
Universidade Técnica de Lisboa

Instituto Superior Técnico

Electronic Money within
My-Calculus

Pedro Miguel dos Santos Alves Madeira Adão

Applied Mathematics and Computation

Diploma Thesis

Supervisor:

Professor Paulo Mateus

July 2002

Acknowledgments

It would be difficult to mention everyone that somehow contributed and helped me throughout
these months. To all of them I would like to thank for their contribution. Some of them deserve
a special thanks, due to some small “special” things.

I would like to thank my supervisor, Professor Paulo Mateus, for his guidance, support
and constant motivation throughout this year, and also to Professor Amı́lcar Sernadas, for
having originally suggested this topic for my thesis and for the profitable discussions we had.

I would also thank to Professor Cristina Sernadas for her support and for the contribution
of my development as a scientist. With her enthusiasm Theoretical Computer Science becomes
fascinating.

I must thank to Professor António Ravara for the constant interest in my work, and for
informal talks in crucial moments that were decisive in the last stage of my work. I wish to
thank Professors Carlos Caleiro and Jaime Ramos for their fellowship and small discussions
about almost everything.

I also thank to João Boavida and João Rasga for their help in the TEXnical aspects of
this thesis.

I would like to thank all my friends and colleagues. A special acknowledgment goes to
my Friends Ana, Carla, Cátia, Alexandre, João, Pedro, Ricardo and Vitor for their constant
support and with whom I shared so many (very) good moments in this last five years.

Finally I would like to thank my family, without whom this was not possible, and to Ana
for her presence, love and (infinite) support. Their love was essential for the completion of
this (hard) task. All this work is dedicated to them.

The following entities have sponsored my work and my participation in Summer Schools:

• CLC (Center for Logic and Computation, Instituto Superior Técnico);

• FCT (Fundação para a Ciência e a Tecnologia) and EU FEDER through the FibLog
project (POCTI/2001/MAT/37239) of CLC.

i

Contents

List of symbols 3

1 Introduction 5

2 Spi-Calculus 7
2.1 Introduction . 7
2.2 Syntax . 8
2.3 Operational Semantics . 12

2.3.1 The Reaction Relation . 12
2.3.2 Commitment Relation in Spi-Calculus 13

2.4 Testing Equivalence . 14
2.5 Some Examples . 16

3 My-Calculus 19
3.1 Introduction . 19
3.2 Syntax . 20
3.3 Semantics . 23

3.3.1 Reduction Relation . 24
3.3.2 Commitment Relation . 25

3.4 Strong Bisimulation . 25
3.5 Weak Bisimulation . 31

4 Electronic Money 37
4.1 Overview of the Problem . 37
4.2 Withdrawal – A Simplification of the Problem 38
4.3 Payment – A Simplification of the Problem 40

5 Properties of the Protocol 45

6 Final Remarks and Future Work 47

A Proofs of the Lemmas of Chapter 5 49
A.1 Proof of the Lemma 5.1 . 49
A.2 Proof of the Lemma 5.3 . 53
A.3 Proof of the Lemma 5.5 . 56

Index 57

Bibliography 59

1

List of symbols

N Set of names
V ar Set of variables
TSpi Set of Spi-Calculus terms
PSpi Set of Spi-Calculus processes
ProcSpi Set of Spi-Calculus closed processes
BSpi Reduction relation in Spi-Calculus
≡Spi Structural relation in Spi-Calculus
↪→Spi Reaction relation in Spi-Calculus
τ Silent Action
−→Spi Commitment relation in Spi-Calculus
↓ Exhibition of barb
⇓ Convergence through a barb
'Spi Testing equivalence
A Set of principals
M\M′ Difference of finite multisets
M]M′ Union of finite multisets
Σ Set of states
LO Set of local operations
T Set of My-Calculus terms
P Set of My-Calculus processes
Proc Set of My-Calculus closed processes
Ξ Set of configurations
B Reduction relation
B∗ Reflexive closure of the reduction relation
V Commitment relation over processes
−→ Commitment relation over configurations
'A A-strong equivalence
=⇒ Weak commitment relation over configurations
∼=A A-weak equivalence
⊕ Union of states

3

Chapter 1

Introduction

The growth of the Internet and the increasing sophistication and availability of cryptographic
tools have promised to bring commerce to new heights of efficiency. Efficiency suggests a
number of things, including minimized human involvement, improved distribution of goods
and a more rapid processing of transactions, namely due to the development of the payment
methods, which need to be more secure and easy to use.

The idea of electronic money was introduced by Chaum, Fiat and Naor [CFN90]. Their
system (later improved in [CdBvH+90]) meets most of the ideal requisites listed below, but it
is quite complex. Since then, new schemes have been designed in order to satisfy some desired
“ideal” properties, namely off-line payments [Bra93, Bra95, Bra99, Fer93a, Fer94, Fer93b],
tamper resistant mechanisms [CP93] and divisibility [OO92, Oka95].

The “ideal” requirements for an electronic cash system are:

• Security: Every party in an electronic cash system should be protected from a collusion
between all the other parties.

• Off-line: There should be no need for communication with a central authority during
payment.

• Fake Privacy: The Bank and all the shops should not be able to derive together any
knowledge from their protocol transcripts about where a user spends his money.

• Privacy (untraceable): The bank should not be able to determine whether two payments
were made by the same payer, even if all shops cooperate.

• Divisibility: A piece of money can be divided into smaller pieces each of which can be
spent separately.

Some of these requirements are even undesirable for the regulator institutions, namely
Treasury Department and Police. For instance the privacy property is not desirable for the
National Authorities because they are concerned with problems such as money laundering, off-
shore banking, etc. So, it will be necessary to trace the money for law enforcement purposes.
The off-line requirement might also be discussed. Unless we have a physical device to avoid
forgery [CP93], the off-line money will not prevent the double spending of money. This fraud
cannot be detected at the time of spending, as payments are off-line. The solution that all
electronic cash systems use is to detect the double-spending after the fact. At each payment
the user is required to release information in response to a challenge from the shop. Such

5

6 Chapter 1. Introduction

release provides no clue to the identity of the user, but two releases are sufficient to identify
the user uniquely. Unfortunately, sometimes this detection is too late!

Besides the discussion of what are the desired properties, another problem of the protocols
in literature is that they are described informally and only by words. In these protocols we
want to model interactive systems, so we should use a formalism that deals with interac-
tion and communication. There are several formal methods to specify and analyze protocols.
The most common is the process algebra approach [AG97a, AG98b, AG97b, BNP99, Hoa80,
Low96, MMS02, MPW92, Mil99, MRTS01, Ros95, Sch98], but there are also logics for spec-
ification and verification of protocols, [AT91, BAN96, GM95, MCJ97, SC00, Syv91, SM96].

In this thesis we intend to design/specify a protocol to implement e-money. We intend to
design an on-line protocol, where the money is represented by electronic files that are issued
by a trusted authority. These tokens have an identification and a fixed value that are issued
by a trusted authority, commonly the bank. This authority will monitor the transactions, so
that multi-spending becomes impossible — at each time the bank will know exactly who is
the owner of each token. We will not bother with traceability issues because we are more
interested in avoiding multi-spending than in the privacy of the users. We hope that the
extension for incorporating untraceability can be achieved using secure computation technics,
[Can00, Can01]. In fact, the actual payment mechanisms are traceable so this “ideal” property
is more a desired property than a mandatory one.

We will need some kind of memory to register the tokens that are issued and who is their
owner at each time. Since we want to use a process algebra to specify our protocol, we can
introduce the notion of state using parameterization. In the beginning, we tried to use Spi-
Calculus, but since we assume that our communication channels are private and our notion
of equivalence is different from the one in Spi-Calculus, we realized that we could restrict
ourselves to CCS, or a small extension of it. So, we came up with Money-Calculus (My-
Calculus), that is specially designed to deal with our problem. We do not use parameterization
to incorporate memory but, instead, we associate with each process a multiset that has all
the notes issued. This representation is more common in imperative programming than in
functional programming, however, it is easier to work with. This process algebra is similar to
the CCS, but our notion of equivalence is different.

In Chapter 2 we present the Spi-Calculus in order to illustrate how cryptographic problems
can be treated and how authentication and secrecy properties can be expressed. With this
we argue that it is possible to establish secure communication between two principals and
so, we design our protocol assuming that all channels are private. We suppose that there
exists a private network between all principals — a principal A will share two communication
channels with any other principal X, namely an input channel cXA and an output channel
cAX .

Further, in Chapter 3, we present our calculus and a suitable notion of equivalence. As in
CCS and π-calculus, [Mil80, Mil89, MPW92], we start presenting a strong notion and then a
weaker notion of equivalence. We prove that these relations are equivalence relations.

In Chapter 4 we specify our protocols, the withdrawal and the payment protocols. Finally,
in Chapter 5, we show some properties of the protocol such as the impossibilities to: spend
one token more than once, forge a token (create a token that does not exists) or use tokens
from another principal.

We conclude this thesis in Chapter 6, with final remarks and setting a path to future
work, namely we intend to extend our calculus, achieve compositionality results and treat the
untraceability problem.

Chapter 2

Spi-Calculus

2.1 Introduction

Since the early 80’s, interactive systems and concurrent communicating systems have been
studied. In that time two models were independently conceived, CCS and CSP. The first
one was developed by Milner, [Mil80, Mil89], while the second one was developed by Hoare,
[Hoa80]. These models were presented as formalisms of interactional behaviour, and their
main objective was to analyze properties of concurrent communicating processes. It was
shown that these two models were able to represent not only interactive concurrent systems,
such as communications protocols, but also much of what is common in traditional compu-
tation, e.g., data structures and storage regimes. In fact CCS was used to give a rigorous
definition of a fairly powerful concurrent programming language.

Meanwhile an extension of the CCS was presented, the π-calculus, [MPW92, Mil99]. This
extension was mainly motivated by the notion of mobility. This notion is related to the
possibility of establishment of new communication channels between two devices and was
impossible to treat in both CCS and CSP. Due to the development of protocols involving
cryptographic primitives, the π-calculus was also extended and so, in 1997, Mart́ın Abadi and
Andrew Gordon presented the Spi-Calculus, [AG97a, AG97b, AG98b], designed for describing
and analyzing cryptographic protocols.

The π-calculus primitives for channels are simple and yet powerful. Channels can be
created and passed, for example from authentication servers to clients. The names of the
channels that a process knows, determine the communication possibilities of that process.
Channels may be restricted, so that only certain processes may communicate on them. The
scoping rules of the π-calculus guarantee that the environment of a protocol (the attacker)
cannot access a channel that was not, previously, given to him; scoping is thus the basis
of communication security. Therefore, the π-calculus seems to be a convenient calculus of
protocols for secure communication.

However, the π-calculus does not have a natural way to express cryptographic operations
that are commonly used for implementing private channels in distributed systems. So, the
main difference between the π-calculus and the Spi-Calculus, is that the latter includes crypto-
graphic primitives such as encryption and decryption. It is possible to encode these primitives
in the π-calculus, as processes, but the higher-level approach is more convenient because it
is possible to axiomatize encryption and decryption directly in the operational semantics of
the Spi-Calculus. In spite of using this higher-level approach, the fundamental ideas of the

7

8 Chapter 2. Spi-Calculus

π-calculus are maintained.
In the Spi-Calculus the protocols are stated as processes and the properties are proven

using notions of protocols equivalence, [AG97b, AG98b, AG98a]. For instance, we can say
that a protocol keeps a piece of data X secret by stating that the protocol with X is equivalent
to the protocol with X ′, for every X ′. Here, equivalence means equivalence in the eyes of
the environment. The environment can interact with the protocol, attempting to create
confusion between different messages or sessions. This definition of equivalence yields the
desired properties for most of the security applications. Interestingly, the standard notion of
bisimilarity cannot be taken as the relevant notion of equivalence.

Although the definition of equivalence makes reference to the environment, in the Spi-
Calculus there is no need to give an explicit model of the environment. This is one of the
main advantages of this approach. Writing such a model can be tedious and can lead to
new arbitrariness and error. This specification can also lead us to underestimation of the
environment’s “power”, which may cause flaws in the security. This conflict is resolved by
letting the environment be an arbitrary Spi-Calculus process.

In this chapter we present the Spi-Calculus as in [AG98b]. We start by presenting the
syntax of the Spi-Calculus. In Section 2.3 we present two notions of operational semantics
and in the Section 2.4 we define the notion of equivalence in the Spi-Calculus. Finally we
present some examples in the Section 2.5.

2.2 Syntax

For the definition of the Spi-Calculus syntax we assume defined the following sets:

• A countable set of names, N= {a, b, c, . . . };

• A countable set of variables, V ar= {x, y, z, . . . }.

Notation 1. We reserve the names c and m to denote channels and k to denote keys.

Definition 2.1. The set of Spi-Calculus terms, TSpi, is defined inductively as follows:

• 0 ∈ TSpi;

• a ∈ TSpi, provided that a ∈ N ;

• x ∈ TSpi, provided that x ∈ V ar;

• suc(t) ∈ TSpi, provided that t ∈ TSpi;

• (t1, t2) ∈ TSpi, provided that t1, t2 ∈ TSpi;

• {t}k ∈ TSpi, provided that t ∈ TSpi and k ∈ N .

Intuitively, terms have the following meaning:

- The pairing constructor, (t1, t2), means that any two terms can be combined in a pair.

- The shared-key encryption constructor, {t}k, represents the ciphertext obtained by en-
crypting the term t under the key k using a shared-key cryptosystem.

2.2. Syntax 9

In the standard π-calculus names are the only terms. In the Spi-Calculus the constructs
0, suc(t) and (t1, t2) were added in order to simplify some proofs. The shared-key encryption
was added in order to represent the encryption of terms.

Definition 2.2. The set of Spi-Calculus processes, PSpi, is defined inductively as follows:

• 0 ∈ PSpi;

• m〈t〉.P ∈ PSpi, provided that m ∈ N , t ∈ TSpi and P ∈ PSpi;

• m(x).P ∈ PSpi, provided that m ∈ N , x ∈ V ar and P ∈ PSpi;

• P | Q ∈ PSpi, provided that P,Q ∈ PSpi;

• (ν n) P ∈ PSpi, provided that n ∈ N and P ∈ PSpi;

• !P ∈ PSpi, provided that P ∈ PSpi;

• [t1 is t2] .P ∈ PSpi, provided that t1, t2 ∈ TSpi and P ∈ PSpi;

• let (x, y) = t in P ∈ PSpi, provided that t ∈ TSpi, x, y ∈ V ar and P ∈ PSpi;

• case t of 0: P suc(x) : Q ∈ PSpi, provided that t ∈ TSpi, x ∈ V ar and P,Q ∈ PSpi;

• case t of {x}k in P ∈ PSpi, provided that t ∈ TSpi, x ∈ V ar, k ∈ N and P ∈ PSpi.

Notation 2. We write P [t/x] to represent the substitution of each free occurrence of the
variable x in process P by the term t.

Intuitively, processes have the following meanings:

- The nil process 0 does nothing.

- An output process, m〈t〉.P , is ready to output the term t on the channel m, and then
to behave as P . The output only happens when there is a process ready to input from
the channel m. An input process, m(x).Q, is ready to input from m and then to behave
as Q[t/x] where t is the message received. The variable x is bound in Q.

- A composition, P | Q, behaves as P and Q running in parallel.

- A restriction, (ν n) P , is a process that makes a new, private name n, which may occur
in P , and then behaves as P . The name n is bound in P .

- A replication, !P , behaves as infinite replicas of P running in parallel.

- The match process, [t1 is t2] .P , behaves as P provided that t1 and t2 are the same
term; otherwise it gets stuck, i.e., it does nothing.

- A pair splitting process, let (x, y) = t in P , behaves as P [t1/x][t2/y] if t is the pair
(t1, t2), and it gets stuck if t is not a pair. The variables x and y are bound in P .

- An integer case process, case t of 0: P suc(x) : Q, behaves as P if t is 0, as Q[t1/x] if t
is suc(t1), for some term t1, and otherwise it gets stuck. The variable x is bound in Q.

10 Chapter 2. Spi-Calculus

- A shared-key decryption process, case t of {x}k in P , attempts to decrypt t with the
key k. If t has the form {t1}k, for some term t1 and name k,then the process behaves
as P [t1/x]. Otherwise the process gets stuck. The variable x is bound in P .

Notation 3. We adopt some abbreviations where we omit the 0 process. As an example we
use m(x) as short for m(x).0.

Notation 4. Given a family of processes P1, . . . , Pk, we let
∏

i∈{1,...,k} Pi be their k-way
composition P1 | · · · | Pk.

The possibilities of communication of a process may change during computation. When
a process sends a restricted channel as a message to a process outside the scope of the
restriction, the scope is said to extrude, that is, it enlarges to embrace the process receiving
the channel (we will see this in Example 2.2). So, the processes are mobile in the sense that
their communication possibilities may change over time; they may learn the names of new
channels via scope extrusion. Thus, a channel is a transferable capability for communication.

The (technical) idea is to use the restriction operator and scope extrusion from the π-
calculus, as a formal model of possession and communication of secrets, such as cryptographic
keys.

