in both quality of convergence and global run time, for
all considered cost models. Smaller computational cost was
of course expected, because the asynchronous steady-state
algorithm ensures an interrupted use of processors on multi-
processor systems, while generational algorithms need to syn-
chronize at each generation. As for the quality of the results, in
terms of hypervolume indicator, the better results obtained by
asynchronous algorithm come from its steady-state selection,
almost independently of the evaluation cost model. However,
a close look at the dynamic of the optimization suggests that
the higher evaluation cost close to the Pareto front slows down
the convergence, and thus improves the quality of the results,
as demonstrated on IHR functions.

The second cost model was inspired by the case study of
the Diesel engine, and assumes that the evaluation cost is
high in a specific region of the objective space including part
of the Pareto front. Based on previous results on the case
study, where the asynchronous algorithm had found solutions
that the generational version did not discover, our hope was
that the asynchronous algorithm would be able to repeatedly
cover a larger part of the Pareto front than the generational
one. Though this did sometimes happen, the results in this
direction were not robust enough to support any strong claim.
Further work will nevertheless try to address this issue, and
our long-term goal is come up with a new point of view on
the exploitation vs exploration dilemma. Ultimately, we should
be able to identify certain states of evolution, and to somehow
slow down convergence and favor coverage when necessary.

TABLE II
MEDIAN RESULTS OF HYPERVOLUME INDICATOR OVER 30 TRIALS AFTER

50000 EVALUATIONS WITH NSGA-II VARIANTS. SUPERSCRIPTS

INDICATE SIGNIFICANT DIFFERENCES WITH THE CORRESPONDING

COLUMN ACCORDING TO A KRUSKAL-WALLIS TEST WITH α = 0.01.

Test hypervolume indicator
NSGAIIgen NSGAIIss NSGAIIeps NSGAIIrand

ZDT1 0.001923 0.0001231,3,4 0.0002281,4 0.0002311

ZDT2 0.001865 0.0004311,3,4 0.0011211 0.0008531

ZDT3 0.001265 0.0001991 0.0004221 0.0003771

ZDT6 4.072532 4.060275 4.092183 4.080733

IHR1 0.5720324 0.5805934 0.4238531,2,4 0.825886

IHR2 9.929486 11.652031 5.0910231,2 6.2996121,2

IHR3 1.979927 2.041639 1.796320 1.975204
IHR6 27.96567 28.82385 30.33832 28.46332
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All 4 variants, vs # evaluations Generational and ε-penalized, vs elapsed time

Fig. 4. Evolution of average hypervolume indicator for NSGA-II on ZDT3. ! = generational; " = steady-state; # = ε-penalized; • = random.

(a) NSGA-IIgen (b) NSGA-IIepsilon NSGA-IIrandom

Fig. 5. Merged approximate Pareto Fronts from 30 runs with 50000 evaluations for different versions of NSGA-II on IHR1 problem

(a) NSGA-IIgenerational (b) NSGA-IIepsilon NSGA-IIrandom

Fig. 6. Merged approximate Pareto Fronts from 30 runs with 50000 evaluations for different versions of NSGA-II on IHR3 problem
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Fig. 7. Evolution of average hypervolume indicator for MO-CMA-ES on IHR1. ! = generational; " = steady-state; # = ε-penalized; • = random.