Example 2.1. The process (ν k) m〈{0}k〉 creates a name k and outputs the result of encrypt-
ing the numeral 0 with k on the channel m. Since m is not bound, anyone may receive {0}k;
however, since k is bound, this term cannot be successfully decrypted. In order to illustrate
the use of decryption, we add a process that has the necessary key:

(ν k) (m〈{0}k〉 | m(y).case y of {x}k in m〈x〉)

The new process (on the right of |) tries to decrypt the message y that it receives through m
using k, and sends the result x back through m.

We would also like to distinguish processes with free variables (or free names) from pro-
cesses where all the variables (or names) are bounded. To achieve this end we introduce two
definitions, free variables and free names.

Definition 2.3. We define the free variables of a term, fv(t), inductively as follows:

• fv(0) = ∅;

• fv(a) = ∅, if a ∈ N ;

• fv(x) = {x}, if x ∈ V ar;

• fv(suc(t)) = fv(t);

• fv((t1, t2)) = fv(t1) ∪ fv(t2);

• fv({t}k) = fv(t) ∪ fv(k).

We define the free variables of a process, fv(P), inductively as follows:

• fv(0) = ∅;

2.2. Syntax 11

• fv(m〈t〉.P) = fv(t) ∪ fv(P);

• fv(m(x).P) = fv(P)\{x};

• fv(P | Q) = fv(P) ∪ fv(Q);

• fv((ν n) P) = fv(P);

• fv(!P) = fv(P);

• fv([t1 is t2] .P) = fv(t1) ∪ fv(t2) ∪ fv(P);

• fv(let (x, y) = t in P) = fv(t) ∪ fv(P)\{x, y};

• fv(case t of 0: P suc(x) : Q) = fv(t) ∪ fv(P) ∪ fv(Q)\{x};

• fv(case t of {x}k in P) = fv(t) ∪ fv(k) ∪ fv(P)\{x}.

We say that a process (or a term) is closed if it has no free variables. We denote the set
of all closed processes of Spi-Calculus by ProcSpi.

Definition 2.4. We define the free names of a term, fn(t), inductively as follows:

• fn(0) = ∅;

• fn(a) = {a}, if a ∈ N ;

• fn(x) = ∅, if x ∈ V ar;

• fn(suc(t)) = fn(t);

• fn((t1, t2)) = fn(t1) ∪ fn(t2);

• fn({t}k) = fn(t) ∪ fn(k).

We define the free names of a process, fn(P), inductively as follows:

• fn(0) = ∅;

• fn(m〈t〉.P) = {m} ∪ fn(t) ∪ fn(P);

• fn(m(x).P) = {m} ∪ fn(P);

• fn(P | Q) = fn(P) ∪ fn(Q);

• fn((ν n) P) = fn(P)\{n};

• fn(!P) = fn(P);

• fn([t1 is t2] .P) = fn(t1) ∪ fn(t2) ∪ fn(P);

• fn(let (x, y) = t in P) = fn(t) ∪ fn(P);

• fn(case t of 0: P suc(x) : Q) = fn(t) ∪ fn(P) ∪ fn(Q);

• fn(case t of {x}k in P) = fn(t) ∪ fn(k) ∪ fn(P).

12 Chapter 2. Spi-Calculus

Before starting the definition of the operational semantics we will make some standard
but significant assumptions about cryptography:

• The only way to decrypt an encrypted packet is to know the corresponding key;

• An encrypted packet does not reveal the key that was used to encrypt it;

• There is enough redundancy in the messages to allow the decryption algorithm to detect
whether a ciphertext has been encrypted with the expected key.

2.3 Operational Semantics

In [AG98b] there are two operational semantics presented for Spi-Calculus - the reaction
relation and the commitment relation. The reaction relation is an adaptation of a similar
idea introduced by Milner. The definition of reaction is rather elegant, but not convenient
for proofs (because it relies on an auxiliary notion of structural equivalence). Therefore, an
alternative characterization of reaction is provided defining the commitment relation, in style
of [Mil99]. We will present both as in [AG98b].

2.3.1 The Reaction Relation

We define the reaction relation in three phases, according to [AG98b]. In the first one we
have the definition of the reduction relation, BSpi. Then we define what is called structural
equivalence of two processes, ≡Spi. Finally we present the definition of the reaction relation,
↪→Spi.

Definition 2.5. The reduction relation, BSpi ⊆ Proc× Proc, is defined as the least relation
on closed processes defined by the following rules:

(RedRepl) !P BSpi P | !P
(RedMatch) [t is t] .P BSpi P
(RedPair) let (x, y) = (t1, t2) in P BSpi P [t1/x][t2/y]
(RedZero) case 0 of 0: x suc(P) : Q BSpi P
(RedSuc) case suc(n) of 0: x suc(P) : Q BSpi Q[n/x]
(RedDecrypt) case {t}k of {x}k in P BSpi P [t/x]

Informally we say that two processes are structural equivalent if one can be transformed
into the other using the rules below.

Definition 2.6. The structural equivalence, ≡Spi⊆ Proc×Proc, is defined as the least relation
on closed processes that satisfies the following equations and rules:

(StructNil) P | 0 ≡Spi P
(StructComm) P | Q ≡Spi Q | P
(StructAssoc) P | (Q | R) ≡Spi (P | Q) | R
(StructSwitch) (ν m) (ν n) P ≡Spi (ν n) (ν m) P
(StructDrop) (ν m)0 ≡Spi 0
(StructExtrusion) (ν m) (P | Q) ≡Spi P | (ν m) Q if m /∈ fn(P)

2.3. Operational Semantics 13

P BSpi Q

P ≡Spi Q
(StructRed)

P ≡Spi P
(StructRefl)

P ≡Spi Q

Q ≡Spi P
(StructSymm)

P ≡Spi Q Q ≡Spi R

P ≡Spi R
(StructTrans)

P ≡Spi P ′

P | Q ≡Spi P ′ | Q
(StructPar)

P ≡Spi P ′

(ν m) P ≡Spi (ν m) P ′ (StructRes)

We are now ready to define the reaction relation of two closed processes. The previous
relations were defined to allow the rearrangement of processes so that the reaction could be
possible.

Definition 2.7. The reaction relation on closed processes, ↪→Spi⊆ Proc × Proc, is defined
as the least relation on closed processes that satisfies the following axiom,

c〈t〉.P | c(x).Q ↪→Spi P | Q[t/x] (ReactInter)

and the following rules:

P ≡Spi P ′ P ′ ↪→Spi Q′ Q′ ≡Spi Q

P ↪→Spi Q
(ReactStruct)

P ↪→Spi P ′

P | Q ↪→Spi P ′ | Q
(ReactPar)

P ↪→Spi P ′

(ν n) P ↪→Spi (ν n) P ′ (ReactRes)

2.3.2 Commitment Relation in Spi-Calculus

In order to define the commitment relation we need two new syntactic forms - abstractions and
concretions. An abstraction is an expression of the form (x).P where x is a bound variable
and P is a process. When F is the abstraction (x).P and t is a term, we write F (t) for P [t/x].
A concretion is an expression of the form (ν ~n) 〈t〉P where t is a term, P is a process and ~n
are names that are bound in t and P . We will use C and D for concretions.

We define an agent as an abstraction, a concretion or a process. We will use the variables
A and B when representing agents, and define fv(A) and fn(A) as the sets of free variables
and free names of an agent A, respectively. The definitions of fv(A) and fn(A) are the
expected extensions of the Definitions 2.4 and 2.3.

We now have to extend restriction and composition to arbitrary agents. We will do this
using the following rules:

(ν m) (x).P , (x).(ν m) P ;

R | (x).P , (x).(R | P) if x /∈ fv(R);

(ν m) (ν ~n) 〈t〉P ,

{
(ν m,~n) 〈t〉P if m ∈ fn(t)
(ν ~n) 〈t〉(ν m) P otherwise

;

R | (ν ~n) 〈t〉P , (ν ~n) 〈t〉(R | P) if {~n} ∩ fn(R) = ∅.

In the first and third equation we also suppose that m /∈ {~n}. We define the dual compo-
sition A | R symmetrically.

14 Chapter 2. Spi-Calculus

The interactions of an abstraction F = (x).P and a concretion C = (ν ~n) 〈t〉P , F@C and
C@F , are defined as the processes:

F@C , (ν ~n) (P [t/x] | Q);

C@F , (ν ~n) (Q | P [t/x]).

Intuitively these processes represent the interaction of P and Q. It is the same as P and
Q running in parallel and communicating using the same channel c.

We will now define how transitions work in Spi-Calculus.

Definition 2.8. We say that β is a barb if it is a name m (representing an input) or a co-name
m (representing an output). We say that α is an action if it is a barb or the silent action τ .

Now we are able to introduce the commitment relation as in [AG98b].

Definition 2.9. The commitment relation, −→Spi, is written P
α−→Spi A, where P is a closed

process, α is an action and A is a closed agent, and is defined inductively by the following
rules:

m(x).P m−→Spi (x).P
(CommIn)

m〈t〉.P m−→Spi (ν) 〈t〉P
(CommOut)

P
m−→Spi F Q

m−→Spi C

P | Q
τ−→Spi F@C

(CommInter1)
P

m−→Spi C Q
m−→Spi F

P | Q
τ−→Spi C@F

(CommInter2)

P
α−→Spi A

P | Q
α−→Spi A | Q

(CommLPar)
Q

α−→Spi A

P | Q
α−→Spi P | A

(CommRPar)

P
α−→Spi A α /∈ {m,m}

(ν m) P
α−→Spi (ν m) A

(CommRes)
P BSpi Q Q

α−→Spi A

P
α−→Spi A

(CommRed)

Whenever P
α−→Spi A, if the action α is a name, then A is an abstraction, if α is a

co-name, A is a concretion, and if α is τ , A is a process. Therefore the commitment relation
indexed by τ is a binary relation on Proc. We write P

τ−→Spi≡Spi Q when there exists a
process R such that P

τ−→Spi R and R ≡Spi Q.

Proposition 2.1. P ↪→Spi Q if and only if P
τ−→Spi≡Spi Q.

Proof. See Appendix B of [AG98b].

2.4 Testing Equivalence

In Spi-Calculus, the notion of equivalence between two processes is called testing equiva-
lence. In order to define it, we must define two auxiliary predicates, exhibition of a barb and
convergence through a barb.

2.4. Testing Equivalence 15

Definition 2.10. We say that a closed process P exhibits barb β, written P↓β, if it satisfies
the following rules:

m(x).P ↓ m
(BarbIn)

m〈t〉.P ↓ m
(BarbOut)

P ↓ β

P | Q ↓ β
(BarbPar)

P ↓ β β /∈ {m,m}
(ν m) P ↓ β

(BarbRes)
P ≡Spi Q Q ↓ β

P ↓ β
(BarbStruct)

Informally, a process P exhibiting a barb β, means that it can input or output immediately
using the channel β. Another notion associated with this one is the notion of convergence
through a barb.

Definition 2.11. We say that a process P converges through the barb β, written P⇓β, if it
exhibits barb β after a few reactions, this means,

P ↓ β

P ⇓ β
(ConvBarb)

P ↪→Spi Q Q ⇓ β

P ⇓ β
(ConvReact)

We are now ready to define the notion of testing equivalence.

Definition 2.12.

(a) We define a test as a pair (R, β), where R is a closed process and β is a barb.

(b) We say that a process P passes the test (R, β) iff (P | R) ⇓ β.

(c) We say that two processes P and Q are testing equivalent, written P'SpiQ, if

∀ test (R, β), P passes the test iff Q passes the test.

Proposition 2.2.

(1) Structural equivalence implies testing equivalence, ≡Spi⊆'Spi.

(2) Testing equivalence is an equivalence relation.

(3) Testing equivalence is a congruence in Proc.

Proof. See Appendix D of [AG98b].

Proposition 2.3. P ↓ β if and only if there exists an agent A such that P
β−→Spi A.

Proof. See Appendix B of [AG98b].

Proposition 2.4. P passes the test (R, β) if an only if there exists an agent A and a process

Q such that P | R
τ−→

∗
Spi Q and Q

β−→Spi A.

Proof. See Appendix B of [AG98b].

16 Chapter 2. Spi-Calculus

A
3) M on cAB //

1) cAB on cAS

))

B

S

2) cAB on cSB

II Message 1 A → S : cAB on cAS

Message 2 S → B : cAB on cSB

Message 3 A → B : M on cAB

Figure 2.1: Structure of the Wide Mouthed Frog protocol for establishment of a private channel
between two principals.

2.5 Some Examples

As it was mentioned in the introduction, the π-calculus primitives for channels are simple
and yet powerful. This power enables us to express some security protocols. It is common to
find channels on which only a given set of principals is allowed to send data or listen. The
set of principals may expand in the course of a protocol run, for example as the result of
channel establishment. This property is easy to model in the π-calculus, via the restriction
operation; the expansion of the set of principals that can access a channel corresponds to the
scope extrusion.

We present one small protocol, Wide Mouth Protocol [BAN96], that was designed for
two principals, A and B, to exchange keys using an authentication server, S. In the first
example we only use the π-calculus to explore the potential of the primitives for channels,
using the protocol to send a message M , from A to B. We only create a private channel
for communication between A and B. In the second example we will use the cryptographic
primitives of the Spi-Calculus to design the WMF protocol. For both examples we state and
prove what are called the authenticity and secrecy properties. This examples were also taken
from [AG98b].

Example 2.2. Suppose that we have two principals, A and B, and a server S. Suppose also
that each one of these principals shares a private channel with S, namely cAS and cSB. The
principals A and B want to establish a new communication channel, cAB, with the help of S.
How can they achieve that? An informal description of the protocol is presented in Figure 2.1.

After passing the channel to B through S, A sends the message M on cAB. In the
π-calculus we formulate the protocol as follows:

A(M) , (ν cAB) cAS〈cAB〉.cAB〈M〉;
S , cAS(x).cSB〈x〉;
B , cSB(x).x(y).F (y);

Inst(M) , (ν cAS) (ν cSB) (A(M) | S | B).

We write F (y) to represent what B does with the message that he receives. The restriction
of the channels cAS and cSB represents the expected privacy guaranties for these channels.
Another important fact to notice is the use of scope extrusion: A generates a new channel and
sends it to the scope of B via S, that is, B is now able to communicate over a new channel,
cAB. For the discussion of authenticity the following specification is introduced:

2.5. Some Examples 17

A
3) {M}kAB //

1) {kAB}kAS

))

B

S

2) {kAB}kSB

II Message 1 A → S : {kAB}kAS
on cAS

Message 2 S → B : {kAB}kSB
on cSB

Message 3 A → B : {M}kAB
on cAB

Figure 2.2: Structure of the Wide Mouthed Frog protocol for establishment of a private key
between two principals.

A(M) , (ν cAB) cAS〈cAB〉.cAB〈M〉;
S , cAS(x).cSB〈x〉;

BSpec(M) , cSB(x).x(y).F (M);

InstSpec(M) , (ν cAS) (ν cSB) (A(M) | S | BSpec(M)).

If we look at this specification we observe that no matter what message B receives, he
will always apply F to the message M . We obtain the following authenticity and secrecy
properties:

Authenticity: Inst(M) 'Spi InstSpec(M) for all M ;
Secrecy: Inst(M) 'Spi Inst(M ′) if F (M) 'Spi F (M ′) for all M and M ′.

Proof. See Section 6 of [AG98b].

This example explored the π-calculus properties for channels. In the next example we
present the WMF protocol as in the original version.

Example 2.3. Suppose that we have two principals, A and B, and a server S and that each
of these shares a private key with S, namely kAS and kSB. The principals A and B want to
establish a new communication key, kAB, with the help of S. How can they achieve that? We
illustrate this in the following example where we suppose that the channels cAS and cSB are
not private.

An informal description of the protocol is given in Figure 2.2. After passing the key, kAB,
to B through S, A sends the message M on cAB using the new key. Note that the key kAB

is always encrypted in the communications. In the Spi-Calculus we formulate the protocol as
follows:

A(M) , (ν kAB) cAS〈{kAB}kAS
〉.cAB〈{M}kAB

〉;
S , cAS(x).case x of {y}kAS

in cSB〈{y}kSB
〉;

B , cSB(x).case x of {y}kSB
in cAB(z).case z of {w}y in F (w);

Inst(M) , (ν kAS) (ν kSB) (A(M) | S | B).

18 Chapter 2. Spi-Calculus

We write F (w) to represent what B does with the message that he receives. The restriction
of the keys kAS and kSB represents the expected privacy guaranties for these keys.

For the discussion of authenticity we introduce the following specification:

A(M) , (ν kAB) cAS〈{kAB}kAS
〉.cAB〈{M}kAB

〉;
S , cAS(x).case x of {y}kAS

in cSB〈{y}kSB
〉;

BSpec(M) , cSB(x).case x of {y}kSB
in cAB(z).case z of {w}y in F (M);

InstSpec(M) , (ν kAS) (ν kSB) (A(M) | S | BSpec(M)).

Again, if we look at this specification we observe that despite the message B receives, he
will always apply F to the message M . As in the previous example, we obtain the following
authenticity and secrecy properties:

Authenticity: Inst(M) 'Spi InstSpec(M) for all M ;
Secrecy: Inst(M) 'Spi Inst(M ′) if F (M) 'Spi F (M ′) for all M and M ′.

Proof. See Section 6 of [AG98b].

Chapter 3

My-Calculus

3.1 Introduction

In Chapter 2 we presented the Spi-Calculus, a calculus for analysis of communication pro-
tocols including cryptographic primitives. This calculus is extremely powerful for treating
cryptographic problems, but as said in the introduction, we want to model an e-bank, and
for that we need to join processes and some kind of memory (in order to register the coins
available), therefore we will use configurations.

Usually, in CCS and in π-calculus we use parameterization in order to incorporate the
notion of memory. A classical example is the example of the counter. The states of the
counter are denoted Countn, n ≥ 0, with behaviour described by the following equations

Count0 , inc.Count1 + zero.Count0

Countn+1 , inc.Countn+2 + dec.Countn

and we set Count , Count0. You can always increment by pressing the button inc; when it
is zero you can detect the fact by pressing the zero button; otherwise you can detect that it
is nonzero and you can decrement the counter by pressing dec.

In order to solve our problem we should have introduced this notion of memory in Spi-
Calculus. However, if we analyze our problem, implementation of an e-bank, we realize that
the main problems of the bank are not related to the privacy of communication, but with
forgery and stealing. We do not want to worry about privacy problems, and so, we suppose
that all communications are private. So, in spite of being possible to incorporate the notion of
memory in the Spi-Calculus, we realize that testing equivalence is not appropriated to study
our protocols.

Informally, the notion of equivalence presented in Section 3.5, states that two configura-
tions are equivalent to a principal A if they cannot “cheat” A, that is, if for both configurations
the state of A is equal after the execution of both protocols. For the applications in mind, it
is enough to say that our protocols are equivalent to the bank, that is, no one can “cheat”
the bank.

Since we do not need to worry about cryptographic problems, we will construct our calcu-
lus using the notions from the π-calculus leaving behind the constructors introduced by the
Spi-Calculus.

In this chapter we start presenting the syntax of our calculus, Section 3.2. In the Sec-
tion 3.3, we present the operational semantics of the calculus. Finally in Sections 3.4 and 3.5

19

20 Chapter 3. My-Calculus

we define the notion of equivalence for our calculus.

3.2 Syntax

This section will be similar to the Section 2.2. We assume defined the following sets:

• A countable set of names, N = {a, b, c, . . . };

• A countable set of variables, V ar = {x, y, z, . . . };

• A finite set of principals, A= {A1, A2, . . . , An}.

The difference to the Chapter 2 is that in this one we also assume the set A to be defined,
so that we can associate each state to a principal A. In order to define the notion of state we
have to introduce the definition of finite multisets.

Definition 3.1. A finite multiset M over a set L is a map M : L → N such that M−1(N1)
is finite. We define the following operations on finite multisets:

(a) The difference of the multisetsM andM′ is the multisetM\M′ where (M\M′)(l) =
max(0,M(l)−M′(l));

(b) The union of two multisets M and M′ is the multiset M]M′ where (M]M′)(l) =
M(l) +M′(l);

(c) We say that l ∈M iff M(l) > 0.

We define formally our notion of state as follows:

Definition 3.2. We define a state, σ = {σA}A∈A, to be a family of multisets indexed by the
principals, where each σA represents the local state of the principal A. We denote the set of
all states by Σ.

A first approach to the definition of state would be a family of sets. If we consider each
σA as a set, we were restricting the possibility of a principal to have many copies of the same
coin. We want to deal with the possibility of existing several copies of the coin and verify
that our system has the desired properties. Clearly, the state of the bank will have special
constraints, but this will be discussed in the Chapter 4. We also have to add some operations
to deal with the state.

Observation 1. Each σA is a multiset over the set of terms, so it is a map σA : T → N.

Definition 3.3. We define the set of local operations, LO={op, op1, op2, . . . , opn}, to be the
set of possible operations over states. Each of the operations is a family, op = {opA}A∈A,
where each opA is an operation over the state of the principal A, σA.

We consider only three operations, add, change and remove. The semantic of these opera-
tions is described in the Section 3.3. Our set of local operations, LO, is {add, change, remove}.

We continue with the definition of the terms and processes of My-Calculus. The definitions
are similar to the ones of the previous chapter, but we do not introduce all the constructors.
We only introduce those that will be useful in the design of our protocols.

3.2. Syntax 21

Definition 3.4. The set of My-Calculus terms, T , is defined inductively as follows:

• a ∈ T , provided that a ∈ N ;

• n ∈ T , provided that n ∈ N;

• x ∈ T , provided that x ∈ V ar;

• (t1, t2) ∈ T , provided that t1, t2 ∈ T .

Notation 5. We use (t1, t2, . . . , tn−1, tn) as short for (t1, (t2, (. . . , (tn−1, tn)))).

We may now define what is intended as a well defined operation.

Definition 3.5. We say that the operation op is well defined if:

• op = addA(t), where A ∈ A and t ∈ T ;

• op = changeA(t1, t2), where A ∈ A and t1, t2 ∈ T ;

• op = removeA(t), where A ∈ A and t ∈ T .

Definition 3.6. The set of My-Calculus processes, P, is defined inductively as follows:

• 0 ∈ P;

• op.P , provided that op is a well defined operation and P ∈ P;

• m〈t〉.P ∈ P, provided that m ∈ N , t ∈ T and P ∈ P;

• m(x).P ∈ P, provided that m ∈ N , x ∈ V ar and P ∈ P;

• P | Q ∈ P, provided that P,Q ∈ P;

• (ν n) P ∈ P, provided that n ∈ N and P ∈ P;

• !P ∈ P, provided that P ∈ P;

• [t1 is t2] .P ∈ P, provided that t1, t2 ∈ T and P ∈ P.

Intuitively, processes have the following meanings:

- The nil process 0 does nothing.

- The op.P process means that the operation op is done and if it succeeds, the process
behaves as P, otherwise it gets stuck, that is, it does nothing.

- An output process m〈t〉.P is ready to output the term t on the channel m, and then to
behave as P . The output only happens when there is a process ready to input from the
channel m. An input process m(x).Q is ready to input from m and then to behave as
Q[t/x] where t is the message received. x is bound in Q.

- The composition P | Q behaves as P and Q running in parallel.

22 Chapter 3. My-Calculus

- The restriction (ν n) P is a process that makes a new, private name n, which may occur
in P , and then behaves as P. The name n is bound in P .

- The replication !P behaves as infinite replicas of P running in parallel.

- The match process [t1 is t2] .P behaves as P provided that t1 and t2 are the same term;
otherwise it gets stuck.

The definitions of fv(t), fv(P), fn(t) and fn(P) are similar to the Definition 2.3 and
Definition 2.4.

Definition 3.7. We define the free variables of a term, fv(t), inductively as follows:

• fv(a) = ∅, if a ∈ N ;

• fv(n) = ∅, if n ∈ N;

• fv(x) = {x}, if x ∈ V ar;

• fv((t1, t2)) = fv(t1) ∪ fv(t2).

We define the free variables of an operation, fv(op), as follows:

• fv(addA(t)) = fv(t);

• fv(changeA(t1, t2)) = fv(t1) ∪ fv(t2);

• fv(removeA(t)) = fv(t).

We define the free variables of a process, fv(P), inductively as follows:

• fv(0) = ∅;

• fv(op.P) = fv(op) ∪ fv(P);

• fv(m〈t〉.P) = fv(t) ∪ fv(P);

• fv(m(x).P) = fv(P)\{x};

• fv(P | Q) = fv(P) ∪ fv(Q);

• fv((ν n) P) = fv(P);

• fv(!P) = fv(P);

• fv([t1 is t2] .P) = fv(t1) ∪ fv(t2) ∪ fv(P).

We say that a process (or a term) is closed if it has no free variables. We denote the set
of all closed processes of My-Calculus by Proc.

Definition 3.8. We define the free names of a term, fn(t), inductively as follows:

• fn(a) = {a}, if a ∈ N ;

3.3. Semantics 23

• fn(n) = ∅, if n ∈ N;

• fn(x) = ∅, if x ∈ V ar;

• fn((t1, t2)) = fn(t1) ∪ fn(t2).

We define the free names of an operation, fn(op), as follows:

• fn(addA(t)) = fn(t);

• fn(changeA(t1, t2)) = fn(t1) ∪ fn(t2);

• fn(removeA(t)) = fn(t).

We define the free names of a process, fn(P), inductively as follows:

• fn(0) = ∅;

• fn(op.P) = fn(op) ∪ fn(P);

• fn(m〈t〉.P) = {m} ∪ fn(t) ∪ fn(P);

• fn(m(x).P) = {m} ∪ fn(P);

• fn(P | Q) = fn(P) ∪ fn(Q);

• fn((ν n) P) = fn(P)\{n};

• fn(!P) = fn(P);

• fn([t1 is t2] .P) = fn(t1) ∪ fn(t2) ∪ fn(P).

Definition 3.9. We define a configuration to be a pair (σ, P), where σ ∈ Σ and P ∈ P. We
denote the set of all configurations by Ξ.

3.3 Semantics

As mentioned in the previous section we start by defining the semantics of the local operations.
Informally, these operations have the following semantics:

- The operation addA(t) appends the term t to the state σA.

- The operation changeA(t1, t2) replaces an occurrence of the term t1 in σA with the term
t2. This operation succeeds if t1 ∈ σA.

- The operation removeA(t) removes one occurrence of the term t from σA. This operation
succeeds if t ∈ σA.

Formally, we define the semantics of these operations as a relation over configurations,
the reduction relation. In this definition we use the notation of multisets introduced in the
Definition 3.1. After defining the semantics of these operations, we define the operational
semantics of our calculus via the commitment relation.

24 Chapter 3. My-Calculus

3.3.1 Reduction Relation

Definition 3.10. We define the reduction relation over configurations , B⊆ Ξ × Ξ, as the
least relation over configurations that satisfies the following equations and rules:

(RedAdd) (σ, addX(t).P) B (σ′, P)

where σ′ = {σ′A}A∈A and σ′A =

{
σA] {t} if A = X

σA otherwise
;

(RedChange1) (σ, changeX(t1, t2).P) B (σ′, P) if t1 ∈ σX

where σ′ = {σ′A}A∈A and σ′A =

{
σA] {t2}\{t1} if A = X

σA otherwise
;

(RedChange2) (σ, changeX(t1, t2).P) B (σ,0) if t1 /∈ σX ;

(RedRemove1) (σ, removeX(t).P) B (σ′, P) if t ∈ σX

where σ′ = {σ′A}A∈A and σ′A =

{
σA\{t} if A = X

σA otherwise
;

(RedRemove2) (σ, removeX(t).P) B (σ,0) if t /∈ σX ;

(σ, P) B (σ′, Q) (σ′, Q) B (σ′′, R)
(σ, P) B (σ′′, R)

(RedTrans)

(σ, P) B (σ′, P ′)
(σ, P | Q) B (σ′, P ′ | Q)

(RedLPar)
(σ,Q) B (σ′, Q′)

(σ, P | Q) B (σ′, P | Q′)
(RedRPar)

(σ, P) B (σ′, P ′)
(σ, (ν n) P) B (σ′, (ν n) P ′)

(RedRest)
(σ, P) B (σ′, P ′)

(σ, [x is x] .P) B (σ′, P ′)
(RedMatch)

Notation 6. We use B∗ to denote the reflexive closure of the reduction relation.

We notice immediately that the rewriting system induced by this relation is not confluent.

Example 3.1. Assume that we have the following configuration, with only one principal A.

({{}}, addA(t) | changeA(t, t1))

As we may see we can construct the following different trees:

({{}}, addA(t)) B ({{t}},0)
(RedAdd)

({{}}, addA(t) | changeA(t, t1))B
({{t}},0 | changeA(t, t1))

(RedLPar)

({{t}}, changeA(t, t1))B
({{t1}},0)

(RedChange1)

({{t}},0 | changeA(t, t1))B
({{t1}},0 | 0)

(RedRPar)

({{}}, addA(t) | changeA(t, t1)) B ({{t1}},0 | 0)
(RedTrans)

3.4. Strong Bisimulation 25

and

({{}}, changeA(t, t1)) B ({{}},0)
(RedChange2)

({{}}, addA(t) | changeA(t, t1))B
({{}}, addA(t) | 0)

(RedRPar)
({{}}, addA(t)) B ({{t}},0)

(RedAdd)

({{}}, addA(t) | 0)B
({{t}},0 | 0)

(RedLPar)

({{}}, addA(t) | changeA(t, t1)) B ({{t}},0 | 0)
(RedTrans)

3.3.2 Commitment Relation

The fact that names can be transmitted in interactions makes the π-calculus semantics nat-
urally proliferate in two distinct families — late and early — depending on the operational
intuition about input actions. The late paradigm interprets the derivative of the inputting
process as a function of the name received, and then insists for an input move to be matched
by a single input step. The more liberal, early semantics, allows an input to be matched by
distinct moves, depending on the actual transmitted parameter. So, in the early bisimulation
we only require that for each received name there is a matching transition. We define our
commitment relation in the early style. We first define the commitment relation over processes
and then extend it to commitment over configurations.

Definition 3.11. We define the commitment relation over processes, V ⊆ P×P, as the least
relation over My-Calculus processes defined by the following rules:

τ.P
τ
V P

(Tau)
x(y).P

x(w)

V P [w/y]
(Input)

x〈y〉.P
x〈y〉
V P

(Output)

P
x〈y〉
V P ′ Q

x(z)

V Q′

P | Q
τ
V P ′ | Q′[y/z]

(Com1)
P

x(z)

V P ′ Q
x〈y〉
V Q′

P | Q
τ
V P ′[y/z] | Q′

(Com2)

P
α
V P ′

P | Q
α
V P ′ | Q

(LPar)
Q

α
V Q′

P | Q
α
V P | Q′

(RPar)

P
α
V P ′

[x is x] .P
α
V P ′

(Match)
P

α
V P ′ α /∈ {m,m}

(ν m) P
α
V (ν m) P ′

(Res)
P | !P

α
V P ′

!P
α
V P ′

(Bang)

We are now ready to define the commitment over configurations.

Definition 3.12. We define the commitment relation over configurations, −→⊆ Ξ × Ξ, as
the least relation over configurations defined by the rule

(σ, P) B∗(σ′, P ′) P ′ α
V P ′′ (σ′, P ′′) B∗(σ′′, P ′′′)

(σ, P) α−→ (σ′′, P ′′′)
(Commit)

3.4 Strong Bisimulation

As said in the introduction we present in this section the first notion of equivalence, Defini-
tion 3.15. We do this in the standard way, that is, we define what is intended to be a strong

26 Chapter 3. My-Calculus

simulation of the configuration (σ1, P) by the configuration (σ2, Q), Definition 3.13. Then we
say that two configurations are strong bisimilar if they simulate each other, Definition 3.14.
Finally, we have that two configurations (σ1, P) and (σ2, Q) are strong equivalent if the pair
((σ1, P), (σ2, Q)) is in some strong bisimulation. Intuitively this first notion of equivalence,
says that the configuration (σ2, Q) simulates (σ1, P), for a principal A, if (σ2, Q) can match
all the transitions of (σ1, P) and in the end both states are equal for the principal A.

Definition 3.13. A binary relation S over configurations, S ⊆ Ξ × Ξ, is an A-strong simu-
lation, A ∈ A, if, whenever

(
(σ1, P), (σ2, Q)

)
∈ S,

(a) (σ1)A = (σ2)A;

(b) if (σ1, P) B∗(σ′1, P
′) then there exists (σ′2, Q

′) ∈ Ξ such that

(σ2, Q) B∗(σ′2, Q
′) and ((σ′1, P

′), (σ′2, Q
′)) ∈ S;

(c) if (σ1, P) α−→ (σ′1, P
′) then there exists (σ′2, Q

′) ∈ Ξ such that

(σ2, Q) α−→ (σ′2, Q
′) and ((σ′1, P

′), (σ′2, Q
′)) ∈ S.

Notation 7. From now on we use (σ1, P)S(σ2, Q) as short for
(
(σ1, P), (σ2, Q)

)
∈ S.

In general, we define the converse S−1 of a binary relation and the composition S1S2 of
two binary relations as

S−1 = {(y, x) : xSy};
S1S2 = {(x, z) : exists y, xS1y and yS2z}.

Definition 3.14. A binary relation S over configurations, S ⊆ Ξ×Ξ, is an A-strong bisimu-
lation, A ∈ A, if, both S and S−1 are A-strong simulations.

Now, we prove some properties of the A-strong bisimulations.

Proposition 3.1. Let Si, (i = 1, 2, . . .) be a family of A-strong bisimulations. Then the
following relations are all A-strong bisimulations:

(1) IdΞ (2) S−1
i

(3) SiSj (4) S =
⋃

i∈I Si.

Proof. We only prove (3) and (4), because (1) is trivially verified and (2) is direct from the
Definition 3.14. We start proving (3). Suppose that (σ1, P)SiSj(σ3, R). This means that for
some (σ2, Q),

(σ1, P)Si(σ2, Q) and (3.1a)
(σ2, Q)Sj(σ3, R). (3.1b)

We start proving that,
(σ1)A = (σ3)A. (?)

Since both Si and Sj are A-strong bisimulations, we have that

(σ1)A = (σ2)A and (σ2)A = (σ3)A

3.4. Strong Bisimulation 27

This proves (?). Now, we only prove the conditions (b) and (c) of Definition 3.13, definition
of A-simulation, since the proof for S−1 is similar. We want to prove that

if (σ1, P) B∗(σ′1, P
′) then there exists (σ′3, R

′) ∈ Ξ such that
(σ3, R) B∗(σ′3, R

′) and (σ′1, P
′)SiSj(σ′3, R

′);

if (σ1, P) α−→ (σ′1, P
′) then there exists (σ′3, R

′) ∈ Ξ such that

(σ3, R) α−→ (σ′3, R
′) and (σ′1, P

′)SiSj(σ′3, R
′).

(∗)

Suppose that
(σ1, P) B∗(σ′1, P

′).

Since Si is an A-strong bisimulation, (σ1, P)Si(σ2, Q) and (σ1, P) B∗(σ′1, P
′) we have that

there exists (σ′2, Q
′) ∈ Ξ such that

(σ2, Q) B∗(σ′2, Q
′) and (σ′1, P

′)Si(σ′2, Q
′). (3.1c)

Since Sj is an A-strong bisimulation, (σ2, Q)Sj(σ3, R) and (σ2, Q) B∗(σ′2, Q
′) we have that

there exists (σ′3, R
′) ∈ Ξ such that

(σ3, R) B∗(σ′3, R
′) and (σ′2, Q

′)Sj(σ′3, R
′). (3.1d)

So using (3.1c) and (3.1d) we have that there exists (σ′3, R
′) ∈ Ξ such that

(σ3, R) B∗(σ′3, R
′) and (σ′1, P

′)SiSj(σ′3, R
′).

This proves (b). To prove (c) we start supposing that

(σ1, P) α−→ (σ′1, P
′).

Since Si is an A-strong bisimulation, (σ1, P)Si(σ2, Q) and (σ1, P) α−→ (σ′1, P
′) we have that

there exists (σ′2, Q
′) ∈ Ξ such that

(σ2, Q) α−→ (σ′2, Q
′) and (σ′1, P

′)Si(σ′2, Q
′). (3.1e)

Since Sj is an A-strong bisimulation, (σ2, Q)Sj(σ3, R) and (σ2, Q) α−→ (σ′2, Q
′) we have that

there exists (σ′3, R
′) ∈ Ξ such that

(σ3, R) α−→ (σ′3, R
′) and (σ′2, Q

′)Sj(σ′3, R
′). (3.1f)

So using (3.1e) and (3.1f) we have that there exists (σ′3, R
′) ∈ Ξ such that

(σ3, R) α−→ (σ′3, R
′) and (σ′1, P

′)SiSj(σ′3, R
′).

We have proved (∗). This states that the composition of A-strong simulations is an A-strong
simulation. Since S−1 is also an A-strong simulation, we have that the composition of A-
strong bisimulations is an A-strong bisimulation.

To prove (4), all that we need is to observe that if (σ1, P)S(σ2, Q) then

(σ1, P)Si(σ2, Q) for some i ∈ I.

28 Chapter 3. My-Calculus

From this, we notice immediately that (σ1)A = (σ2)A.
Similarly to the item (3) we only prove the result for A-simulations. The extension for A-
bisimulations is obvious since both S and S−1 are A-simulations. Let us suppose that

(σ1, P) B∗(σ′1, P
′).

Since each Si is an A-strong bisimulation, (σ1, P)Si(σ2, Q) and (σ1, P) B∗(σ′1, P
′) we have

that there exists (σ′2, Q
′) ∈ Ξ such that

(σ2, Q) B∗(σ′2, Q
′) and (σ′1, P

′)Si(σ′2, Q
′).

Therefore, exists (σ′2, Q
′) ∈ Ξ such that

(σ2, Q) B∗(σ′2, Q
′) and (σ′1, P

′)S(σ′2, Q
′).

This proves (b) of the definition of A-simulations. To prove (c) we start by supposing that

(σ1, P) α−→ (σ′1, P
′).

Since each Si is an A-strong bisimulation, (σ1, P)Si(σ2, Q) and (σ1, P) α−→ (σ′1, P
′) we have

that there exists (σ′2, Q
′) ∈ Ξ such that

(σ2, Q) α−→ (σ′2, Q
′) and (σ′1, P

′)Si(σ′2, Q
′).

Therefore, exists (σ′2, Q
′) ∈ Ξ such that

(σ2, Q) α−→ (σ′2, Q
′) and (σ′1, P

′)S(σ′2, Q
′).

We have proved that the union of A-strong simulations is an A-strong simulation. The
result is naturally extended to A-strong bisimulations, so S =

⋃
i∈I Si is also an A-strong

bisimulation.

We are now ready to present our (first) notion of equivalence.

Definition 3.15. We say that two configurations (σ1, P) and (σ2, Q) are strong equivalent to
a principal A or A-strong equivalent, and write (σ1, P)'A(σ2, Q), if (σ1, P)S(σ2, Q) for some
A-strong bisimulation S. In other terms we define

'A =
⋃
{S : S is an A-strong bisimulation}.

Proposition 3.2.

(1) 'A is the greatest A-strong bisimulation;

(2) 'A is an equivalence relation.

Proof. (1) is straightforward from Proposition 3.1. We just use the fact that the union of
A-strong bisimulations is also an A-strong bisimulation to justify that 'A is an A-strong
bisimulation. By the definition of 'A we have that it is the greatest A-strong bisimulation.

(2) is also a consequence of Proposition 3.1.

Reflexivity (σ, P) 'A (σ, P) because IdΞ is an A-strong bisimulation.

3.4. Strong Bisimulation 29

Symmetry If (σ1, P) 'A (σ2, Q) then (σ2, Q) 'A (σ1, P).

If (σ1, P) 'A (σ2, Q) then (σ1, P)S(σ2, Q) for some A-strong bisimulation S
then (σ2, Q)S−1(σ1, P)

then (σ2, Q) 'A (σ1, P) S−1 is an A-strong bisimulation.

Transitivity If (σ1, P) 'A (σ2, Q) and (σ2, Q) 'A (σ3, R) then (σ1, P) 'A (σ3, R).

If (σ1, P) 'A (σ2, Q) then (σ1, P)Si(σ2, Q) for some A-strong bisimulation Si

If (σ2, Q) 'A (σ3, R) then (σ2, Q)Sj(σ3, R) for some A-strong bisimulation Sj

Since SiSj is an A-strong bisimulation and (σ1, P)SiSj(σ3, R), we have that

(σ1, P) 'A (σ3, R).

Definition 3.16. A binary relation S over configurations, S ⊆ Ξ× Ξ, is an A-strong bisim-
ulation up to 'A if, whenever (σ1, P)S(σ2, Q),

(a) (σ1)A = (σ2)A;

(b) if (σ1, P) B∗(σ′1, P
′) then there exists (σ′2, Q

′) ∈ Ξ such that

(σ2, Q) B∗(σ′2, Q
′) and (σ′1, P

′) 'A S 'A (σ′2, Q
′);

(c) if (σ1, P) α−→ (σ′1, P
′) then there exists (σ′2, Q

′) ∈ Ξ such that

(σ2, Q) α−→ (σ′2, Q
′) and (σ′1, P

′) 'A S 'A (σ′2, Q
′);

(d) if (σ2, Q) B∗(σ′2, Q
′) then there exists (σ′1, P

′) ∈ Ξ such that

(σ1, P) B∗(σ′1, P
′) and (σ′1, P

′) 'A S 'A (σ′2, Q
′);

(e) if (σ2, Q) α−→ (σ′2, Q
′) then there exists (σ′1, P

′) ∈ Ξ such that

(σ1, P) α−→ (σ′1, P
′) and (σ′1, P

′) 'A S 'A (σ′2, Q
′).

Proposition 3.3. If S is an A-strong bisimulation up to 'A and (σ1, P)S(σ2, Q) then
(σ1, P) 'A (σ2, Q).

Proof. We start by proving that 'A S 'A is an A-strong bisimulation, i.e., 'A S 'A⊆'A.
Suppose that (σ1, P) 'A S 'A (σ2, Q). This means that there exists (σ3, R) and (σ4, T)

such that
(σ1, P) 'A (σ3, R)S(σ4, T) 'A (σ2, Q).

It is easy to prove that (σ1)A = (σ2)A. For that just notice that (σ1)A = (σ3)A and
(σ4)A = (σ2)A, because 'A is an A-strong bisimulation. Since S is an A-strong bisimulation
up to 'A, we have that (σ3)A = (σ4)A. So using transitivity we have (σ1)A = (σ2)A.

30 Chapter 3. My-Calculus

Now we have to prove (b), that is, if (σ1, P)B∗(σ′1, P
′) then there exists (σ′2, Q

′) ∈ Ξ such
that

(σ2, Q) B∗(σ′2, Q
′) and (σ′1, P

′)S(σ′2, Q
′).

Suppose that (σ1, P) B∗(σ′1, P
′). To illustrate the proof we sketch the following diagram:

(σ1, P)

B
∗

'A (σ3, R)

B
∗

(σ3, R)
B∗

S (σ4, T)
B∗

(σ4, T)

B
∗

'A (σ2, Q)

B
∗

(σ′1, P
′) 'A (σ′3, R

′) (σ′3, R
′) 'A (σ′′3 , R′′) S (σ′′4 , T ′′) 'A (σ′4, T

′) (σ′4, T
′) 'A (σ′2, Q

′)

Since (σ1, P) 'A (σ3, R) and (σ1, P) B∗(σ′1, P
′), there exists (σ′3, R

′) such that

(σ3, R) B∗(σ′3, R
′) and (σ′1, P

′) 'A (σ′3, R
′). (3.2a)

Since S is an A-strong bisimulation up to 'A, (σ3, R)S(σ4, T) and (σ3, R) B∗(σ′3, R
′), there

exists (σ′4, T
′) such that

(σ4, T) B∗(σ′4, T
′) and (σ′3, R

′) 'A (σ′′3 , R′′)S(σ′′4 , T ′′) 'A (σ′4, T
′). (3.2b)

Finally, since (σ4, T) 'A (σ2, Q) and (σ4, T)B∗(σ′4, T
′), we have that there exists (σ′2, Q

′) such
that

(σ2, Q) B∗(σ′2, Q
′) and (σ′4, T

′) 'A (σ′2, Q
′). (3.2c)

By (3.2a), (3.2b) and (3.2c) we have that there exists (σ′2, Q
′) such that

(σ2, Q) B∗(σ′2, Q
′) and (σ′1, P

′) 'A (σ′3, R
′) 'A (σ′′3 , R′′)S(σ′′4 , T ′′) 'A (σ′4, T

′) 'A (σ′2, Q
′).

Since 'A is an equivalence relation, in particular it is transitive, hence we obtain

(σ2, Q) B∗(σ′2, Q
′) and (σ′1, P

′) 'A (σ′′3 , R′′)S(σ′′4 , T ′′) 'A (σ′2, Q
′),

which means that there exists (σ′2, Q
′) such that

(σ2, Q) B∗(σ′2, Q
′) and (σ′1, P

′) 'A S 'A (σ′2, Q
′).

Now we prove (c), that is, if (σ1, P) α−→ (σ′1, P
′) then there exists (σ′2, Q

′) ∈ Ξ such that

(σ2, Q) α−→ (σ′2, Q
′) and (σ′1, P

′)S(σ′2, Q
′).

So, suppose that (σ1, P) α−→ (σ′1, P
′). To illustrate the proof we sketch another diagram:

(σ1, P)
α

��

'A (σ3, R)
α

��

(σ3, R)

α
yyrrrrrrrrrr S (σ4, T)

α

%%LLLLLLLLLL (σ4, T)
α

��

'A (σ2, Q)
α

��
(σ′1, P

′) 'A (σ′3, R
′) (σ′3, R

′) 'A (σ′′3 , R′′) S (σ′′4 , T ′′) 'A (σ′4, T
′) (σ′4, T

′) 'A (σ′2, Q
′)

Since (σ1, P) 'A (σ3, R) and (σ1, P) α−→ (σ′1, P
′), there exists (σ′3, R

′) such that

(σ3, R) α−→ (σ′3, R
′) and (σ′1, P

′) 'A (σ′3, R
′). (3.2d)

3.5. Weak Bisimulation 31

Since S is an A-strong bisimulation up to 'A, (σ3, R)S(σ4, T) and (σ3, R) α−→ (σ′3, R
′), there

exists (σ′4, T
′) such that

(σ4, T) α−→ (σ′4, T
′) and (σ′3, R

′) 'A (σ′′3 , R′′)S(σ′′4 , T ′′) 'A (σ′4, T
′). (3.2e)

Finally, since (σ4, T) 'A (σ2, Q) and (σ4, T) α−→ (σ′4, T
′), we have that there exists (σ′2, Q

′)
such that

(σ2, Q) α−→ (σ′2, Q
′) and (σ′4, T

′) 'A (σ′2, Q
′). (3.2f)

By (3.2d), (3.2e) and (3.2f) we have that there exists (σ′2, Q
′) such that

(σ2, Q) α−→ (σ′2, Q
′) and (σ′1, P

′) 'A (σ′3, R
′) 'A (σ′′3 , R′′)S(σ′′4 , T ′′) 'A (σ′4, T

′) 'A (σ′2, Q
′).

Since 'A is an equivalence relation, in particular it is transitive, hence we obtain

(σ2, Q) α−→ (σ′2, Q
′) and (σ′1, P

′) 'A (σ′′3 , R′′)S(σ′′4 , T ′′) 'A (σ′2, Q
′),

which means that there exists (σ′2, Q
′) such that

(σ2, Q) α−→ (σ′2, Q
′) and (σ′1, P

′) 'A S 'A (σ′2, Q
′).

The proof that (σ2, Q) 'A S 'A (σ1, P) implies (σ2, Q) 'A (σ1, P), conditions (d) and (e),
is analogous so, we skip it. So far, we have proved that 'A S 'A is an A-strong bisimulation,
so if (σ1, P) 'A S 'A (σ2, Q) then (σ1, P) 'A (σ2, Q).

It is trivial to prove that if (σ1, P)S(σ2, Q) then (σ1, P) 'A S 'A (σ2, Q), just notice that
IdΞ is an A-strong bisimulation. With this final remark we prove the proposition.

3.5 Weak Bisimulation

In the previous section we introduced a notion of equivalence that is sensible to all kinds of
transitions. In this section we introduce a different notion that in not sensible to τ transitions.
This approach turns possible the comparison of configurations that exhibit the same behaviour
up to τ transitions. This is the usual notion of weak bisimulation. This will be our equivalence
notion because we want to compare configurations that might have different τ transitions, but
always exhibit the same state for the bank. Let us start with the definition of weak transition
and then define, as in the previous section, A-weak simulation, A-weak bisimulation and
A-weak equivalence.

Definition 3.17. We define the weak commitment relation over configurations, =⇒⊆ Ξ×Ξ,
as

(σ, P) =⇒ (σ′, P ′) if ∃n≥0 (σ, P) τn

−→ (σ′, P ′);

(σ, P) α=⇒ (σ′, P ′) if ∃n1≥0,n2≥0 (σ, P) τn1−→ α−→ τn2−→ (σ′, P ′).

Definition 3.18. A binary relation S over configurations, S ⊆ Ξ×Ξ, is an A-weak simulation,
A ∈ A, if, whenever (σ1, P)S(σ2, Q),

(a) (σ1)A = (σ2)A;

32 Chapter 3. My-Calculus

(b) if (σ1, P) B∗(σ′1, P
′) then there exists (σ′2, Q

′) ∈ Ξ such that

(σ2, Q) B∗(σ′2, Q
′) and (σ′1, P

′)S(σ′2, Q
′);

(c) if (σ1, P) =⇒ (σ′1, P
′) then there exists (σ′2, Q

′) ∈ Ξ such that

(σ2, Q) =⇒ (σ′2, Q
′) and (σ′1, P

′)S(σ′2, Q
′);

(d) if (σ1, P) α=⇒ (σ′1, P
′) then there exists (σ′2, Q

′) ∈ Ξ such that

(σ2, Q) α=⇒ (σ′2, Q
′) and (σ′1, P

′)S(σ′2, Q
′).

Definition 3.19. A binary relation S over configurations, S ⊆ Ξ× Ξ, is an A-weak bisimu-
lation if both S and S−1 are A-weak simulations.

We may now compare A-strong and A-weak bisimulations. We state that A-strong bisimu-
lation is strictly coarser than A-weak bisimulation, Proposition 3.6. To do this we prove the
following lemma:

Lemma 3.4. A binary relation S over configurations, S ⊆ Ξ × Ξ, is an A-weak simulation
if and only if, whenever (σ1, P)S(σ2, Q),

(1) (σ1)A = (σ2)A;

(2) if (σ1, P) B∗(σ′1, P
′) then there exists (σ′2, Q

′) ∈ Ξ such that

(σ2, Q) B∗(σ′2, Q
′) and (σ′1, P

′)S(σ′2, Q
′);

(3) if (σ1, P) τ−→ (σ′1, P
′) then there exists (σ′2, Q

′) ∈ Ξ such that

(σ2, Q) =⇒ (σ′2, Q
′) and (σ′1, P

′)S(σ′2, Q
′);

(4) if (σ1, P) α−→ (σ′1, P
′) then there exists (σ′2, Q

′) ∈ Ξ such that

(σ2, Q) α=⇒ (σ′2, Q
′) and (σ′1, P

′)S(σ′2, Q
′).

Proof. (=⇒) Suppose that S is an A-weak simulation and that (σ1, P)S(σ2, Q). It is obvious
that (σ1)A = (σ2)A because S is an A-weak simulation.

To prove (2) we start supposing that (σ1, P) B∗(σ′1, P
′). Since S is an A-weak simulation

and (σ1, P)S(σ2, Q), there exists (σ′2, Q
′) ∈ Ξ such that

(σ2, Q) B∗(σ′2, Q
′) and (σ′1, P

′)S(σ′2, Q
′).

To prove (3) we start by assuming that (σ1, P) τ−→ (σ′1, P
′). By definition of weak-

commitment we have that (σ1, P) =⇒ (σ′1, P
′), (n = 1). So, since S is an A-weak simulation,

(σ1, P)S(σ2, Q) and (σ1, P) =⇒ (σ′1, P
′), we have that there exists (σ′2, Q

′) ∈ Ξ such that

(σ2, Q) =⇒ (σ′2, Q
′) and (σ′1, P

′)S(σ′2, Q
′).

To prove (4) we suppose that (σ1, P) α−→ (σ′1, P
′). By definition of weak-commitment

we have that (σ1, P) α=⇒ (σ′1, P
′), (n1 = 0, n2 = 0). So, since S is an A-weak simulation,

3.5. Weak Bisimulation 33

(σ1, P)S(σ2, Q) and (σ1, P) α=⇒ (σ′1, P
′), we have, by hypothesis, that there exists (σ′2, Q

′) ∈ Ξ
such that

(σ2, Q) α=⇒ (σ′2, Q
′) and (σ′1, P

′)S(σ′2, Q
′).

(⇐=) Suppose now that S is a binary relation that satisfies the four conditions above and that
(σ1, P)S(σ2, Q). The proofs of the conditions (a) and (b) of the A-weak simulation definition
are obvious.

To prove the condition (c) of the A-weak simulation definition we start by assuming that
(σ1, P) =⇒ (σ′1, P

′). We have to prove that in this conditions, there exists (σ′2, Q
′) ∈ Ξ such

that
(σ2, Q) =⇒ (σ′2, Q

′) and (σ′1, P
′)S(σ′2, Q

′).

We will prove this by induction in the number of τ ’s.

• n = 0 — This is the case when (σ′1, P
′) = (σ1, P). It is obvious that (σ′2, Q

′) ∈ Ξ exists,
just consider that (σ′2, Q

′) = (σ2, Q) and (σ2, Q) =⇒ (σ′2, Q
′) by 0 τ ’s;

• n = 1 — (σ, P) τ−→ (σ′, P ′). Since (σ1, P)S(σ2, Q), by hypothesis (3) there exists
(σ′2, Q

′) ∈ Ξ such that

(σ2, Q) =⇒ (σ′2, Q
′) and (σ′1, P

′)S(σ′2, Q
′);

• n+1 — (σ, P) τn

−→ (σ′′, P ′′) τ−→ (σ′, P ′). Since (σ1, P)S(σ2, Q), by induction hypothesis,
there exists (σ′′2 , Q′′) ∈ Ξ such that

(σ2, Q) =⇒ (σ′′2 , Q′′) and (σ′′1 , P ′′)S(σ′′2 , Q′′).

Using this last fact, (σ′′1 , P ′′)S(σ′′2 , Q′′), and (σ′′, P ′′) τ−→ (σ′, P ′), we have, by (3), that
there exists (σ′2, Q

′) ∈ Ξ such that

(σ′′2 , Q′′) =⇒ (σ′2, Q
′) and (σ′1, P

′)S(σ′2, Q
′).

Since (σ2, Q) =⇒ (σ′′2 , Q′′) and (σ′′2 , Q′′) =⇒ (σ′2, Q
′), we have that (σ2, Q) =⇒ (σ′2, Q

′),
and we conclude that there exists (σ′2, Q

′) ∈ Ξ, such that

(σ2, Q) =⇒ (σ′2, Q
′) and (σ′1, P

′)S(σ′2, Q
′).

To prove the condition (d) of the A-weak simulation definition we start supposing that
(σ1, P) α=⇒ (σ′1, P

′). This states that

∃n1≥0,n2≥0 (σ1, P) τn1−→ (σ′′1 , P ′′) α−→ (σ′′′1 , P ′′′) τn2−→ (σ′1, P
′),

which is equivalent, by definition of weak commitment, to

(σ1, P) =⇒ (σ′′1 , P ′′) α−→ (σ′′′1 , P ′′′) =⇒ (σ′1, P
′).

Since (σ1, P)S(σ2, Q) and (σ1, P) =⇒ (σ′′1 , P ′′), using (c), we have that there exists (σ′′2 , Q′′) ∈
Ξ such that

(σ2, Q) =⇒ (σ′′2 , Q′′) and (σ′′1 , P ′′)S(σ′′2 , Q′′).

34 Chapter 3. My-Calculus

Using the fact that (σ′′1 , P ′′)S(σ′′2 , Q′′) and (σ′′1 , P ′′) α−→ (σ′′′1 , P ′′′), using hypothesis (4) we
have that there exists (σ′′′2 , Q′′′) ∈ Ξ such that

(σ′′2 , Q′′) α=⇒ (σ′′′2 , Q′′′) and (σ′′′1 , P ′′′)S(σ′′′2 , Q′′′).

Finally, using the fact that (σ′′′1 , P ′′′)S(σ′′′2 , Q′′′) and (σ′′′1 , P ′′′) =⇒ (σ′1, P
′), using again (c),

we have that there exists (σ′2, Q
′) ∈ Ξ such that

(σ′′′2 , Q′′′) =⇒ (σ′2, Q
′) and (σ′1, P

′)S(σ′2, Q
′).

Now, we have that there exists (σ′2, Q
′) ∈ Ξ such that

(σ2, Q) =⇒ (σ′′2 , Q′′) α=⇒ (σ′′′2 , Q′′′) =⇒ (σ′2, Q
′) and (σ′1, P

′)S(σ′2, Q
′).

So we have that there exists (σ′2, Q
′) ∈ Ξ such that

(σ2, Q) α=⇒ (σ′2, Q
′) and (σ′1, P

′)S(σ′2, Q
′).

With this lemma, to prove that (σ1, P) is A-weak similar to (σ2, Q), we only have to look
at the strong transitions.

Proposition 3.5. If S is an A-strong simulation, then S is an A-weak simulation.

Proof. Let us suppose that S is an A-strong simulation and that (σ1, P)S(σ2, Q). We want to
prove that S is an A-weak simulation. We will prove this using the characterization of A-weak
simulations stated in Lemma 3.4. The conditions (1) and (2) of the lemma are straightforward
because S is an A-strong simulation.

In order to prove condition (3), suppose that (σ1, P) τ−→ (σ′1, P
′). Since S is an A-strong

simulation and (σ1, P)S(σ2, Q), there exists (σ′2, Q
′) ∈ Ξ such that

(σ2, Q) τ−→ (σ′2, Q
′) and (σ′1, P

′)S(σ′2, Q
′).

So using the definition of weak commitment, with n = 1, we have that there exists (σ′2, Q
′) ∈ Ξ

such that
(σ2, Q) =⇒ (σ′2, Q

′) and (σ′1, P
′)S(σ′2, Q

′).

The proof of (4) is similar. Let us suppose that (σ1, P) α−→ (σ′1, P
′). Since S is an A-strong

simulation and (σ1, P)S(σ2, Q), there exists (σ′2, Q
′) ∈ Ξ such that

(σ2, Q) α−→ (σ′2, Q
′) and (σ′1, P

′)S(σ′2, Q
′).

So using the definition of weak commitment, with n1 = 0 and n2 = 0, we have that there
exists (σ′2, Q

′) ∈ Ξ such that

(σ2, Q) α=⇒ (σ′2, Q
′) and (σ′1, P

′)S(σ′2, Q
′).

Corollary 3.6. If S is an A-strong bisimulation, then S is an A-weak bisimulation.

Proof. Straightforward from the Proposition 3.5, using the fact that both S and S−1 are
A-strong simulations.

3.5. Weak Bisimulation 35

Proposition 3.7. Let Si, (i = 1, 2, . . .) be a family of A-weak bisimulations. Then the
following relations are all A-weak bisimulations:

(1) IdΞ (2) S−1
i

(3) SiSj (4) S =
⋃

i∈I Si.

Proof. The proof is very similar to the proof of Proposition 3.1. We only have to substitute
the strong transitions for weak transitions.

Finally, we may define our notion of equivalence.

Definition 3.20. We say that two configurations (σ1, P) and (σ2, Q) are weak equivalent to
a principal A or A-weak equivalent, and write (σ1, P)∼=A(σ2, Q), if (σ1, P)S(σ2, Q) for some
A-weak bisimulation S. In other terms we define

∼=A =
⋃
{S : S is an A-weak bisimulation}.

Corollary 3.8. 'A⊆∼=A.

Proof. Directly from Corollary 3.6.

Proposition 3.9.

(1) ∼=A is the greatest A-weak bisimulation;

(2) ∼=A is an equivalence relation.

Proof. The proof is similar to the Proposition 3.2 using the result of Proposition 3.7.

Now we are interested in having a result similar to the Proposition 3.3. For that we define
what is an A-weak bisimulation up to weak equivalence.

Definition 3.21. A binary relation S over configurations, S ⊆ Ξ× Ξ, is an A-weak bisimu-
lation up to ∼=A if, whenever (σ1, P)S(σ2, Q),

(a) (σ1)A = (σ2)A;

(b) if (σ1, P) B∗(σ′1, P
′) then there exists (σ′2, Q

′) ∈ Ξ such that

(σ2, Q) B∗(σ′2, Q
′) and (σ′1, P

′) ∼=A S ∼=A (σ′2, Q
′);

(c) if (σ1, P) =⇒ (σ′1, P
′) then there exists (σ′2, Q

′) ∈ Ξ such that

(σ2, Q) =⇒ (σ′2, Q
′) and (σ′1, P

′) ∼=A S ∼=A (σ′2, Q
′);

(d) if (σ1, P) α=⇒ (σ′1, P
′) then there exists (σ′2, Q

′) ∈ Ξ such that

(σ2, Q) α=⇒ (σ′2, Q
′) and (σ′1, P

′) ∼=A S ∼=A (σ′2, Q
′);

(e) if (σ2, Q) B∗(σ′2, Q
′) then there exists (σ′1, P

′) ∈ Ξ such that

(σ1, P) B∗(σ′1, P
′) and (σ′1, P

′) 'A S 'A (σ′2, Q
′);

36 Chapter 3. My-Calculus

(f) if (σ2, Q) =⇒ (σ′2, Q
′) then there exists (σ′1, P

′) ∈ Ξ such that

(σ1, P) =⇒ (σ′1, P
′) and (σ′1, P

′) 'A S 'A (σ′2, Q
′);

(g) if (σ2, Q) α=⇒ (σ′2, Q
′) then there exists (σ′1, P

′) ∈ Ξ such that

(σ1, P) α=⇒ (σ′1, P
′) and (σ′1, P

′) 'A S 'A (σ′2, Q
′).

Proposition 3.10. If S is an A-weak bisimulation up to ∼=A and (σ1, P)S(σ2, Q) then
(σ1, P) ∼=A (σ2, Q).

Proof. The proof is similar to the proof of Proposition 3.3. We only have to substitute the
strong transitions for weak transitions, and strong equivalence for weak equivalence.

Observation 2. Since any A-weak bisimulation up to ∼=A, S, is an A-weak bisimulation, we
can use the result of Lemma 3.4 when proving that S is an A-weak bisimulation.

Chapter 4

Electronic Money

4.1 Overview of the Problem

Nowadays, e-commerce is a strongly expanding universe. Due to efficiency and convenience,
the number of customers is increasing exponentially. This expansion in number of customers
has to be closely followed by a development of the payment methods, which need to be more
secure and easier to use, and distribution techniques, which need to be faster and to have
better delivery systems as well as good stock management. We will devote our attention to
the payment methods’ problem.

When we acquire any products through the Internet we usually have two methods of
payment:

(a) Credit/debit cards;

(b) Cash on delivery (C.O.D).

While the former is more efficient and convenient, the latter is more secure (we only pay
the parcel when it arrives and we do not send our credit card number over the Internet) —
this leads us to a security/efficiency dilemma. At the present time e-commerce is just taking
the first steps but, as we said before, the expected expansion of the market will, one day
(sooner or later), cause serious problems if we do not solve this efficiency problem.

Besides the efficiency problem, the existing payment methods have some problems, for
instance, when we buy something over the Internet using VISA, we have to pay a tax up to
2.5% for transaction fees. For the seller, the use of VISA is also an uncomfortable situation.
Due to the possibility of fraud, a VISA transaction does not complete — meaning the seller
does not get paid — for up to 90 days.

The ideal solution is to create a true digital payment method that provides lower trans-
action costs and immediate transaction processing.

To solve this problem several ideas have arise and among them the idea of e-coins [CFN90,
CdBvH+90]. Several papers have been published, namely [Bra93, Bra95, Bra99, Fer93a,
Fer94, Fer93b, CP93, OO92, Oka95], but most of them incorporate the idea of using a tamper
resistant smart card, or a similar hardware device, and the ones which do not use that device
are not safe against double spending of coins. Our idea is, compromising some principles such
as untraceability, to create e-money that can be used without any physical device. Without
this physical device, the control has to be made by a regulator entity that has to be always

37

38 Chapter 4. Electronic Money

on-line. If, for some reason, the entity is off-line then, the service will be unavailable for that
period.

We want each principal to have a virtual wallet with his e-coins. This coins should
be represented by electronic files that can be e-mailed over the Internet. Similarly to the
“physical” money, we must ensure that e-money fulfills some security properties, namely:

(a) Every note is issued by a bank, so e-money must also be issued by a trusted authority,
such as an e-bank.

(b) Every note has a serial/identification number, so each e-coin must also have an identi-
fication that is unique among the other e-coins.

(c) Every note is, or is supposed to be, difficult to copy, but our e-coins will be represented
by electronic files, which means they are easy to copy. So, besides the issuing process,
our trusted authority must also be responsible for the regulation of the e-coins. Namely,
the trusted authority must know, at any time, who is the owner of each coin.

(d) Every note cannot be spent more than once, so our e-coins must be protected against
multi-spendable attacks, that is, a principal cannot copy an e-coin and then use both,
the original and the copy.

One property that the usual money does not have, but we want to incorporate in our
e-money, is the “anti-theft” property. For example if Oscar “steals” a coin from Bob, then
Oscar will not be able to use it. To ensure this, the bank will know who is the owner of each
coin.

Observation 3. We assume that the communication channels are private and authenticated,
that is, when Bob receives a message on the channel cAB he is sure that the message was sent
by Alice.

Observation 4. We also have to assume some conditions about the bank:

(a) The Bank is always online — while the bank is off-line the service is unavailable;

(b) The Bank is honest and safe;

(c) The state of the Bank does not contain any repeated coins.

4.2 Withdrawal – A Simplification of the Problem

We present a simplification of the withdrawal protocol. We have a single principal that
requests a single coin. We call this the Simple Withdrawal Protocol (SWP). The protocol is
illustrated in Figure 4.1.

We consider an auxiliary entity E for issuing processes. This way the Bank is only worried
about payments, leaving the issuing process to E. Suppose that the wallet of A is empty,
σA = ∅, and A wants to withdraw an e-coin with value v1. We also suppose that the Bank
Record and the Issuing Entity Record are empty, σB = ∅ and σE = ∅.

A-Wallet Issuing Entity Bank Record

4.2. Withdrawal – A Simplification of the Problem 39

A
1

��
3

ssE

2
11

4 // B

Figure 4.1: Withdrawal Protocol

To withdraw an e-coin with value v1, all that A has to do is generate a time stamp ts1

and send to E the information (r, idA, ts1, v1), which means that he is requesting a coin, his
identification is idA, the time-stamp is ts1 and the value he is asking for is v1 (communication 1
of the Figure 4.1). The time stamp is only needed to distinguish different withdrawals that
may be made at the same time. After that he adds to his wallet the information (r, ts1, ?, v1),
that means he has requested a coin, with time-stamp ts1 and value v1.

A
(r,idA,ts1,v1) // E B

A-Wallet Issuing Entity Bank Record
(r, ts1, ?, v1)

After receiving this information the Issuing Entity, E, generates an (unique) identification
for the coin, idN1 , sends to A the information (i, idN1 , ts1, v1) (this means that the e-coin idN1

is now issued, with the value v1, in response to the communication with time-stamp ts1) and
adds (r, idA, idN1 , v1) to the record — communication 2.

A E
(i,idN1

,ts1,v1)
oo B

A-Wallet Issuing Entity Bank Record
(r, ts1, ?, v1) (r, idA, idN1 , v1)

A replaces the temporary coin (r, ts1, ?, v1) by (i, ?, idN1 , v1) (the temporary coin is now
issued with identification idN1 and value v1). Whenever A wishes to use this coin, the ques-
tion mark will be substituted by the identification of the receiver. After changing his wal-
let, A communicates to E that he has already received the coin — sends the information
(i, idA, idN1 , v1), (communication 3).

A-Wallet Issuing Entity Bank Record
(r, ts1, ?, v1)—————— (r, idA, idN1 , v1)
(i, ?, idN1 , v1)

A
(i,idA,idN1

,v1)
// E B

After receiving this information, E changes the record (r, idA, idN1 , v1) to (i, idA, idN1 , v1)
which means that the coin is now really issued. Finally E communicates to the Bank that
the coin is “good” for payment, sending the message (i, idA, idN1 , v1) to the Bank (commu-
nication 4).

40 Chapter 4. Electronic Money

A-Wallet Issuing Entity Bank Record
(i, ?, idN1 , v1) (r, idA, idN1 , v1)————————

(i, idA, idN1 , v1)

A E
(i,idA,idN1

,v1)
// B

Finally the Bank debits the account of A for v1 and adds the e-coin to the list of coins that
can be spent by A. The question mark will be replaced by the receiver when a transaction is
made.

A-Wallet Issuing Entity Bank Record
(i, ?, idN1 , v1) (i, idA, idN1 , v1) (i, idA, idN1 , v1, ?)

Formally the protocol is described as follows:

RequestSWP (v1) , (ν ts1) cAE〈(r, idA, ts1, v1)〉.addA(r, ts1, ?, v1);

ESWP , cAE(x1, x2, x3, x4)
[x1 is r] .(ν idN1) cEA〈(i, idN1 , x3, x4)〉.addE(r, x2, idN1 , x4) |
[x1 is i] .changeE(r, x2, x3, x4, i, x2, x3, x4).cEB〈(i, x2, x3, x4)〉;

ASWP , cEA(x1, x2, x3, x4).
[x1 is i] .changeA(r, x3, ?, x4, i, ?, x2, x4).cAE〈(i, idA, x2, x4)〉;

BSWP , cEB(x1, x2, x3, x4).
debt(x2, x4).addB(x1, x2, x3, x4, ?);

WithSWP (v1) , (ν cAE) (ν cEA) (ν cEB) (RequestSWP (v1) | !ASWP | !ESWP | !BSWP).

4.3 Payment – A Simplification of the Problem

As in the previous section we present a simplification of the protocol. Suppose that a principal
ASPP , wishes to purchase an item from VSPP using a single coin, idN1 , previously issued to
him by the bank. We call this the Simple Payment Protocol (SPP).

Suppose that the wallet of A has only the coin that he want to spend, (i, ?, idN1 , v1),
σA = {(i, ?, idN1 , v1)}, the record of B has only that same coin, σB = {(i, idA, idN1 , v1, ?)},
and the wallet of V is empty, σV = {}.

A-Wallet Bank Record V-Wallet
(i, ?, idN1 , v1) (i, idA, idN1 , v1, ?)

The payment process is very simple. To start the payment, A changes the status of the
coin, from issued to transferred and replaces the question mark for the identification of the
seller. After that he communicates to V that he is transferring to him the coin idN1 , with
the value v1, (communication 1).

4.3. Payment – A Simplification of the Problem 41

A
1 //

3

))

V
2

oo

5

��
B

4

HH

6

ee

Figure 4.2: Payment Protocol

A-Wallet Bank Record V-Wallet
(i, ?, idN1 , v1)——————– (i, idA, idN1 , v1, ?)

(t, idV , idN1 , v1)

A
(t,idA,idN1

,v1)
// V

B

When V receives the message he had to his wallet the coin (p, idA, idN1 , v1), which means
that the state of the coin is pending and the actual owner is A. After that he acknowledges
the reception of the message sending the message (p, idV , idN1 , v1) to A, communication 2.

A-Wallet Bank Record V-Wallet
(t, idV , idN1 , v1) (i, idA, idN1 , v1, ?) (p, idA, idN1 , v1)

A V
(p,idV ,idN1

,v1)
oo

B

After the acknowledgment of V , A changes again the status of the coin from transferred
to spent and communicates that fact to the Bank, ordering the transference of the coin to V ,
communication 3.

A-Wallet Bank Record V-Wallet
(t, idV , idN1 , v1)———————— (i, idA, idN1 , v1, ?) (p, idA, idN1 , v1)
(s, idV , idN1 , v1)

A

(t,idA,idN1
,v1,idV)

--

V

B

The Bank changes his record, changes the status of the coin from issued to transferred
and asks V for the confirmation that he his selling something to A, communication 4.

42 Chapter 4. Electronic Money

A-Wallet Bank Record V-Wallet
(s, idV , idN1 , v1) (i, idA, idN1 , v1, ?)————————— (p, idA, idN1 , v1)

(t, idA, idN1 , v1, idV)

A V

B
(i,idA,idN1

,v1)

BB

If V acknowledges the transaction, then exchanges in his wallet the status of the coin from
pending to issued, and changes the “temporary” owner to ?, (field 2).

A-Wallet Bank Record V-Wallet
(s, idV , idN1 , v1) (t, idA, idN1 , v1, idV) (p, idA, idN1 , v1)————————

(i, ?, idN1 , v1)

A V
(i,idV ,idN1

,v1,idA)

}}
B

After this communication, the Bank exchanges the owner of the coin and communicate to
A that the transference is complete, communication 6.

A-Wallet Bank Record V-Wallet
(s, idV , idN1 , v1) (t, idA, idN1 , v1, idV)—————————— (i, ?, idN1 , v1)

(i, idV , idN1 , v1, ?)

A V

B

(s,idV ,idN1
,v1)

kk

So, all that A needs to do is to remove the coin from his wallet

A-Wallet Bank Record V-Wallet
(s, idV , idN1 , v1)———————— (i, idV , idN1 , v1, ?) (i, ?, idN1 , v1)

Formally, we describe the protocol as follows:

BuyerSPP (idN1) , changeA(i, ?, idN1 , v1, t, idV , idN1 , v1).cAV 〈(t, idA, idN1 , v1)〉;

ASPP , cV A(x1, x2, x3, x4).

[x1 is p] .changeA(t, x2, x3, x4, s, x2, x3, x4).cAB〈(t, idA, x3, x4, x2)〉
∣∣∣

cBA(x1, x2, x3, x4)
[x1 is s] .removeA(s, x2, x3, x4);

4.3. Payment – A Simplification of the Problem 43

VSPP , cAV (x1, x2, x3, x4)

[x1 is t] .addV (p, x2, x3, x4).cV A〈(p, idV , x3, x4)〉
∣∣∣

cBV (x1, x2, x3, x4)
[x1 is i] .changeV (p, x2, x3, x4, i, ?, x3, x4).cV B〈(i, idV , x3, x4, x2)〉;

BSPP , cAB(x1, x2, x3, x4, x5).

[x1 is t] .changeB(i, x2, x3, x4, ?, t, x2, x3, x4, x5).cBV 〈(i, x2, x3, x4)〉
∣∣∣

cV B(x1, x2, x3, x4, x5)
[x1 is i] .changeB(t, x5, x3, x4, x2, i, x2, x3, x4, ?).cBA〈(s, x2, x3, x4)〉;

PaymentSPP (idN1) , (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)
(BuyerSPP (idN1) | !ASPP | !VSPP | !BSPP).

This protocol has a small problem that cannot be specified in our calculus. For instance
suppose that A wants to buy something from V , but he does not send the information to the
bank. The transference of the coin will not terminate, so V will keep in his wallet a reference
to the coin that A is trying to spend, but that coin will be forever in pending state. For this,
it is needed a garbage collector system, in order to remove “lost” coins. This mechanism can
be implemented locally, so this does not interfere with the communication process. Moreover,
the implementation is very simple, just consider a timeout for each transaction.

Chapter 5

Properties of the Protocol

In Chapter 4, we presented a protocol for electronic payment. This protocol is only interesting
if we prove some desired properties. One of the wished properties is that a principal cannot
spend the same coin more than once. This property is not assured by most of the protocols in
the literature, since most of them are off-line protocols, but our protocol satisfy this property,
as stated in Theorem 5.2. We prove also that it is impossible to create new coins and spend
them, Theorem 5.4, and that it is impossible to spend a coin that is issued to another principal,
Theorem 5.6. Let us start with the multi-spending problem.

Lemma 5.1. Suppose that the e-coin (i, ?, idN1 , v1) is issued to A, i.e., (i, idA, idN1 , v1, ?) ∈
σB and (i, ?, idN1 , v1) ∈ σA. Then,

(
{σA, σB, σV }, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)

(BuyerSPP (idN1) | !ASPP | !VSPP | !BSPP)
) ∼=B(

{σA] {(i, ?, idN1 , v1)}, σB, σV }, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)
(BuyerSPP (idN1) | BuyerSPP (idN1) | !ASPP | !VSPP | !BSPP)

)
.

Proof. The proof is presented in the Appendix A.

Theorem 5.2. Our protocol is safe against (valid) e-coins multi-spending.

Proof. The proof follows directly from Lemma 5.1. The Lemma states that a coin that
is legally issued to A, (i, idA, idN1 , v1, ?) ∈ σB, can only be spent once by A , since the
behaviour of the protocol that spends the coin twice is equal, for the bank, to the behaviour
of the protocol that spends only once.

Another important property to be satisfied is the anti-forgery property. We prove this in
the next lemma.

Lemma 5.3. Suppose that the e-coin (i, ?, idN1 , v1) is not issued to A, i.e., (i, idA, idN1 , v1, ?) /∈
σB. Then, (

{σA, σB, σV }, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)
(!ASPP | !VSPP | !BSPP)

) ∼=B(
{σA] {(i, ?, idN1 , v1)}, σB, σV }, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)

(BuyerSPP (idN1) | !ASPP | !VSPP | !BSPP)
)
.

45

46 Chapter 5. Properties of the Protocol

Proof. The proof is presented in the Appendix A.

Theorem 5.4. Our protocol is safe against e-coin forgery.

Proof. Follows directly from the previous lemma. Notice that A is trying to spend a coin
that is not issued to him, (i, idA, idN1 , v1, ?) /∈ σB, and that the protocol where he spends it
is A-weak equivalent to the protocol that does nothing.

Finally we show that it is impossible to use a coin that is issued to other principal. This
is similar to Lemma 5.3, but since we stated this property as a desired one, we prove this
special case of the lemma above.

Lemma 5.5. Suppose that the e-coin (i, ?, idN2 , v2) is issued to V , i.e., (i, idV , idN2 , v2, ?) ∈
σB and (i, ?, idN2 , v2) ∈ σV . Then,(

{σA, σB, σV }, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)
(!ASPP | !VSPP | !BSPP)

) ∼=B(
{σA] {(i, ?, idN2 , v2)}, σB, σV }, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)

(BuyerSPP (idN2) | !ASPP | !VSPP | !BSPP)
)
.

Proof. The proof is presented in the Appendix A.

Theorem 5.6. Our protocol is safe against e-coin stealing.

Proof. Straightforward from the Lemma 5.5.

Definition 5.1. We define the union of states, σ′ = {σ′A}A∈A and σ′′ = {σ′′A}A∈A as the
family σ = {σ′A] σ′′A}A∈A. We denote the union of states σ′ and σ′′ by σ′⊕σ′′.

Chapter 6

Final Remarks and Future Work

In Chapter 2, we presented the Spi-Calculus and sketched some examples, the proofs of the
examples can be found in [AG98b].

Since the notion of equivalence of the Spi-Calculus was not appropriated we introduced
a new calculus in Chapter 3 endowed with the desired equivalence notion. Our notion is a
simple bisimulation that also looks at the state of the bank. Our notion of equivalence is not
a congruence but this was not a problem for the proof of the properties of Chapter 5.

Our main contribution is the design of the protocols of Chapter 4. These protocols are
simple protocols with only one buyer, one bank and one vendor, but we hope to get some
compositionality results to extend it to a larger network. Mainly we want to discover what
conditions the configuration (σ2, O) has to satisfy so that if (σ1, P1) ∼=B (σ′1, P

′
1) then (σ1 ⊕

σ2, P1 | O) ∼=B (σ′1 ⊕ σ2, P
′
1 | O), i.e., we want to discover in which states and processes, the

configurations (σ1, P1) and (σ′1, P
′
1) can be “immersed” in order to keep the same behaviour.

For now, we conjecture that if the e-coins used by P1 and P ′
1 are not issued in σ2 then

(σ1 ⊕ σ2, P1 | O) ∼=B (σ′1 ⊕ σ2, P
′
1 | O).

In the future we intend to extend our protocol to any valuable such as shares, registered
bonds, etc. We also like to incorporate the notion of privacy. We hope to achieve this using
secure computation methods, [Can00, Can01], for instance the information of the coins is
spread over a network of banks and each of them only has a small piece of information. It
will be also interesting to incorporate the notion of divisibility, see Okamoto [OO92, Oka95].
With this notion we could in fact simulate transactions without requiring the exact amount
of money, as we are able to give change.

We could also try to represent these protocols in an extended form of CCS, without the
configurations. If we achieve this, some theoretical results from the CCS could be applied to
the resolution of our problem.

We hope also to design a calculus where the theory for local operations is generic, and not
considering only these three operations. It might be interesting to have the local operations
also as observable actions. With this, our notion of equivalence will probably became a
congruence.

47

Appendix A

Proofs of the Lemmas of Chapter 5

A.1 Proof of the Lemma 5.1

We want to prove that, if a principal tries to spend the same coin twice then the result, for
the bank, is the same as just spending once. We prove this informally since the bisimulation
that proves the result has 155 pairs. We want to prove that

(
{σA, σB, σV }, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)

(BuyerSPP (idN1) | !ASPP | !VSPP | !BSPP)
) ∼=B(

{σA] {(i, ?, idN1 , v1)}, σB, σV }, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)
(BuyerSPP (idN1) | BuyerSPP (idN1) | !ASPP | !VSPP | !BSPP)

)
.

whenever (i, ?, idN1 , v1) ∈ σA and (i, idA, idN1 , v1, ?) ∈ σB.
We want to prove that if two payment protocols run in parallel using the same coin, idN1 ,

only one will evolve into the final state; the other will get stuck when A communicates to the
bank requesting the transference of the coin to V . If we look at a normal evolution of one
protocol, we may consider the following configurations of the evolution:

E1 =
(
{{(i, ?, idN1 , v1)}, {(i, idA, idN1 , v1, ?)}, {}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)

(BuyerSPP (idN1) | !ASPP | !VSPP | !BSPP)
)
;

E2 =
(
{{(t, idV , idN1 , v1)}, {(i, idA, idN1 , v1, ?)}, {}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)

(cAV 〈(t, idA, idN1 , v1)〉 | !ASPP | !VSPP | !BSPP)
)
;

E3 =
(
{{(t, idV , idN1 , v1)}, {(i, idA, idN1 , v1, ?)}, {}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)

(!ASPP | [t is t] .addV (p, idA, idN1 , v1).cV A〈(p, idV , idN1 , v1)〉 |
cBV (x1, x2, x3, x4).[x1 is i] .changeV (p, x2, x3, x4, i, ?, x3, x4).cV B〈(i, idV , x3, x4, x2)〉 |
!VSPP |!BSPP)

)
;

E4 =
(
{{(t, idV , idN1 , v1)}, {(i, idA, idN1 , v1, ?)}, {}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)

(!ASPP | addV (p, idA, idN1 , v1).cV A〈(p, idV , idN1 , v1)〉 |
cBV (x1, x2, x3, x4).[x1 is i] .changeV (p, x2, x3, x4, i, ?, x3, x4).cV B〈(i, idV , x3, x4, x2)〉 |
!VSPP |!BSPP)

)
;

49

50 Appendix A. Proofs of the Lemmas of Chapter 5

E5 =
(
{{(t, idV , idN1 , v1)}, {(i, idA, idN1 , v1, ?)}, {(p, idA, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA)

(ν cBV) (ν cV B) (!ASPP | cV A〈(p, idV , idN1 , v1)〉 |
cBV (x1, x2, x3, x4).[x1 is i] .changeV (p, x2, x3, x4, i, ?, x3, x4).cV B〈(i, idV , x3, x4, x2)〉 |
!VSPP |!BSPP)

)
;

E6 =
(
{{(t, idV , idN1 , v1)}, {(i, idA, idN1 , v1, ?)}, {(p, idA, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA)

(ν cBV) (ν cV B)
([p is p] .changeA(t, idV , idN1 , v1, s, idV , idN1 , v1).cAB〈(t, idA, idN1 , v1, idV)〉 |
cBA(x1, x2, x3, x4).[x1 is s] .removeA(s, x2, x3, x4) |!ASPP |
cBV (x1, x2, x3, x4).[x1 is i] .changeV (p, x2, x3, x4, i, ?, x3, x4).cV B〈(i, idV , x3, x4, x2)〉 |
!VSPP |!BSPP)

)
;

E7 =
(
{{(t, idV , idN1 , v1)}, {(i, idA, idN1 , v1, ?)}, {(p, idA, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA)

(ν cBV) (ν cV B)
(changeA(t, idV , idN1 , v1, s, idV , idN1 , v1).cAB〈(t, idA, idN1 , v1, idV)〉 |
cBA(x1, x2, x3, x4).[x1 is s] .removeA(s, x2, x3, x4) |!ASPP |
cBV (x1, x2, x3, x4).[x1 is i] .changeV (p, x2, x3, x4, i, ?, x3, x4).cV B〈(i, idV , x3, x4, x2)〉 |
!VSPP |!BSPP)

)
;

E8 =
(
{{(s, idV , idN1 , v1)}, {(i, idA, idN1 , v1, ?)}, {(p, idA, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA)

(ν cBV) (ν cV B)
(cAB〈(t, idA, idN1 , v1, idV)〉 |
cBA(x1, x2, x3, x4).[x1 is s] .removeA(s, x2, x3, x4) |!ASPP |
cBV (x1, x2, x3, x4).[x1 is i] .changeV (p, x2, x3, x4, i, ?, x3, x4).cV B〈(i, idV , x3, x4, x2)〉 |
!VSPP |!BSPP)

)
;

E9 =
(
{{(s, idV , idN1 , v1)}, {(i, idA, idN1 , v1, ?)}, {(p, idA, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA)

(ν cBV) (ν cV B)
(cBA(x1, x2, x3, x4).[x1 is s] .removeA(s, x2, x3, x4) |!ASPP |
cBV (x1, x2, x3, x4).[x1 is i] .changeV (p, x2, x3, x4, i, ?, x3, x4).cV B〈(i, idV , x3, x4, x2)〉 |
!VSPP | [t is t] .changeB(i, idA, idN1 , v1, ?, t, idA, idN1 , v1, idV).cBV 〈(i, idA, idN1 , v1)〉 |
cV B(x1, x2, x3, x4, x5).[x1 is i] .changeB(t, x5, x3, x4, x2, i, x2, x3, x4, ?).cBA〈(s, x2, x3, x4)〉 |
!BSPP)

)
;

E10 =
(
{{(s, idV , idN1 , v1)}, {(i, idA, idN1 , v1, ?)}, {(p, idA, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA)

(ν cBV) (ν cV B)
(cBA(x1, x2, x3, x4).[x1 is s] .removeA(s, x2, x3, x4) |!ASPP |
cBV (x1, x2, x3, x4).[x1 is i] .changeV (p, x2, x3, x4, i, ?, x3, x4).cV B〈(i, idV , x3, x4, x2)〉 |
!VSPP | changeB(i, idA, idN1 , v1, ?, t, idA, idN1 , v1, idV).cBV 〈(i, idA, idN1 , v1)〉 |
cV B(x1, x2, x3, x4, x5).[x1 is i] .changeB(t, x5, x3, x4, x2, i, x2, x3, x4, ?).cBA〈(s, x2, x3, x4)〉 |
!BSPP)

)
;

A.1. Proof of the Lemma 5.1 51

E11 =
(
{{(s, idV , idN1 , v1)}, {(t, idA, idN1 , v1, idV)}, {(p, idA, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA)

(ν cBV) (ν cV B)
(cBA(x1, x2, x3, x4).[x1 is s] .removeA(s, x2, x3, x4) |!ASPP |
cBV (x1, x2, x3, x4).[x1 is i] .changeV (p, x2, x3, x4, i, ?, x3, x4).cV B〈(i, idV , x3, x4, x2)〉 |
!VSPP | cBV 〈(i, idA, idN1 , v1)〉 |
cV B(x1, x2, x3, x4, x5).[x1 is i] .changeB(t, x5, x3, x4, x2, i, x2, x3, x4, ?).cBA〈(s, x2, x3, x4)〉 |
!BSPP)

)
;

E12 =
(
{{(s, idV , idN1 , v1)}, {(t, idA, idN1 , v1, idV)}, {(p, idA, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA)

(ν cBV) (ν cV B)
(cBA(x1, x2, x3, x4).[x1 is s] .removeA(s, x2, x3, x4) |!ASPP |
[i is i] .changeV (p, idA, idN1 , v1, i, ?, idN1 , v1).cV B〈(i, idV , idN1 , v1, idA)〉 |!VSPP |
cV B(x1, x2, x3, x4, x5).[x1 is i] .changeB(t, x5, x3, x4, x2, i, x2, x3, x4, ?).cBA〈(s, x2, x3, x4)〉 |
!BSPP)

)
;

E13 =
(
{{(s, idV , idN1 , v1)}, {(t, idA, idN1 , v1, idV)}, {(p, idA, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA)

(ν cBV) (ν cV B)
(cBA(x1, x2, x3, x4).[x1 is s] .removeA(s, x2, x3, x4) |!ASPP |
changeV (p, idA, idN1 , v1, i, ?, idN1 , v1).cV B〈(i, idV , idN1 , v1, idA)〉 |!VSPP |
cV B(x1, x2, x3, x4, x5).[x1 is i] .changeB(t, x5, x3, x4, x2, i, x2, x3, x4, ?).cBA〈(s, x2, x3, x4)〉 |
!BSPP)

)
;

E14 =
(
{{(s, idV , idN1 , v1)}, {(t, idA, idN1 , v1, idV)}, {(i, ?, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA)

(ν cBV) (ν cV B)
(cBA(x1, x2, x3, x4).[x1 is s] .removeA(s, x2, x3, x4) |!ASPP |
cV B〈(i, idV , idN1 , v1, idA)〉 |!VSPP |
cV B(x1, x2, x3, x4, x5).[x1 is i] .changeB(t, x5, x3, x4, x2, i, x2, x3, x4, ?).cBA〈(s, x2, x3, x4)〉 |
!BSPP)

)
;

E15 =
(
{{(s, idV , idN1 , v1)}, {(t, idA, idN1 , v1, idV)}, {(i, ?, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA)

(ν cBV) (ν cV B)
(cBA(x1, x2, x3, x4).[x1 is s] .removeA(s, x2, x3, x4) |!ASPP |!VSPP |
[i is i] .changeB(t, idA, idN1 , v1, idV , i, idV , idN1 , v1, ?).cBA〈(s, idV , idN1 , v1)〉 |!BSPP)

)
;

E16 =
(
{{(s, idV , idN1 , v1)}, {(t, idA, idN1 , v1, idV)}, {(i, ?, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA)

(ν cBV) (ν cV B)
(cBA(x1, x2, x3, x4).[x1 is s] .removeA(s, x2, x3, x4) |!ASPP |!VSPP |
changeB(t, idA, idN1 , v1, idV , i, idV , idN1 , v1, ?).cBA〈(s, idV , idN1 , v1)〉 |!BSPP)

)
;

E17 =
(
{{(s, idV , idN1 , v1)}, {(i, idV , idN1 , v1, ?)}, {(i, ?, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA)

(ν cBV) (ν cV B)
(cBA(x1, x2, x3, x4).[x1 is s] .removeA(s, x2, x3, x4) |!ASPP |!VSPP |
cBA〈(s, idV , idN1 , v1)〉 |!BSPP)

)
;

E18 =
(
{{(s, idV , idN1 , v1)}, {(i, idV , idN1 , v1, ?)}, {(i, ?, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA)

(ν cBV) (ν cV B)

([s is s] .removeA(s, idV , idN1 , v1) |!ASPP |!VSPP |!BSPP)
)
;

52 Appendix A. Proofs of the Lemmas of Chapter 5

E19 =
(
{{(s, idV , idN1 , v1)}, {(i, idV , idN1 , v1, ?)}, {(i, ?, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA)

(ν cBV) (ν cV B)

(removeA(s, idV , idN1 , v1) |!ASPP |!VSPP |!BSPP)
)
;

E20 =
(
{{}, {(i, idV , idN1 , v1, ?)}, {(i, ?, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)

(!ASPP |!VSPP |!BSPP)
)
.

If we consider a wrong evolution of the protocol, when A is spending a coin that was not
issued to him, we may consider the following evolution of configurations F , fake states.

F1 =
(
{{(i, ?, idN1 , v1)}, {}, {}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)

(BuyerSPP (idN1) | !ASPP | !VSPP | !BSPP)
)
;

F2 =
(
{{(t, idV , idN1 , v1)}, {}, {}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)

(cAV 〈(t, idA, idN1 , v1)〉 | !ASPP | !VSPP | !BSPP)
)
;

F3 =
(
{{(t, idV , idN1 , v1)}, {}, {}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)

(!ASPP | [t is t] .addV (p, idA, idN1 , v1).cV A〈(p, idV , idN1 , v1)〉 |
cBV (x1, x2, x3, x4).[x1 is i] .changeV (p, x2, x3, x4, i, ?, x3, x4).cV B〈(i, idV , x3, x4, x2)〉 |
!VSPP |!BSPP)

)
;

F4 =
(
{{(t, idV , idN1 , v1)}, {}, {}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)

(!ASPP | addV (p, idA, idN1 , v1).cV A〈(p, idV , idN1 , v1)〉 |
cBV (x1, x2, x3, x4).[x1 is i] .changeV (p, x2, x3, x4, i, ?, x3, x4).cV B〈(i, idV , x3, x4, x2)〉 |
!VSPP |!BSPP)

)
;

F5 =
(
{{(t, idV , idN1 , v1)}, {}, {(p, idA, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)

(!ASPP | cV A〈(p, idV , idN1 , v1)〉 |
cBV (x1, x2, x3, x4).[x1 is i] .changeV (p, x2, x3, x4, i, ?, x3, x4).cV B〈(i, idV , x3, x4, x2)〉 |
!VSPP |!BSPP)

)
;

F6 =
(
{{(t, idV , idN1 , v1)}, {}, {(p, idA, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)

([p is p] .changeA(t, idV , idN1 , v1, s, idV , idN1 , v1).cAB〈(t, idA, idN1 , v1, idV)〉 |
cBA(x1, x2, x3, x4).[x1 is s] .removeA(s, x2, x3, x4) |!ASPP |
cBV (x1, x2, x3, x4).[x1 is i] .changeV (p, x2, x3, x4, i, ?, x3, x4).cV B〈(i, idV , x3, x4, x2)〉 |
!VSPP |!BSPP)

)
;

F7 =
(
{{(t, idV , idN1 , v1)}, {}, {(p, idA, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)

(changeA(t, idV , idN1 , v1, s, idV , idN1 , v1).cAB〈(t, idA, idN1 , v1, idV)〉 |
cBA(x1, x2, x3, x4).[x1 is s] .removeA(s, x2, x3, x4) |!ASPP |
cBV (x1, x2, x3, x4).[x1 is i] .changeV (p, x2, x3, x4, i, ?, x3, x4).cV B〈(i, idV , x3, x4, x2)〉 |
!VSPP |!BSPP)

)
;

F8 =
(
{{(s, idV , idN1 , v1)}, {}, {(p, idA, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)

(cAB〈(t, idA, idN1 , v1, idV)〉 |
cBA(x1, x2, x3, x4).[x1 is s] .removeA(s, x2, x3, x4) |!ASPP |
cBV (x1, x2, x3, x4).[x1 is i] .changeV (p, x2, x3, x4, i, ?, x3, x4).cV B〈(i, idV , x3, x4, x2)〉 |
!VSPP |!BSPP)

)
;

A.2. Proof of the Lemma 5.3 53

F9 =
(
{{(s, idV , idN1 , v1)}, {}, {(p, idA, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)

(cBA(x1, x2, x3, x4).[x1 is s] .removeA(s, x2, x3, x4) |!ASPP |
cBV (x1, x2, x3, x4).[x1 is i] .changeV (p, x2, x3, x4, i, ?, x3, x4).cV B〈(i, idV , x3, x4, x2)〉 |
!VSPP | [t is t] .changeB(i, idA, idN1 , v1, ?, t, idA, idN1 , v1, idV).cBV 〈(i, idA, idN1 , v1)〉 |
cV B(x1, x2, x3, x4, x5).[x1 is i] .changeB(t, x5, x3, x4, x2, i, x2, x3, x4, ?).cBA〈(s, x2, x3, x4)〉 |
!BSPP)

)
;

F10 =
(
{{(s, idV , idN1 , v1)}, {}, {(p, idA, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)

(cBA(x1, x2, x3, x4).[x1 is s] .removeA(s, x2, x3, x4) |!ASPP |
cBV (x1, x2, x3, x4).[x1 is i] .changeV (p, x2, x3, x4, i, ?, x3, x4).cV B〈(i, idV , x3, x4, x2)〉 |
!VSPP | changeB(i, idA, idN1 , v1, ?, t, idA, idN1 , v1, idV).cBV 〈(i, idA, idN1 , v1)〉 |
cV B(x1, x2, x3, x4, x5).[x1 is i] .changeB(t, x5, x3, x4, x2, i, x2, x3, x4, ?).cBA〈(s, x2, x3, x4)〉 |
!BSPP)

)
;

F11 =
(
{{(s, idV , idN1 , v1)}, {}, {(p, idA, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)

(cBA(x1, x2, x3, x4).[x1 is s] .removeA(s, x2, x3, x4) |!ASPP |
cBV (x1, x2, x3, x4).[x1 is i] .changeV (p, x2, x3, x4, i, ?, x3, x4).cV B〈(i, idV , x3, x4, x2)〉 |
!VSPP |
cV B(x1, x2, x3, x4, x5).[x1 is i] .changeB(t, x5, x3, x4, x2, i, x2, x3, x4, ?).cBA〈(s, x2, x3, x4)〉 |
!BSPP)

)
.

We define (σ′i)X as the state of the principal X in the configuration Ei, i ∈ {1, . . . 20}. Sim-
ilarly, we define (σ′′j)X as the state of the principal X in the configuration Fj , j ∈ {1, . . . 11}.
Consider also the state σ as {σA\{(i, ?, idN1 , v1)}, σB\{(i, idA, idN1 , v1, ?)}, σV }. Now, all that
we have to notice is that the bisimulation that proves the equivalence is the bisimulation S1.

S1 =
20⋃
i=1

11⋃
j=i

(
(σ ⊕ σ′i, Ei), (σ ⊕ σ′i ⊕ σ′′j , Ei | Fj)

)
.

This is a B-weak bisimulation up to ∼=B, but using Proposition 3.10, we have a B-weak
bisimulation.

A.2 Proof of the Lemma 5.3

In this section we prove that it will be not possible for A to “create” a coin and use it to pay
to V . Since the second process gets stuck when A orders B to transfer the coin to V , the
bisimulation that proves the result, S2, is very simple. We want to prove that

(
{σA, σB, σV }, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)

(!ASPP | !VSPP | !BSPP)
) ∼=B(

{σA] {(i, ?, idN1 , v1)}, σB, σV }, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)
(BuyerSPP (idN1) | !ASPP | !VSPP | !BSPP)

)
,

whenever (i, idA, idN1 , v1, ?)} /∈ σB.

54 Appendix A. Proofs of the Lemmas of Chapter 5

S2 =
{((

{σA, σB , σV }, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B) (!ASPP | !VSPP | !BSPP)
)
,(

{σA] {(i, ?, idN1 , v1)}, σB , σV }, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)

(BuyerSPP (idN1) | !ASPP | !VSPP | !BSPP)
))

,((
{σA, σB , σV }, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B) (!ASPP | !VSPP | !BSPP)

)
,(

{σA] {(t, idV , idN1 , v1)}, σB , σV }, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)

(cAV 〈(t, idA, idN1 , v1)〉 | !ASPP | !VSPP | !BSPP)
))

,((
{σA, σB , σV }, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B) (!ASPP | !VSPP | !BSPP)

)
,(

{σA] {(t, idV , idN1 , v1)}, σB , σV }, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)

(!ASPP | [t is t] .addV (p, idA, idN1 , v1).cV A〈(p, idV , idN1 , v1)〉 |
cBV (x1, x2, x3, x4).[x1 is i] .changeV (p, x2, x3, x4, i, ?, x3, x4).cV B〈(i, idV , x3, x4, x2)〉 |

!VSPP |!BSPP)
))

,((
{σA, σB , σV }, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B) (!ASPP | !VSPP | !BSPP)

)
,(

{σA] {(t, idV , idN1 , v1)}, σB , σV }, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B)

(!ASPP | addV (p, idA, idN1 , v1).cV A〈(p, idV , idN1 , v1)〉 |
cBV (x1, x2, x3, x4).[x1 is i] .changeV (p, x2, x3, x4, i, ?, x3, x4).cV B〈(i, idV , x3, x4, x2)〉 |

!VSPP |!BSPP)
))

,((
{σA, σB , σV }, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B) (!ASPP | !VSPP | !BSPP)

)
,(

{σA] {(t, idV , idN1 , v1)}, σB , σV] {(p, idA, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA)

(ν cBV) (ν cV B)
(!ASPP | cV A〈(p, idV , idN1 , v1)〉 |
cBV (x1, x2, x3, x4).[x1 is i] .changeV (p, x2, x3, x4, i, ?, x3, x4).cV B〈(i, idV , x3, x4, x2)〉 |

!VSPP |!BSPP)
))

,((
{σA, σB , σV }, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B) (!ASPP | !VSPP | !BSPP)

)
,(

{σA] {(t, idV , idN1 , v1)}, σB , σV] {(p, idA, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA)

(ν cBV) (ν cV B)
([p is p] .changeA(t, idV , idN1 , v1, s, idV , idN1 , v1).cAB〈(t, idA, idN1 , v1, idV)〉 |
cBA(x1, x2, x3, x4).[x1 is s] .removeA(s, x2, x3, x4) |!ASPP |
cBV (x1, x2, x3, x4).[x1 is i] .changeV (p, x2, x3, x4, i, ?, x3, x4).cV B〈(i, idV , x3, x4, x2)〉 |

!VSPP |!BSPP)
))

,

A.2. Proof of the Lemma 5.3 55

((
{σA, σB , σV }, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B) (!ASPP | !VSPP | !BSPP)

)
,(

{σA] {(t, idV , idN1 , v1)}, σB , σV] {(p, idA, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA)

(ν cBV) (ν cV B)
(changeA(t, idV , idN1 , v1, s, idV , idN1 , v1).cAB〈(t, idA, idN1 , v1, idV)〉 |
cBA(x1, x2, x3, x4).[x1 is s] .removeA(s, x2, x3, x4) |!ASPP |
cBV (x1, x2, x3, x4).[x1 is i] .changeV (p, x2, x3, x4, i, ?, x3, x4).cV B〈(i, idV , x3, x4, x2)〉 |

!VSPP |!BSPP)
))

,((
{σA, σB , σV }, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B) (!ASPP | !VSPP | !BSPP)

)
,(

{σA] {(s, idV , idN1 , v1)}, σB , σV] {(p, idA, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA)

(ν cBV) (ν cV B)
(cAB〈(t, idA, idN1 , v1, idV)〉 |
cBA(x1, x2, x3, x4).[x1 is s] .removeA(s, x2, x3, x4) |!ASPP |
cBV (x1, x2, x3, x4).[x1 is i] .changeV (p, x2, x3, x4, i, ?, x3, x4).cV B〈(i, idV , x3, x4, x2)〉 |

!VSPP |!BSPP)
))

,((
{σA, σB , σV }, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B) (!ASPP | !VSPP | !BSPP)

)
,(

{σA] {(s, idV , idN1 , v1)}, σB , σV] {(p, idA, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA)

(ν cBV) (ν cV B)
(cBA(x1, x2, x3, x4).[x1 is s] .removeA(s, x2, x3, x4) |!ASPP |
cBV (x1, x2, x3, x4).[x1 is i] .changeV (p, x2, x3, x4, i, ?, x3, x4).cV B〈(i, idV , x3, x4, x2)〉 |
!VSPP | [t is t] .changeB(i, idA, idN1 , v1, ?, t, idA, idN1 , v1, idV).cBV 〈(i, idA, idN1 , v1)〉 |
cV B(x1, x2, x3, x4, x5).[x1 is i] .changeB(t, x5, x3, x4, x2, i, x2, x3, x4, ?).cBA〈(s, x2, x3, x4)〉 |

!BSPP)
))

,((
{σA, σB , σV }, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B) (!ASPP | !VSPP | !BSPP)

)
,(

{σA] {(s, idV , idN1 , v1)}, σB , σV] {(p, idA, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA)

(ν cBV) (ν cV B)
(cBA(x1, x2, x3, x4).[x1 is s] .removeA(s, x2, x3, x4) |!ASPP |
cBV (x1, x2, x3, x4).[x1 is i] .changeV (p, x2, x3, x4, i, ?, x3, x4).cV B〈(i, idV , x3, x4, x2)〉 |
!VSPP | changeB(i, idA, idN1 , v1, ?, t, idA, idN1 , v1, idV).cBV 〈(i, idA, idN1 , v1)〉 |
cV B(x1, x2, x3, x4, x5).[x1 is i] .changeB(t, x5, x3, x4, x2, i, x2, x3, x4, ?).cBA〈(s, x2, x3, x4)〉 |

!BSPP)
))

,

56 Appendix A. Proofs of the Lemmas of Chapter 5

((
{σA, σB , σV }, (ν cAV) (ν cV A) (ν cAB) (ν cBA) (ν cBV) (ν cV B) (!ASPP | !VSPP | !BSPP)

)
,(

{σA] {(s, idV , idN1 , v1)}, σB , σV] {(p, idA, idN1 , v1)}}, (ν cAV) (ν cV A) (ν cAB) (ν cBA)

(ν cBV) (ν cV B)
(cBA(x1, x2, x3, x4).[x1 is s] .removeA(s, x2, x3, x4) |!ASPP |
cBV (x1, x2, x3, x4).[x1 is i] .changeV (p, x2, x3, x4, i, ?, x3, x4).cV B〈(i, idV , x3, x4, x2)〉 |!VSPP |
cV B(x1, x2, x3, x4, x5).[x1 is i] .changeB(t, x5, x3, x4, x2, i, x2, x3, x4, ?).cBA〈(s, x2, x3, x4)〉 |

!BSPP)
))}

.

The bisimulation S2 is just the normal evolution of the second protocol, always paired,
with the initial state of the first protocol. It is easy to notice that the last pair of configurations
have the same behaviour since the only differences are the input processes, but this behaviour
can be imitated by the respective replications, and the states of A and V .

A.3 Proof of the Lemma 5.5

We describe briefly the proof of this lemma because it is very similar to the proof of Lemma 5.3.
If we look at the proof of the Lemma 5.3, the only differences to this one are that the coin
that is being used is issued, but to other principal, and that V will have the coin with number
idN2 twice in his wallet, one in the issued state, the valid one, and the other in the pending
state, the forged one.

In the proof of the previous lemma, since the coin was not issued to A, (i, idA, idN1 , v1, ?) /∈
σB, the process got stuck when A communicated the transference to the bank. This time,
the process gets stuck in the exact same point because (i, idA, idN2 , v1, ?) /∈ σB; the note is
issued to V , (i, idV , idN2 , v1, ?) ∈ σB.

Index

A-bisimulation
A-strong bisimulation, 26
A-strong bisimulation up to 'A, 29
A-weak bisimulation, 32
A-weak bisimulation up to ∼=A, 35

A-equivalence
A-strong equivalence, 28
A-weak equivalence, 35

A-simulation
A-strong simulation, 26
A-weak simulation, 31

τ , see silent action

action, 14
agents

Spi-Calculus, 13
abstraction, 13
concretion, 13
process, see process

barb, 14
convergence through a barb, 15
exhibition of barb, 15

closed process
My-Calculus, 22
Spi-Calculus, 11

closed term
My-Calculus, 22
Spi-Calculus, 11

commitment relation
in My-Calculus

over processes, 25
strong commitment, 25
weak commitment, 31

in Spi-Calculus, 12–14
composition of relations, 26
configuration, 23
converse relation, 26

early semantics, 25

finite multiset, 20
difference, 20
union, 20

free names
My-Calculus

in operation, 23
in process, 23
in term, 22

Spi-Calculus
in agent, 13
in process, 11
in term, 11

free variables
My-Calculus

in operation, 22
in process, 22
in term, 22

Spi-Calculus
in agent, 13
in process, 10
in term, 10

interaction, 14

late semantics, 25
local operations, 20

add, 20, 23
change, 20, 23
remove, 20, 23
well defined, 21

mobile process, 10

name
My-Calculus, 20
Spi-Calculus, 8

principals, 20
process

57

58 INDEX

My-Calculus, 21
composition, 21
input, 21
match, 21, 22
nil, 21
output, 21
replication, 21, 22
restriction, 21, 22

Spi-Calculus, 9
composition, 9, 13
input, 9
integer case, 9
match, 9
nil, 9
output, 9
pair splitting, 9
replication, 9
restriction, 9, 13
shared-key decryption, 9, 10

reaction relation in Spi-Calculus, 12–13
reduction relation

in My-Calculus, 24
reflexive closure, 24

in Spi-Calculus, 12

scope extrusion, 10, 16
silent action, 14
state, 20

union, 46
structural equivalence

in Spi-Calculus, 12
structural equivalence in Spi-Calculus, 12

term
My-Calculus, 21

pairing, 21
Spi-Calculus, 8

pairing, 8
private-encryption, 8

test, 15
pass the test, 15
testing equivalent, 15

testing equivalence, 14–15

variables
My-Calculus, 20
Spi-Calculus, 8

Bibliography

[AG97a] M. Abadi and A. Gordon. A calculus for cryptographic protocols: The Spi
Calculus. In Pfitzmann, Schunter, and Waidner, editors, Proceedings of the
4th ACM Conference on Computer and Communications Security, pages 36–47,
Zurich, Switzerland, April 1997. ACM Press. Full version available as Technical
Report 414, Univ. Cambridge Computer Lab.

[AG97b] M. Abadi and A. Gordon. Reasoning about cryptographic protocols in the Spi
Calculus. In A. Mazurkiewicz and J. Winkowski, editors, Proceedings of the
CONCUR’97, 8th International Conference on Concurrency Theory, volume
1243 of Lecture Notes in Computer Science, pages 59–73, Warsaw, Poland, July
1997. Springer-Verlag.

[AG98a] M. Abadi and A. Gordon. A bisimulation method for cryptographic protocols.
Nordic Journal of Computing, 5(4):267–303, Winter 1998.

[AG98b] M. Abadi and A. Gordon. A calculus for cryptographic protocols: The Spi
Calculus. Research Report 149, Digital Systems Research Center, Palo Alto,
CA, USA, January 1998.

[AT91] M. Abadi and M. Tuttle. A semantics for a logic of authentication. In Pro-
ceedings of the 10th ACM Symposium on Principles of Distributed Computing,
pages 201–216. ACM Press, August 1991.

[BAN96] M. Burrows, M. Abadi, and R. Needham. A logic of authentication, from pro-
ceedings of the royal society, pp 233-271, volume 426, number 1871, 1989. In
W. Stallings, editor, Practical Cryptography for Data Internetworks. IEEE Com-
puter Society Press, 1996. A preliminary version appeared as Research Report
39, DEC Systems Research Center, Palo Alto, February 1989.

[BNP99] M. Boreale, R. De Nicola, and R. Pugliese. Proof techniques for cryptographic
processes. In Proceedings of the LICS’99, 14th IEEE Symposium Logic in Com-
puter Science, pages 157–166. IEEE Computer Society Press, July 1999.

[Bra93] S. Brands. Untraceable off-line cash in wallets with observers (extended ab-
stract). In D. Stinson, editor, Proceedings of the CRYPTO ’93 - Advances in
Cryptology, volume 773 of Lecture Notes in Computer Science, pages 302–318.
Springer-Verlag, August 1993.

[Bra95] S. Brands. Off-line electronic cash based on secret-key certificates. In R. Baeza-
Yates, E. Goles, and P. Goblete, editors, Proceedings of the LATIN ’95 - Second

59

60 BIBLIOGRAPHY

International Symposium of Latin American Theoretical Informatics, volume
911 of Lecture Notes in Computer Science, pages 131–166, Valparaiso, Chili,
April 1995. Springer-Verlag. Also available as CWI technical report, CSR9506.

[Bra99] S. Brands. Electronic cash. In M. Atallah, editor, Algorithms and Theory of
Computation Handbook, chapter 44. CRC Press, November 1999.

[Can00] R. Canetti. Security and composition of multi-party cryptographic protocols.
Journal of Cryptology, 13(1):143–2002, 2000.

[Can01] R. Canetti. Universally composable security: a new paradigm for cryptographic
protocols. Report, IBM T. J. Watson Research Center, October 2001.

[CdBvH+90] D. Chaum, B. den Boer, E. van Heyst, S. Mjølsnes, and A. Steenbeek. Effin-
cient off-line electronic checks. In J. Quisquater and J. Vandewalle, editors,
Proccedings of the EUROCRYPT 89 - Advances in Cryptology, Lecture Notes
in Computer Science, pages 294–301. Springer-Verlag, 1990.

[CFN90] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In S. Goldwasser,
editor, Proccedings of the CRYPTO ’88 - Advances in Cryptology, volume 403
of Lecture Notes in Computer Science, pages 319–327. Springer-Verlag, August
1990.

[CP93] D. Chaum and T. Pedersen. Wallet databases with observers. In E. Brickell,
editor, Proceedings of the CRYPTO ’92 - Advances in Cryptology, volume 740
of Lecture Notes in Computer Science, pages 89–105. Springer-Verlag, August
1993.

[Fer93a] N. Ferguson. Extensions of single-term coins. In D. Stinson, editor, Proccedings
of the CRYPTO ’93 - Advances in Cryptology, volume 773 of Lecture Notes in
Computer Science, pages 292–301. Springer-Verlag, August 1993.

[Fer93b] N. Ferguson. Single term off-line coins. Technical Report CS-R9318, Center for
Mathematics and Computer Science, Amsterdam, 1993.

[Fer94] N. Ferguson. Single term off-line coins. In Proccedings of the EUROCRYPT ’93
- Advances in Cryptology, volume 765 of Lecture Notes in Computer Science,
pages 318–328. Springer-Verlag, 1994.

[GM95] J. Gray and J. McLean. Using temporal logic to specify and verify cryptographic
protocols (progress report). In Proceedings of the 8th IEEE Computer Security
Foundations Workshop, pages 108–116. IEEE Computer Society Press, 1995.

[Hoa80] C. A. R. Hoare. Communicating sequential processes. In R. McKeag and
A. Macnaghten, editors, On the construction of programs – an advanced course,
pages 229–254. Cambridge University Press, 1980.

[Low96] G. Lowe. Breaking and fixing the Needham-Shroeder public-key protocol using
FDR. In T. Margaria and B. Steffen, editors, Proccedings of the TACAS’96,
volume 1055 of Lecture Notes in Computer Science, pages 147–166. Springer-
Verlag, 1996.

BIBLIOGRAPHY 61

[MCJ97] W. Marrero, E. Clarke, and S. Jha. Model checking for security protocols. In
Proceedings of the DIMACS, Workshop on Design and Verication of Security
Protocols, 1997. A preliminary version appeared as Technical Report TR-CMU-
CS-97-139, Carnegie Mellon University, May 1997.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes
in Computer Science. Springer-Verlag, New York, NY, USA, 1980.

[Mil89] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[Mil99] R. Milner. Communicating and Mobile Systems : The π-Calculus. Cambridge
University Press, June 1999.

[MMS02] P. Mateus, J. Mitchell, and A. Scedrov. Probabilistic polynomial calculus for
secure computation analysis. On going paper, Section of Computer Science, De-
partment of Mathematics, Instituto Superior Técnico, Lisboa, Portugal, 2002.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts I
and II. Information and Computation, 100(1):1–40, 41–77, September 1992.

[MRTS01] J. Mitchell, A. Ramanathan, V. Teague, and A. Scedrov. A probabilistic
polynomial-time calculus for analysis of cryptographic protocols. In S. Brookes
and M. Mislove, editors, Proceedings of the 17th Annual Conference on the
Mathematical Foundations of Programming Semantics, volume 45 of Electronic
Notes in Theoretical Computer Science, Arhus, Denmark, May 2001. Elsevier
Science.

[Oka95] T. Okamoto. An efficient divisible electronic cash scheme. In D. Coppersmith,
editor, Proccedings of the CRYPTO ’95 - Advances in Cryptology, volume 963
of Lecture Notes in Computer Science, pages 438–451. Springer-Verlag, August
1995.

[OO92] T. Okamoto and K. Ohta. Universal electronic cash. In J. Feigenbaum, editor,
Proccedings of the CRYPTO ’91 - Advances in Cryptology, volume 576 of Lecture
Notes in Computer Science, pages 324–337. Springer-Verlag, August 1992.

[Qua99] P. Quaglia. The π-calculus: Notes on labelled semantics. Bulletin of the Eu-
ropean Association for Theoretical Computer Science (BEATCS), 68:104–114,
June 1999. Concurrency Column.

[Ros95] A. Roscoe. Modelling and verifying key-exchange using CSP and FDR. In
Proceedings of the 8th IEEE Computer Security Foundations Workshop. IEEE
Computer Society Press, 1995.

[SC00] P. Syverson and I. Cervesato. The logic of authentication protocols. In R. Fo-
cardi and R. Gorrieri, editors, Proceedings of the FOSAD’2000, International
School on Foundations of Security Analysis and Design, volume 2171 of Lecture
Notes in Computer Science, pages 63–136, Bertinoro, Italy, September 2000.
Springer.

62 BIBLIOGRAPHY

[Sch98] S. Schneider. Verifying authentication protocols in CSP. In Proceedings of the
IEEE Transactions on Software Engineering, volume 24, pages 741–758. IEEE
Computer Society Press, 1998.

[SM96] P. Syverson and C. Meadows. A formal language for cryptographic protocol
requirements. Designs, Codes and Cryptography, 7(1-2):27–59, 1996.

[Syv91] P. Syverson. The use of logic in the analysis of cryptographic protocols. In
T. Lunt and J. McLean, editors, Proceedings IEEE Symposium on Research in
Security and Privacy, pages 156–170. IEEE Computer Society, 1991.

